Vincenzo
Grande
ab,
Bartolome
Soberats
b,
Stefanie
Herbst
a,
Vladimir
Stepanenko
a and
Frank
Würthner
*ab
aUniversität Würzburg, Institut für Organische Chemie, Am Hubland, 97074 Würzburg, Germany. E-mail: wuerthner@uni-wuerzburg.de
bCenter for Nanosystems Chemistry, Bavarian Polymer Institute (BPI), Universität Würzburg, Theodor-Boveri-Weg, 97074 Würzburg, Germany
First published on 30th July 2018
A new twelvefold methoxy-triethyleneglycol-jacketed tetraphenoxy-perylene bisimide (MEG-PBI) amphiphile was synthesized that self-assembles into two types of supramolecular aggregates in water: red-coloured aggregates of low order and with weak exciton coupling among the PBIs and blue-coloured strongly coupled J-aggregates consisting of a highly ordered hydrogen-bonded triple helix of PBIs. At room temperature this PBI is miscible with water at any proportions which enables the development of robust dye aggregates in solution, in hydrogel states and in lyotropic liquid crystalline states. In the presence of 60–95 wt% water, self-standing coloured hydrogels exhibit colour changes from red to blue accompanied by a fluorescence light-up in the far-red region upon heating in the range of 30–50 °C. This phenomenon is triggered by an entropically driven temperature-induced hydrogen-bond-directed slipped stacking arrangement of the MEG-PBI chromophores within structurally well-defined J-aggregates. This versatile aqua material is the first example of a stable PBI J-aggregate in water. We anticipate that this study will open a new avenue for the development of biocompatible functional materials based on self-assembled dyes and inspire the construction of other hydrogen-bonded supramolecular materials in the highly competitive solvent water.
Thanks to their photofunctional properties and π-surface-based intermolecular interaction sites,22 aromatic organic dyes are particularly attractive building blocks for the construction of functional nanostructures.1,23,24 Among those, perylene bisimides (PBIs, see Fig. 1a) are considered archetypal dyes that combine outstanding absorption and fluorescence properties, thermal and photochemical robustness, and the strong tendency to form well-defined aggregates.25–28 Therefore, water-soluble PBIs have not only been extensively studied in the monomeric form for biological29–32 and biomedical33–36 applications, but also in functional supramolecular architectures.25,37–39 As an example, supramolecular hydrogels based on self-assembled PBIs have been reported40–42 showing applications as separation membranes,21,43 for photooxidation44 and for photocatalysis.45,46 Our group has also reported bolaamphiphilic PBI hydrogels as thermoresponsive optical switches.47 It is noteworthy that in all reported examples, PBI self-assembly is driven by an interplay of π–π-interactions and the hydrophobic effect. This affords a typical cofacial π-stacking arrangement that compromises the fluorescence properties of these dyes.29,32,48 On the contrary, the highly desired slipped-stack packing arrangement with J-type coupling and red-shifted absorption and fluorescence bands49,50 remains as a challenging goal in the hydrogel state.
