Shuai-Lei
Xie
a,
Jiang
Liu
*b,
Long-Zhang
Dong
b,
Shun-Li
Li
b,
Ya-Qian
Lan
*b and
Zhong-Min
Su
*ac
aInstitute of Functional Material Chemistry, Department of Chemistry, National & Local United Engineering Lab for Power Battery, Northeast Normal University, Changchun 130024, P. R. China. E-mail: zmsu@nenu.edu.cn
bSchool of Chemistry and Materials Science, Jiangsu Key Laboratory of Biofunctional Materials, Nanjing Normal University, Nanjing 210023, P. R. China. E-mail: liuj@njnu.edu.cn; yqlan@njnu.edu.cn
cSchool of Chemistry and Environmental Engineering, The Collaborative Innovation Center of Optical Materials and Chemistry, CUST, Changchun University of Science and Technology, Changchun 130028, P. R. China
First published on 2nd October 2018
The photocatalytic reduction of CO2 to value-added methane (CH4) has been a promising strategy for sustainable energy development, but it is challenging to trigger this reaction because of its necessary eight-electron transfer process. In this work, an efficient photocatalytic CO2-to-CH4 reduction reaction was achieved for the first time in aqueous solution by using two crystalline heterogeneous catalysts, H{[Na2K4Mn4(PO4) (H2O)4]⊂{[Mo6O12(OH)3(HPO4)3(PO4)]4[Mn6(H2O)4]}·16H2O (NENU-605) and H{[Na6CoMn3(PO4)(H2O)4]⊂{[Mo6O12(OH)3(HPO4)3(PO4)]4[Co1.5Mn4.5]}·21H2O (NENU-606). Both compounds have similar host inorganic polyoxometalate (POM) structures constructed with strong reductive {P4Mo6V} units, homo/hetero transition metal ions (MnII/CoIIMnII) and alkali metal ions (K+ and/or Na+). It is noted that the {P4Mo6V} cluster including the six MoV atoms served as a multi-electron donor in the case of a photocatalytic reaction, while the transition metal ions functioned as catalytically active sites for adsorbing and activating CO2 molecules. Additionally, the presence of alkali metal ions was believed to assist in the capture of more CO2 for the photocatalytic reaction. The synergistic combination of the above-mentioned components in NENU-605 and NENU-606 effectively facilitates the accomplishment of the required eight-electron transfer process for CH4 evolution. Furthermore, NENU-606 containing hetero-metallic active sites finally exhibited higher CH4 generation selectivity (85.5%) than NENU-605 (76.6%).
Polyoxometalate (POM) with inherent redox and semiconductor features is one kind of inorganic crystalline material, which has been surveyed extensively in different catalytic reaction types.30–35 A lot of classic POM units or POM-based derivatives often exhibit favourable responses to specific catalytic reactions, where the relevant active sites and electron transfer of the catalytic reaction can be explained by their crystal structures.36–40 However, the dissolvability of traditional POM clusters has been a major limiting factor for catalytic durability and needs to be primarily considered. So, the structural stability is the prerequisite for POM chemistry to be applied in any heterogeneous catalysis. As far as we know, high dimensional POM-containing inorganic architecture compared with the POM monomer usually shows good structural insolubility and an extended solar spectrum absorption range, which have been investigated in many photo-stimulated catalytic reactions such as water splitting, organic degradation, etc. In these reactions, the fast and reversible multi-electron transfer character of the POM subunit plays an extremely important role in promoting photocatalytic performance.41–44 In this context, a POM-assembled inorganic complex is also believed to have advantages in the field of the heterogeneous photocatalytic CO2RR. In particular, if the POM component within the structure can offer the CO2 molecule sufficient electrons, then multi-electron oriented reductive products would be achievable.
Herein, we report two stable POM-containing inorganic compounds, H{[Na2K4Mn4(PO4) (H2O)4]⊂{[Mo6O12(OH)3(HPO4)3(PO4)]4[Mn6(H2O)4]}·16H2O (NENU-605) and H{[Na6CoMn3(PO4)(H2O)4]⊂{[Mo6O12(OH)3(HPO4)3(PO4)]4[Co1.5Mn4.5]}·21H2O (NENU-606), which have very similar host skeletons but different catalytically active species. It is noted that assembling {P4Mo6V} ([Mo6O12(OH)3(HPO4)3(PO4)]6−) units with strong reducibility into the structures endows NENU-605 and NENU-606 with efficient heterogeneous photocatalytic CO2-to-CH4 reduction ability in water. To our knowledge, this is the first report of {P4Mo6V}-based crystalline inorganic materials applied in the photocatalytic CO2RR. Photocatalytic analysis revealed that the synergistic combination of strong reductive {P4Mo6V} units (donating electrons) and the first-row transition metal active centres (MnII/CoIIMnII) in NENU-605 and NENU-606 effectively boosts the necessary eight-electron reduction process for CH4 evolution. Furthermore, the hetero-metallic active sites of NENU-606 finally exhibited a higher CH4 generation selectivity (85.5%) in the photocatalytic CO2RR than those of NENU-605 (76.6%). Besides, the coordination effect of alkali metal ions can also assist the accomplishment of the photocatalytic reaction by influencing the CO2 adsorption ability of the title compounds. At the same time, the crystalline and heterogeneous nature of these stable inorganic POM-included compounds also provides some insight into the photocatalytic CO2RR mechanism.
