Materials design at the interface of nanoparticles and innate immunity
Abstract
Engineered nanoparticle platforms have been developed intensely in recent years, yielding significantly broadened applications from interrogating novel biology to new therapies. The mammalian immune system has emerged as perhaps the most powerful physiological system where nanoparticle design parameters have drastic implications for nanoparticle fate and function. In particular, the innate immune system is a major concern due to its role as the first-line defense against foreign invaders, responsible for initiating and maintaining the innate immune response as well as priming the adaptive immune response. Understanding how nanoparticles are perceived from a biological perspective is crucial to informing their design with different immunogenic, immunosuppressive, or stealth properties. Nanoparticles are particularly susceptible to innate immune responses such as opsonization and recognition by receptors that enable phagocytic uptake or evoke strong inflammatory responses due to the recognition of various “danger” signals. In this review, we will summarize some of the key advances in our understanding of how physical and biochemical parameters of nanoparticles interact with innate immunity, and note potential opportunities and emerging frontiers for controlling and evaluating nanoparticle–immune interactions.
- This article is part of the themed collection: Immunological Biomaterials