Zhanxi
Fan‡
a,
Ye
Chen‡
a,
Yihan
Zhu‡
b,
Jie
Wang
a,
Bing
Li
c,
Yun
Zong
c,
Yu
Han
b and
Hua
Zhang
*a
aCenter for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore. E-mail: hzhang@ntu.edu.sg; Web: http://www.ntu.edu.sg/home/hzhang/
bAdvanced Membranes and Porous Materials Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
cInstitute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore
First published on 12th September 2016
Metal nanomaterials normally adopt the same crystal structure as their bulk counterparts. Herein, for the first time, the unusual 4H hexagonal Ir, Rh, Os, Ru and Cu nanostructures have been synthesized on 4H Au nanoribbons (NRBs) via solution-phase epitaxial growth under ambient conditions. Interestingly, the 4H Au NRBs undergo partial phase transformation from 4H to face-centered cubic (fcc) structures after the metal coating. As a result, a series of polytypic 4H/fcc bimetallic Au@M (M = Ir, Rh, Os, Ru and Cu) core–shell NRBs has been obtained. We believe that the rational crystal structure-controlled synthesis of metal nanomaterials will bring new opportunities for exploring their phase-dependent physicochemical properties and promising applications.
Epitaxial growth refers to the oriented deposition of a crystalline material over a crystalline substrate, which can be used to synthesize new crystal structures of the deposited material.11,12 Conventionally, vapor-phase epitaxial growth has been widely used to prepare metastable crystal structures of metal thin films on different substrates, such as body-centered cubic (bcc) Cu on Fe,13 fcc Co on Cu,14 and bcc Pd on W.15 Unfortunately, the vapor-phase epitaxial growth method used for preparation of the metastable crystal structures of metals always involves harsh experimental conditions like ultra-high vacuum and high temperature,13–15 which can induce the aggregation/degradation of ultrathin anisotropic metal nanomaterials and thus make it not suitable for their crystal structure-controlled synthesis. Recently, solution-phase epitaxial growth, which holds the advantage of mild experimental conditions, has been developed for the size-, shape- and composition-controlled synthesis of bimetallic core–shell nanomaterials, such as Pt@Pd,16 Au@Pd,17,18 Pd@Pt,19 Au@Ag,17,20 Pd@Ir,21 Au@Rh,22 and Au@Ni.23 However, all the aforementioned epitaxially grown metal shells crystallize in the same crystal phases as their bulk counterparts, i.e. fcc phase. To date, the development of the solution-phase epitaxial growth of new crystal structures of metal nanomaterials remains primitive.
Recently, we first demonstrated the facile wet chemical synthesis of ultrathin hcp Au square sheets,24 and then 4H hexagonal Au nanoribbons (NRBs).25 By using the aforementioned Au nanostructures as seeds, the hcp Ag,26 and 4H hexagonal Ag, Pd and Pt have been prepared via the metal coating strategy,25 and the 4H hexagonal PtAg, PdAg and PtPdAg alloy nanostructures have also been synthesized via a galvanic reaction method.27 It should be mentioned that the lattice mismatch between Au and Ag, Pd or Pt is relatively small (usually less than 5%).17,18,20 However, owing to the relatively large lattice mismatch between Au and the other metals, such as Ir, Rh, Os, Ru and Cu, their epitaxial growth on non-fcc Au nanostructures has not been achieved. Here, for the first time, we report the solution-phase epitaxial growth of novel 4H hexagonal Ir, Rh, Os, Ru and Cu on 4H Au NRBs under ambient conditions. Meanwhile, a partial phase change from 4H to fcc structures is observed in Au NRBs after the metal coating. As a result, the corresponding five kinds of bimetallic core–shell NRBs with an unusual 4H/fcc crystal structure are obtained.