The phase purity and thermal stability of NENU-605 and NENU-606 were demonstrated using well-matched powder X-ray diffraction (PXRD) patterns and thermogravimetric analysis, respectively (Fig. S9 and S10†). As shown in Fig. S9a and b,† these two compounds can also remain stable when being soaked in aqueous solutions at different pH values for several days, which indicated that their structures have strong acid and alkali resistance.50 Besides, in order to confirm the heterogeneous catalytic nature, the structural stability of the title compounds was tested again under the conventional conditions of the photocatalytic CO2RR. It is obvious that the PXRD patterns of all the treated crystals remain intact, indicating that no phase transition or structural collapse occurred. A broad UV-vis absorption range of 200–600 nm for NENU-605 and NENU-606 revealed that they indeed have better light-harvesting ability than a single POM cluster, whose absorption mainly focuses on the ultraviolet region (200–400 nm).51–53 Based on this, the band gaps of 3.20 (NENU-605) and 2.57 eV (NENU-606) were evaluated by the Kubelka–Munk (KM) method (Fig. S11†), unveiling the potential for these two compounds to be used as semiconducting photocatalysts. At the same time, Mott–Schottky measurements at frequencies of 1000, 1500, and 2000 Hz were used to determine the LUMO positions of NENU-605 and NENU-606 such that the occurrence of the photocatalytic CO2RR and relevant reductive products can be simply inferred (Fig. S12 and S13†). As we can see, the LUMO locations of compounds are more negative than the reduction potentials required for producing CO (−0.53 V vs. NHE) and CH4 (−0.24 V vs. NHE), indicating that the electrons can be transferred to the CO2 molecule for further reduction.
Taking the above features of NENU-605 and NENU-606 into consideration, the photocatalytic CO2RR was conducted under a pure CO2 (1.0 atm, 293 K) atmosphere in an aqueous solution with triethanolamine (TEOA) as a sacrificial agent (TEOA/H2O = 2:28 mL, pH ≈ 10.5). In addition, [Ru(bpy)3]Cl2·6H2O (0.01 mmol) as an auxiliary photosensitizer (PS) was added into the reaction system for increased visible-light absorption.54 Because of the matched LUMO positions between the PS and catalysts (Fig. S14 and S15†), photo-generated electrons were allowed to migrate from the PS to the catalysts. During the whole photoreduction process, gaseous CH4 and CO were the main reaction products detected by gas chromatography, while trace amounts of HCOOH were produced in the aqueous solution as detected by ion chromatography. Moreover, no competitive H2 was produced during the whole reaction (Fig. S16†). With the increasing irradiation time, the yields of CO and CH4 increase simultaneously at different reaction rates (Fig. 3a and b); the amount of CH4 for NENU-605 reached up to 170 nmol (i.e., 894.7 nmol g−1 h−1) after 19 h. In contrast, the maximum production of CH4 achieved for NENU-606 was 402 nmol (i.e., 1747.8 nmol g−1 h−1) after 23 h (Fig. 3c). Moreover, they finally exhibit a very high selectivity (CH4 over CO) of 76.6% (NENU-605) and 85.5% (NENU-606) (Fig. 3c). It is significant that this is the first report of heterogeneous POM-based catalysts applied in the photocatalytic CO2RR that exhibited such a high selectivity towards CH4, although the corresponding CH4 outputs are still very low and need to be greatly improved. The CO amounts determined after the reaction were 267.0 nmol g−1 h−1 (NENU-605) and 295.7 nmol g−1 h−1 (NENU-606), and the relevant parameters including the TONs and TOFs of these photocatalytic systems were summarized in Table S1.†NENU-606 obviously has higher photocatalytic CH4 selectivity than NENU-605, which can be further proved by their distinguishing transient photocurrent responses and electrochemical impedance spectra (Fig. S17†). The higher photocurrent response and smaller size of the Nyquist plot of NENU-606 represented its better separation efficiency of photo-induced electron–hole pairs and faster interfacial charge transfer process compared to NENU-605. Such differences in the charge separation and the kinetics of charge transfer probably resulted from the different active sites in NENU-605 (homometallic MnII ions) and NENU-606 (heterometallic MnII/CoII ions). Additionally, a series of reference experiments were carried out to explore the importance of each component in the photocatalytic reaction system, and the results are summed up in Table S1.† As we can see, in the absence of POM-based catalysts, TEOA, PSs, CO2 or light illumination, no detectable products were observed in the reaction system. The photocatalytic durability of the compounds was tested to confirm their heterogeneous nature. From the time course plots of CH4 evolution, the POM-containing catalysts maintain almost unchanged activities even after three cycles (Fig. S18†). The slight decline in the CH4 evolution activity in subsequent runs is probably related to the small amount of mass loss of the samples used in the recovery process. Furthermore, there was no noticeable alteration in the PXRD patterns and IR and X-ray photoelectron (XPS) spectra obtained before and after the recycling experiments of the photocatalytic reaction that evidenced the structural robustness of NENU-605 and NENU-606 again (Fig. S9c, d, S19, S20 and S21†).