In our previous works, we accomplished such slipped-stack self-assembled PBI J-aggregates by an engineered design of tetra bay-substituted PBIs bearing free NH groups at the imide positions.51–53 The self-assembly was triggered in non-polar organic solvents via the synergistic formation of hydrogen bonds between the imide groups and π–π interactions between the π-scaffolds. The J-aggregates exhibited about 100 nm bathochromically shifted absorption bands and high fluorescence quantum yields,52 as well as exciton migration over distances up to 100 nm.54 In our more recent work, we have shown that this molecular design is also suitable to establish a new class of hydrogen-bonded columnar liquid-crystalline (LC) J-aggregates that were applied as photonic materials in inorganic55 and organic56 microcavities. Herein, we report for the first time on the development of optically active aqua materials based on nanostructured MEG-PBI (Fig. 1a) J-aggregates. Amphiphilic MEG-PBI showed full miscibility with water at room temperature which allowed us to obtain self-assembled J-aggregates in dilute aqueous solution (10−6 to 10−3 M), hydrogels at a concentration of 5–40 wt% and lyotropic LC phases at 60–90 wt% concentration.‡ The hydrogel is particularly interesting as an adaptive biocompatible material exhibiting reversible colour change from red (hydrogel 1, Fig. 1b) to blue (hydrogel 2) upon heating, accompanied by a fluorescence turn-on in the far-red. This is caused by a re-arrangement of the chromophores from a cofacial (aggregate 1) to a slipped packing (aggregate 2). To the best of our knowledge, this is the first reported example of a thermoresponsive supramolecular hydrogel based on a PBI J-aggregate and corroborates the presence of hydrogen-bonded imide–imide interactions in aqueous environment, similar to those observed between nucleotide bases in DNA and RNA. The conditions for the formation of the aqua materials and their stimuli responsivity are analysed in detail herein.
As a key feature for J-aggregates, we carried out steady-state fluorescence spectroscopy under diluted aqueous conditions (Fig. 2a and S4†). While at room temperature no significant photoluminescence could be detected, the formation of J-aggregates upon heating is accompanied by a fluorescence turn-on in the far-red region of the spectrum (λem = 647 nm). Such aggregation-induced emission phenomenon58 resembles the one observed for classical cyanine dye J-aggregates,59 and might be rationalized by Kasha's exciton coupling theory.29,60
In general, self-assembly is an entropy-disfavoured process due to the increased order of the whole system and therefore it normally occurs upon cooling. However, it is notable that in our case the formation of J-aggregates occurs upon increasing the temperature. Based on similar examples for H-aggregates of oligoethyleneglycol-substituted PBIs in aqueous solutions,61 we explain this behaviour by an increase of the overall entropy of the system caused by the release of water molecules solvating the methoxy-triethyleneglycol scaffolds into the aqueous bulk. Accordingly, although non-covalent interactions between PBI dyes undoubtedly play a role in this self-assembly process (as evidenced by the spectral shifts and fluorescence turn-on) the major driving force for J-aggregation originates here from the hydrophobic effect.
Upon further heating, MEG-PBI precipitates out of the solution. The precipitation is ascribed to the critical solution temperature (CST hereafter) phenomenon in analogy with other imide-substituted PBI H-aggregates in water previously reported by our group.47 A cloud point of 53 °C was assessed upon monitoring the transmittance at 800 nm by turbidity measurements (Fig. S5†).
The formation of the supramolecular polymer was monitored by atomic force microscopy (AFM) performed after spin-coating the solutions of MEG-PBI (2.0 × 10−5 M) at various temperatures onto mica substrates. In good agreement with the optical changes, the AFM height images shown in Fig. 2c for 35 °C solutions confirm the formation of robust supramolecular polymers in water that elongate forming fibres up to several μm length. The massive presence of glycol chains in the outer part of the aggregate fibres is responsible for the remarkable tendency toward bundling, clearly observed at a temperature higher than 50 °C (Fig. 2d). At the CST point the supramolecular polymers tend to hierarchically organize in bundles that cannot be solvated any longer and segregation takes place. Accordingly, the AFM of the precipitate above the CST showed tighter bundles of interdigitating fibres (Fig. 2e) in