Fig. 1 A schematic illustration of the solution-phase epitaxial growth of 4H hexagonal Ir, Rh, Os, Ru and Cu nanostructures on 4H Au NRBs. |
Taking Ir as a representative example, the solution-phase epitaxial growth of 4H hexagonal Ir was achieved by reducing IrCl3 with NaBH4 in the presence of 4H Au NRBs and iodide ions under ambient conditions (see Experimental section in the ESI for details†). After the reduction reaction, the surface of Au NRBs becomes relatively rough, indicating the successful coating of Ir on Au NRBs (Fig. 2a and b). X-ray photoelectron spectroscopy (XPS) revealed the chemical states of Au(0) and Ir(0) in the Au@Ir NRBs (Fig. S2†). The elemental composition of Au@Ir NRBs was studied by scanning TEM-energy dispersive X-ray spectroscopy (STEM-EDS), which exhibits an average Au/Ir molar ratio of approximately 1.00/0.99 (Fig. S3†). A typical high-angle annular dark-field-STEM (HAADF-STEM) image (Fig. 2e) and corresponding STEM-EDS element maps (Fig. 2f–h) demonstrate that the Ir shell was continuously formed on the Au core, which is also verified by the STEM-EDS line scan profile (Fig. S4†). These observations suggest that the coating of Ir on the surface of 4H Au NRBs might follow the intermediate type of growth, i.e. the so-called Stranski–Krastanov (S–K) mode.28 The average thickness of the Ir shell is estimated to be around 3.9 nm (Fig. 2b). Impressively, a representative SAED pattern of the obtained Au@Ir NRB shows a characteristic diffraction pattern of [110]4H zone, coexisting with some diffraction streaks in the [001]4H close-packed direction (Fig. 2c). The presence of diffraction streaks in the SAED pattern suggests the formation of fcc domains and stacking faults/twins in the [001]4H/[111]f directions (Fig. 2c). Such a kind of phase transition, i.e. from (110)4H-oriented 4H hexagonal to (101)f-oriented fcc phases, can be achieved via the movement of partial dislocations on close-packed planes.29 During the phase transition of Au NRBs from 4H to fcc structures, the close-packed directions, i.e. [001]4H and [111]f directions, are preserved. The partial structure change of Au NRBs from the 4H hexagonal to fcc phases might be caused by the epitaxial strain between Au and Ir.12,25,26,30–32 Importantly, the Ir shell is epitaxially grown on the Au core since no other randomly distributed diffraction spot is found (Fig. 2c). To further investigate the crystal structure of Au@Ir NRBs, a HRTEM image was also collected, which clearly shows the alternating intergrowth of 4H and fcc structures (Fig. 2d). The coexistence of 4H and fcc phases in Au@Ir NRBs is also confirmed by the X-ray diffraction (XRD) pattern (Fig. S5†). An inter-planar distance of 2.4 Å is assigned to the lattice spacing of close-packed planes in [001]4H/[111]f directions (Fig. 2d). Meanwhile, it can be clearly seen that the lattice fringe coherently extends from the inside Au core to the outside Ir shell, indicating the epitaxial relation between them (Fig. 2d). Furthermore, the corresponding selected-area fast Fourier transform (FFT) of the HRTEM image shows a typical [110]4H-zone diffraction pattern, indicating the successful synthesis of the 4H hexagonal structure of Ir (inset in Fig. 2d). The lattice spacings of 2.2 Å and 2.4 Å can be attributed to the (004)4H and (10)4H planes of 4H Ir, respectively (Fig. 2d). It should be noted that bulk Ir crystals adopt the normal high-symmetry fcc phase.33 This is the first time that an Ir nanostructure with an unusual 4H hexagonal crystal phase has been synthesized, which possesses a representative stacking order of “ABCB” in the [001]4H close-packed direction.
Impressively, by replacing the metal salt of IrCl3 with RhCl3, OsCl3 or RuCl3, similar to the aforementioned Ir nanostructure, the unusual 4H hexagonal structure of Rh, Os or Ru can also be synthesized by the epitaxial growth on as-prepared 4H Au NRBs under ambient conditions (see the Experimental section in the ESI for details†). Note that the bulk crystals of Rh, Os and Ru crystallize in the fcc, hcp and hcp phases, respectively.33Fig. 3a shows the TEM image of a representative Au@Rh NRB. The Rh shell, with an average thickness of around 2.8 nm (Fig. 3a), epitaxially grows on the Au core (Fig. 3b and c). The SAED pattern and HRTEM image of bimetallic Au@Rh NRBs suggest an alternating intergrowth of 4H hexagonal and fcc structures along the close-packed directions of [001]4H/[111]f (Fig. 3b and c). The selected-area FFT pattern of the HRTEM image confirms the successful formation of 4H hexagonal Rh (Fig. 3d). The lattice distances