To exclude the influence of possible active component decomposition on the photocatalytic activity, the reaction solution was filtrated after irradiating 11 hours and then the filtrate was detected. The fact that the generation of CH4 and CO would stop if the catalysts were removed from the reaction system clearly suggests that the photocatalytic activity comes from the catalysts themselves (Fig. S22†). Meanwhile, only trace amounts (NENU-605, 0.67%; NENU-606, 0.81%) of metal residue in the filtrate after the photocatalytic reaction were detected by ICP-AES. All these results pointed out that both NENU-605 and NENU-606 possess good photocatalytic durability towards the CO2RR under visible-light irradiation. To further validate the source of the produced CO and CH4, an isotope experiment using 13CO2 as the substrate was performed, and then the associated products were analysed by gas chromatography and mass spectrometry.55 As shown in Fig. S23† and 3d, the peaks at m/z = 29 and m/z = 17 were assigned to 13CO and 13CH4, respectively, providing solid proof that NENU-605 and NENU-606 are indeed active and capable of selectively converting CO2 to CH4 under visible-light irradiation.
To disclose the origin and difference of the photocatalytic performances of NENU-605 and NENU-606 in the CO2RR, the role of the {Mn[Mo6O12(OH)3(HPO4)3(PO4)]2} (abbr.{Mn(P4Mo6)2}) cluster (NENU-607) (Fig. S24–26†) was mainly considered in our system. NENU-607 is a dimer, with one {MnII} atom sandwiched between two {P4Mo6} units, displaying a similar connection mode to that of NENU-605 and NENU-606. When NENU-607 was synthesized and used as a catalyst applied under identical conditions of the photocatalytic reaction, only a small amount of CO (47 nmol) and CH4 (70 nmol) were detected, which demonstrated that the light-induced CO2 reduction process more likely occurred on the active MnII ions (NENU-605) or MnII/CoII ions (NENU-606). The strongly reductive P4Mo6V cluster including six MoV atoms in the case of redox reactions can theoretically offer multiple electrons for the CO2RR. Because each Lewis acid metal active site in title compounds is surrounded by four P4Mo6V units, the achieved photo-stimulated CO2-to-CH4 conversion seems to be understandable. As for the higher CH4 selectivity of NENU-606 than NENU-605, we speculated that the interaction between hetero-metallic MnII/CoII ions was more beneficial than that between homo-metallic MnII ions in terms of adsorption and activation of CO2 molecules. Besides, the reaction medium was also found to be an important factor in influencing the catalytic result. When the aqueous solution was replaced by dry MeCN (entry 9, Table S1†), no noticeable reduction products can be detected in the photocatalytic system. Additionally, the generation of reduction products relies on the participation of H2O as the solvent, as demonstrated in Fig. S27.† Moreover, the further increase of reduction products is also related to the increased amount of H2O. All the above cases have suggested the importance of H2O as the proton donor for the CO2-to-CH4 reduction reaction.
Based on the analysis of related experimental results, a speculative reaction mechanism with respect to the photocatalytic CO2-to-CH4 conversion using these two crystalline POM-containing compounds, as well as possible photo-generated electron transport pathways, was proposed (Fig. 4). First, the photosensitizer in the system absorbs sunlight to generate photo-excited electrons from the HOMO and then transports them to the catalyst through the matched LUMO positions; TEOA as the sacrificial reagent consumes the electron holes produced in the valence band. Second, strongly reductive {P4Mo6V} units enrich and offer electrons to the active metal centre under the stimulation of the photo-induced redox reaction. Third, the adsorbed CO2 molecule obtains electrons from the active metal sites, with the assistance of H2O as a proton donor, eventually undergoing the multi-electron transfer process of CO2-to-CH4 reduction. In addition, because the low local concentration of CO2 around the typical catalysts can make the reaction suffer from slow kinetics,56,57 the coordination of alkali metal cations in NENU-605 and NENU-606 architectures is helpful to effectively physically adsorb CO2 molecules through non-covalent interactions,58,59 which could lower the overpotential and Gibbs free energy ΔG of the chemical reduction of CO2.60–62
Fig. 4 Proposed mechanism for the photocatalytic reduction of CO2 to CH4 using NENU-605 and NENU-606. |
Footnote |
† Electronic supplementary information (ESI) available: Experimental methods and supporting figures and tables. CCDC 1855992–1855994. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c8sc03471k |
This journal is © The Royal Society of Chemistry 2019 |