which single fibres cannot be distinguished anymore. Less clear is the situation at room temperature where, although the AFM clearly shows the absence of fibres, it suggests the formation of nanoparticles (Fig. 2b). It is therefore most likely that the monomer-like spectra originate from loosely packed PBIs (aggregate 1, Fig. 1b), similar to what previously observed for related tetraphenoxy PBI derivatives bearing the solubilizing oligoethyleneglycol substituents at the imide positions.37 Accordingly, the observed process is likely to be a transformation of a loosely packed aggregate into a well-structured J-aggregate (aggregate 2). This process would involve the rearrangement of the PBI chromophores, in good agreement with the slow kinetics observed. Similar transitions between kinetically favoured PBI aggregates with nanoparticle morphology and thermodynamically favoured aggregates with fibrous morphology have recently been observed in solvents of low polarity.62
Stable hydrogels were obtained by mixing MEG-PBI with 60–95 wt% water (ESI†). The stability of the gels was confirmed at different temperatures from 20 to 56 °C by the tube inversion test (Fig. 1b, respectively hydrogel 1 and hydrogel 2). These experiments confirmed the robustness of the gels which do not collapse in the given temperature range. These experiments again revealed a gradual colour change of the gels from red (at 20 °C) to blue (at 56 °C). The colour change is reversible, although kinetically slow. The kinetics of the gel were investigated by time-dependent optical spectroscopy (Fig. S9, ESI†) that showed kinetic delay of nearly 10 min at 40 °C. In order to ensure the thermal equilibration at lower temperature as well, all the gel samples were analysed after 30 min of equilibration time. At higher temperatures, however, sudden precipitation was observed due to reaching the CST in the gel state, in analogy with the behaviour in solution.
With the aim in mind to investigate these reversible optical changes in the MEG-PBI hydrogel, we studied the absorption and fluorescence properties in the visible range. For this purpose, the hydrogel sample containing 10 wt% MEG-PBI was sandwiched between two glass plates and sealed to prevent water release from the closed system. The gel at 20 °C revealed the absorption spectrum of the red aggregate with λmax = 566 nm (Fig. 3a). Upon slowly increasing the temperature, the red aggregate band gradually disappeared while the J-aggregate band at 634 nm arose (Fig. 3a), in analogy to the behaviour in solution described above. The conversion was monitored at the wavelength of the absorption maximum of the J-aggregate band, showing a good responsivity and colour change in the temperature range of 28–45 °C (Fig. 3b). This behaviour suggests that the high viscosity does not hamper the reorganization and self-assembly of the PBI chromophores in the gel state.
Furthermore, we were interested in the fluorescence properties in the hydrogel state at higher temperature. As for the J-aggregate in solution, fluorescence was observed in the far-red region of the spectrum (λem = 650 nm) upon excitation in the visible range (λexc = 515–540 nm). The temperature-dependent aggregate transformation could be monitored by fluorescence spectroscopy, which showed a 20-fold light-up in the spectrum (Fig. 3a). Optical microscopy images under the same illumination and exposure time confirm an impressive change upon heating in both fluorescence (Fig. 3d and g) and in transmission modes (Fig. 3c and f). Unfortunately, quantitative conclusions are limited by considerable self-absorption facilitated by the small Stokes shift, as supported by an apparent redshift of the emission band up to 660 nm.
To get insights into the morphology, the red and blue gels were kept at 20 °C and 56 °C for 30 min, respectively, vitrified at the temperature of liquid nitrogen and fractured prior to cryo-SEM measurements. The fractured surface is shown in Fig. 3e and h (see ESI† for measurement details). The image in Fig. 3e shows a porous morphology of the gel at 20 °C. The framework of the gel is composed of a MEG-PBI aggregate with fibres that are nearly 50 nm thick. As expected, at 56 °C the morphology of the gel dramatically changes into a denser fibrous morphology, clearly visible in the inset of Fig. 3h. The regular honeycomb-like structure in Fig. 3h is apparently due to freezing artefacts that are probably derived from air bubbles embedded in the gel during the sample preparation. Each bundle of fibres in Fig. 3h is nearly 100 nm thick, confirming the hierarchical aggregation of fibres observed in the AFM images.
