Three-dimensional bilayer garnet solid electrolyte based high energy density lithium metal–sulfur batteries†
Abstract
To simultaneously address the challenges of chemical/physical short circuits and electrode volume variation, we demonstrate a three-dimensional (3D) bilayer garnet solid-state electrolyte framework for advanced Li metal batteries. The dense layer is reduced in thickness to a few microns and still retains good mechanical stability, thereby enabling the safe use of Li metal anodes. The thick porous layer acts as a mechanical support for the thin dense layer which serves as a host for high loading of cathode materials and provides pathways for continuous ion transport. Results show that the integrated sulfur cathode loading can reach >7 mg cm−2 while the proposed hybrid Li–S battery exhibits a high initial coulombic efficiency (>99.8%) and high average coulombic efficiency (>99%) during the subsequent cycles. This electrolyte framework represents a promising strategy to revolutionize Li-metal batteries by transitioning to all-solid-state batteries and can be extended to other cathode materials.
- This article is part of the themed collection: 2017 Energy and Environmental Science HOT articles