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Abstract 

Brain disorders, including neurodegenerative diseases (NDs) and traumatic brain injury (TBI), 

present significant challenges in early diagnosis and intervention. Conventional imaging 

modalities, while valuable, lack the molecular specificity necessary for precise disease 

characterization. Compared to the study of conventional brain tissues, liquid biopsy, which focuses 

on blood, tear, saliva and cerebrospinal fluid (CSF), also unveils a myriad of underlying molecular 

processes, providing abundant predictive clinical information. In addition, liquid biopsy is 

minimally- to non-invasive, and highly repeatable, offering the potential for continuous 

monitoring. Raman spectroscopy (RS), with its ability to provide rich molecular information and 

cost-effectiveness, holds great potential for transformative advancements in early detection and 

understanding the biochemical changes associated with NDs and TBI. Recent developments in 

Raman enhancement technologies and advanced data analysis methods have enhanced the 

applicability of RS in probing the intricate molecular signatures within biological fluids, offering 

new insights into disease pathology. This review explores the growing role of RS as a promising 

and emerging tool for disease diagnosis in brain disorders, particularly through the analysis of 

liquid biopsy. It discusses the current landscape and future prospects of RS in the diagnosis of 

brain disorders, highlighting its potential as a non-invasive and molecularly specific diagnostic 

tool. 

Introduction

Brain disorders encompass a wide spectrum of conditions, spanning from mild concussions 

to severe TBI and NDs such as Alzheimer's disease (AD) and Parkinson's disease (PD).1-4 The 
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diagnostic complexities of these disorders arise from their intricate and varied biochemical 

manifestations, presenting critical challenges in accurate and timely diagnosis. Globally, the 

impact of these disorders on public health is substantial. They contribute significantly to the burden 

of diseases, affecting millions of lives and necessitating extensive and often lifelong care and 

management. Furthermore, NDs are a growing concern, especially with an aging global 

population. AD, for instance, affects millions worldwide, with projections indicating a significant 

rise in cases in the coming decades. According to the "Alzheimer's Disease Facts and Figures" 

report by the Alzheimer's Association, over 6 million Americans currently have AD, projected to 

reach nearly 13 million by 2050.5 It's the 6th leading cause of death among US adults and the 5th 

among those aged 65+.6, 7 Treatment costs could surpass $500 billion annually by 2040, up from 

$215 billion in 2010.5 One in three seniors dies with AD or another dementia, exceeding breast 

and prostate cancer combined.5 By 2023, an estimated 6.7 million Americans aged 65 and older 

will have AD, projected to grow to 12.7 million by 2050.5 This highlights the urgent need for 

research, support, and resources to address this public health challenge. According to the World 

Health Organization, AD and other dementia affect 24 million of the one billion people worldwide 

affected by neurological disorders.8 This staggering prevalence underscores the urgent need for 

advanced and precise diagnostic approaches. AD is not only a medical stigma but also imposes a 

significant economic burden due to high costs associated with diagnosis, medication, and 

caregiving. Early detection of AD can play a crucial role in alleviating this financial strain on the 

economy by reducing expenses related to medication and overall well-being of AD patients. The 

socioeconomic burden observed in AD is not unique; it extends to other brain disorders, including 

PD. Like AD and PD imposes significant costs on healthcare systems and society as a whole.9 The 

economic impact encompasses treatment expenses, lost productivity, and caregiving costs. 
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Addressing the socioeconomic challenges posed by PD, alongside AD, requires comprehensive 

strategies and increased support for research, patient care, and public awareness initiatives. The 

multifaceted nature of brain disorders demands innovative methodologies to enable accurate and 

timely diagnoses, thus facilitating early intervention and improved patient outcomes. As such, the 

ongoing pursuit of sophisticated diagnostic tools and technologies remains pivotal in addressing 

these complex and pervasive health challenges.

In the pursuit of more accurate and timely diagnostic tools for brain injuries, the integration 

of advanced spectroscopic techniques into clinical practice has garnered considerable attention. 

Traditional diagnostic methods such as computed tomography (CT) scans, magnetic resonance 

imaging (MRI), electroencephalogram (EEG) and neurological examination while fundamental, 

often lack the precision and timeliness required for effective clinical intervention.2 In addition, 

they are costly, time-consuming, and lack of providing molecular specific information. Liquid 

biopsy is an emerging field within early detection and diagnosis of diseases. The integration of 

liquid biopsy techniques and RS has emerged as a promising avenue in the quest to unveil the 

intricacies of brain disorders. The exploration of novel diagnostic modalities has spurred interest 

in RS, a non-invasive analytical technique that holds promise in unraveling the molecular 

intricacies present within human biofluids like blood, urine, and CSF.10, 11 In the realm of medical 

diagnostics, liquid biopsy offers a minimally- to non-invasive means to probe the inner workings 

of the body by analyzing various biomarkers present in bodily fluids. When applied to the study 

of brain disorders, this approach allows for the detection and monitoring of specific molecules or 

markers associated with neurological conditions, providing valuable insights into disease 

pathology. RS, with its ability to provide unique molecular fingerprints and discern subtle 

biochemical alterations, holds immense potential in identifying biomarkers associated with brain 
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injuries and NDs. This spectroscopic technique offers a novel means to study the intricate 

biochemical changes that occur within biofluids due to these disorders.12-14 By analyzing the 

vibrational patterns of molecules, RS enables researchers to detect and quantify specific 

biomolecular signatures indicative of disease pathology. Notably, its high sensitivity and 

specificity in detecting molecular variations make it a promising tool for early and precise 

diagnosis. 