An interesting observation is that the hydrogel retains a critical temperature (CST) above which a biphasic system is clearly visible (Fig. S10a–g†). By comparing the images obtained by optical microscopy of the hydrogel (10 wt%) at room temperature and above the CST, a macroscopic release of water from the bulk of the gel was observed. Cryo-SEM images (Fig. S10d and e†) show the disappearance of the porous framework of the hydrogel and the formation of a compact morphology composed of tightly arranged bundles of J-aggregate fibres. In analogy with the behaviour in solution, the CST phase transition is observed in the hydrogel. Above the CST, MEG-PBI and water become immiscible and phase segregation results. In order to characterize the phase transitions, differential scanning calorimetry (DSC) was performed on hydrogels at various concentrations with MEG-PBI contents 10–40 wt% (Fig. S11†). The DSC thermograms indicate that the CST of 58 °C is not significantly affected by the water content of the hydrogel. Moreover, we investigated the structural changes of the hydrogel (10 wt%) by comparing wide-angle X-ray scattering (WAXS) patterns at 20 and 65 °C (Fig. S10f and g†). These experiments revealed the absence of a macroscopic organization in the hydrogels at 25 °C, while a well-defined pattern of a columnar nanostructure is observed above the CST. The X-ray patterns of the samples above the CST matches with the formation of a lyotropic liquid crystal (vide infra). This behaviour is consistent with that previously reported for OEG-functionalized PBIs.47
In order to elucidate the packing arrangement in the J-aggregates, we focussed on the study of the MEG-PBI thermotropic liquid crystal by polarized UV-Vis and FTIR spectroscopy, polarized optical microscopy (POM), DSC and WAXS experiments. POM showed that pure MEG-PBI exhibits a birefringent texture under crossed polarizers that is indicative of a LC phase (Fig. S12†). According to DSC measurements, a single LC phase is present in the temperature range from 25 to 172 °C (Fig. S13†). To elucidate the packing structure, we carried out WAXS experiments on extruded fibres of MEG-PBI. The corresponding WAXS pattern (Fig. 4a and c) at 160 °C shows four reflexes along the equator which were assigned to the 100, 110, 200 and 210 signals of a columnar hexagonal phase with a = 37.3 Å. Moreover, an additional diffuse intensity is observed in the wide-angle region at nearly 4 Å. This signal is characteristic of assemblies where the chromophores are oriented parallel to the columnar axis.53,63 This dye organization was further confirmed by polarized FTIR and UV-Vis experiments on homogeneously aligned samples of MEG-PBI (Fig. S15†). The polarized UV-Vis spectra of the aligned columnar phase (on quartz plate) showed that the main band at 631 nm, which is associated with the transition dipole moment μtr1 (S0–S1 transition) oriented along the molecular axis,53 is most intense when the columns are parallel to the polarized light and practically disappears when the columns are perpendicular (Fig. S15a†). Similar conclusions could be drawn by the analysis of the polarized FTIR spectrum which showed that the N–H bonds, as well as the imide CO bonds are oriented parallel to the columnar axes (Fig. S15b†). Both of these experiments strongly indicate that the long axis of the PBI core is oriented parallel to the columnar axis in the MEG-PBI columnar hexagonal phase.
Further analysis of the WAXS patterns allowed us to obtain additional details on the packing arrangement of PBIs in the LC phase in analogy with a previously reported example for a related PBI bearing branched alkyl side chains.53 The observation of on- and off-meridional reflexes in the WAXS pattern indicates a columnar helical structure consistent with the core-twisted structure of MEG-PBI chromophore.51–53 The first on-meridional signal, observed at 15.4 Å, matched well with the length of the PBI molecule (long axis) and, therefore, was assigned to the axial translation subunit of a helical structure. This signal was assigned to the 007 reflection (layer line L = 7), while layer lines L = 4, L = 9 and L = 12 are additionally obtained from the others on- and off-meridional signals (Fig. 4b and d). These results are in good agreement with a helical arrangement where PBI molecules stack side-to-side along their long molecular axis (Fig. 4e). Accordingly, the pitch of the helical structure is 7 × 15.4 Å = 107.8 Å. From the lattice parameters of the columnar phase (a = 37.3 Å) and considering a density of 1 g cm−3,53,63 we estimated that three molecules of PBI are packed in a 15.4 Å columnar strata (for details see ESI†). According to this assignment, MEG-PBI forms a triple stranded helix consistent with the previously described LC PBI J-aggregates bearing branched alkyl chains.53Fig. 4e shows a schematic representation of the MEG-PBI packing arrangement in the LC phase that is characterized by imide–imide hydrogen-bonding, slipped π–π-interactions (resulting in the J-coupling) and the accommodation of the oligoethyleneglycol wedges at the periphery. Importantly, both the optical features and the IR spectra of the aggregates are in good agreement with the structural model derived from WAXS studies in the LC phase.