of 2.2 Å and 2.4 Å can be attributed to the (004)4H and (10)4H planes of 4H Rh, respectively (Fig. 3c). The average Au/Rh molar ratio is approximately 1.00/0.75 (Fig. S6†). The HAADF-STEM image and corresponding STEM-EDS element maps and line scan curves further identify the successful formation of the Rh shell on the Au core (Fig. 3e–h and S7†). Fig. 3i shows a typical TEM image of an Au@Os NRB. The average thickness of the Os shell is around 3.0 nm (Fig. 3i). The epitaxial relation between Au and Os, and the coexistence of 4H and fcc structures in Au@Os NRBs are proved by the SAED pattern and HRTEM image (Fig. 3j and k). The successful formation of 4H hexagonal Os is confirmed by the selected-area FFT pattern of the HRTEM image (Fig. 3l). The inter-plane spacings of 2.2 Å and 2.4 Å can be assigned to the (004)4H and (10)4H planes of 4H Os, respectively (Fig. 3k). The average Au/Os molar ratio is approximately 1.00/0.81 (Fig. S8†). The homogeneous growth of Os on Au NRBs is further corroborated by the HAADF-STEM image and STEM-EDS analysis (Fig. 3m–p and S9†). Fig. 3q shows a representative TEM image of an Au@Ru NRB. The average thickness of the Ru shell is around 2.7 nm (Fig. 3q). Similarly, the Ru shell is also epitaxially grown on the Au core, and Au@Ru NRBs also exhibit the alternating 4H/fcc structures (Fig. 3r and s). Meanwhile, the 4H hexagonal structure of Ru has also been observed (Fig. 3t). The lattice distances of 2.2 Å and 2.4 Å can be attributed to the (004)4H and (10)4H planes of 4H Ru, respectively (Fig. 3s). The average Au/Ru molar ratio is approximately 1.00/0.71 (Fig. S10†). The HAADF-STEM image and corresponding STEM-EDS analysis further confirm the uniform deposition of Ru on Au NRBs (Fig. 3u–x and S11†). Additionally, the chemical states of Au(0) and Rh(0), Au(0) and Os(0), and Au(0) and Ru(0) in the aforementioned Au@Rh, Au@Os, and Au@Ru NRBs, respectively, were revealed by XPS (Fig. S12†). The coexistence of 4H and fcc phases in Au@Rh, Au@Os and Au@Ru NRBs is proven by the XRD pattern (Fig. S13†).
Remarkably, besides the aforementioned four noble metals, i.e. Ir, Rh, Os and Ru, our solution-phase epitaxial growth strategy can also be used to synthesize the 4H hexagonal structure of common transition metals. As a representative example, Cu was chosen in our experiment. Briefly, the epitaxial growth of 4H hexagonal Cu was achieved by reducing Cu(NO3)2 with NaBH4 in the presence of 4H Au NRBs under ambient conditions (see Experimental section in the ESI for details†). XPS revealed the chemical states of Au(0) and Cu(0) in the obtained Au@Cu NRBs (Fig. S14†). Fig. 4a shows a representative TEM image of Au NRBs after coating with Cu. The obtained Cu shell shows a relatively smooth surface and has an average thickness of around 2.0 nm (Fig. 4b). The elemental composition of as-prepared Au@Cu NRBs was investigated by STEM-EDS, exhibiting an average Au/Cu molar ratio of approximately 1.00/0.45 (Fig. S15†). The typical HAADF-STEM image (Fig. 4e) and corresponding STEM-EDS element maps (Fig. 4f–h) of an Au@Cu NRB show the continuous coating of Cu on Au NRBs, which is also identified by STEM-EDS line scan curves (Fig. S16†). These results indicate that the coating of Cu on the surface of 4H Au NRBs might proceed via layered growth, i.e. the so-called Frank–van der Merwe (F–M) mode.28 Notably, the SAED pattern of a representative Au@Cu NRB reveals the coexistence of 4H/fcc structures and the epitaxial relation between Au and Cu (Fig. 4c), which has been further confirmed by a representative HRTEM image (Fig. 4d). The coexistence of 4H and fcc phases in Au@Cu NRBs is also identified by the XRD pattern (Fig. S17†). A lattice distance of 2.4 Å is assigned to close-packed planes in the [001]4H/[111]f directions (Fig. 4d). Significantly, the selected-area FFT pattern demonstrates a characteristic diffraction pattern in the [110]4H zone, suggesting that the 4H hexagonal structure of Cu is successfully formed (inset in Fig. 4d). The lattice spacings of 2.2 Å and 2.4 Å can be attributed to the (004)4H and (10)4H planes of 4H Cu, respectively (Fig. 4d). Note that bulk Cu crystals demonstrate the common high-symmetry fcc phase.33 This is the first time a Cu nanostructure with a unique 4H hexagonal phase has been synthesized.
Footnotes |
† Electronic supplementary information (ESI) available: Experimental section including materials, synthesis and characterization, and supporting data. See DOI: 10.1039/c6sc02953a |
‡ These authors contributed equally to this work. |
This journal is © The Royal Society of Chemistry 2017 |