The lyotropic LC phases of MEG-PBI (with concentrations of 60, 70 and 80 wt%) were also studied by POM and X-ray experiments (Fig. S16–S18†). In all the cases LC phases were observed by POM and the WAXS patterns indicated the formation of columnar phases. However, the X-ray patterns showed signals that are too weak to elucidate the packing structure in detail. Nonetheless, the similarity of the pattern to those reported in the hydrogels above the CST confirms the formation of a lyotropic LC phase after dehydration of the gel.
Fig. 5 Qualitative phase diagram of MEG-PBI (inset) and water mixtures that summarize the content of the paper: upon changing concentration and temperature of the binary system we were able to show various supramolecular aggregates and materials. (b) At 25 °C the conventional face-stacked arrangement leads to a fibrous amorphous aggregate (aggregate 1). (a) Oppositely, higher temperatures trigger the formation of a well-defined J-aggregate stabilised by hydrogen bonds (green). Upon increasing the concentration, hierarchical lateral assembly of both the fibrous aggregates constitute the framework of stable hydrogels, (d) and (c) respectively. Cryo-SEM images (Fig. 3e and h) revealed that the bundling tendency for hydrogel 2 is higher than that for hydrogel 1. (e) Lower water content favours the formation of J-aggregate lyotropic LC phase. This allowed us to investigate the structure of the J-aggregate in details (see main text). Notably, here the two components (MEG-PBI and water) are fully mixable and compatible at any ratios, except for a lower critical solution temperature (CST). |
In the present work, we exploited this temperature-driven aggregation in the hydrogel state to produce new responsive aqua materials with tunable absorption and emission properties. A temperature-induced colour change from dark red to bright red has been previously observed in PBI hydrogels deriving from a CST phase transition from the hydrogel to the lyotropic LC state.47 However, an even more striking colour change from red to blue is reported herein (Fig. 3c and f). The ratiometric colour change in a temperature range of biological relevance (30–50 °C) and the fluorescence turn-on within the therapeutic window (650–1000 nm) are intriguing features for biocompatible thermoresponsive materials. The analysis of the liquid-crystalline MEG-PBI allowed us to elucidate the structure of the self-assembled J-aggregates. These consist of a triple-stranded helical structure where the transition dipole moments of the chromophores, in a slipped arrangement, excitonically couple in a J-type aggregate. To the best of our knowledge, this is the first report on the formation of an emissive PBI J-aggregate in aqueous medium. We envision that the remarkable presence of a hydrogen-bonded construction motif in water constitutes an inspiration for other self-assembled functional aqueous materials.
Footnotes |
† Electronic supplementary information (ESI) available: Synthetic procedures, optical spectroscopy, turbidity measurements, NMR spectra, IR spectra, polarized optical microscopy, DSC, X-ray studies, cryo-SEM, atomic force microscopy. See DOI: 10.1039/c8sc02409j |
‡ Unless specified, the concentrations for the mixture of the hydrogels and lyotropic LC samples are always reported as wt% referred to the MEG-PBI content. |
This journal is © The Royal Society of Chemistry 2018 |