RS offers a valuable tool for the study of NDs related biomarkers using various biofluids, 

including blood, urine, saliva, tears, and CSF. Biomarkers are measurable indicators that can 

provide information about normal or pathological biological processes. For instance, RS provides 

molecular signatures of various biomolecules present in biofluids, including proteins, lipids, 

nucleic acids, and metabolites.15-18 In addition, RS is non-invasive and label-free, allowing for 

direct analysis of biofluids without the need for additional chemical labels or dyes. This preserves 

the natural composition of biofluids and minimizes sample preparation requirements. More 

importantly, RS is sensitive to changes in protein conformations. It can be used to characterize 

different protein conformations, including misfolded or aggregated states, which are relevant to 

NDs.19 Metabolic changes in biofluids, such as alterations in lipid profiles and metabolite 

concentrations, are associated with NDs. Moreover, those biofluids are easily accessible and 

minimally invasive for patients. RS can monitor these metabolic changes, offering insights into 

disease-related variations.20 With the emergence of machine learning techniques RS, combined 

with advanced statistical analysis methods, can differentiate between healthy and diseased states 

based on the spectral differences associated with biomarkers.21-25 This differentiation is crucial for 

early diagnosis and monitoring disease progression. Detecting specific biomarkers in biofluids can 

be crucial for early diagnosis, prognosis, and monitoring the progression of NDs. By analyzing 
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these molecular signatures, researchers can identify specific biomarkers associated with NDs. The 

chemical composition of human body fluids is intricate, with intricate associations between 

different bands in the acquired spectra, as they originate from the same chemical bonds. 

Additionally, Raman spectra may be affected by noise, autofluorescence background, Raman shift 

drift, and contributions from external spectral noise sources.26, 27 While improving detector 

sensitivity and utilizing higher-quality optical elements can enhance Raman signal quality and 

facilitate a more detailed analysis of body fluid component composition, these improvements come 

with added costs and experimental setup complexity. An alternative method for enhancing 

pathology detection is surface‐enhanced Raman spectroscopy (SERS).

The primary objective of this comprehensive review is to thoroughly explore and highlight 

the expanding role of RS in decoding intricate biochemical signatures present within various 

biofluids, with a particular focus on its application in the detection and diagnosis of brain diseases. 

Moreover, it aims to meticulously survey the current landscape of its applications in neurological 

diagnostics, encompassing its use in identifying specific biomarkers, elucidating molecular 

alterations, and exploring the potential for clinical translation. This review further endeavors to 

critically examine the challenges encountered in the implementation of RS for neurological 

diagnostics, including considerations of standardization, reproducibility, and technological 

advancements necessary for widespread clinical adoption. Additionally, it seeks to present a 

comprehensive overview of the prospects and future directions, envisioning the transformative 

impact of RS as a pioneering tool in enhancing the diagnostic armamentarium for neurological 

disorders. We commence our discussion by exploring the theoretical foundations and working 

principles of RS. Subsequently, we delve into the practical considerations associated with 

conducting Raman spectroscopic investigations on biological fluids. Moving forward, we provide 
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a concise overview of Raman spectra pertaining to biomolecules, emphasizing the distinctive 

contributions of different biomolecules across various regions of the Raman spectrum. Following 

this, we extensively examine the sensing of biomarkers in biofluids using both spontaneous and 

enhanced Raman spectroscopic techniques. Notably, our focus is on biofluids such as blood, tears, 

saliva, and CSF. In the conclusion part, we address the current challenges, opportunities, and future 

prospects inherent in RS investigations of biofluids. Through this thorough exploration of RS 

principles, applications, challenges, and future prospects, this review endeavors to underscore its 

pivotal and transformative role in revolutionizing the landscape of neurological diagnostics, 

advocating for its potential as an invaluable tool for clinicians and researchers alike.

Working Principles of Raman Spectroscopy

RS is a powerful analytical technique that provides detailed information about the chemical 

structure and phase of a substance. The working principle of RS relies upon the inelastic scattering 

of photons, a process known as Raman scattering. In the Raman effect, the scattered photons 

experience a change in energy due to interaction with molecular vibrations. The resulting Raman 

scattered light contains information about the vibrational modes within the sample. Raman spectra 

are characterized by bands corresponding to molecular vibrations, and the shifts in these bands 

provide insights into molecular structure, composition, and bonding. Stokes scattering involves 

lower energy photons, while anti-Stokes scattering involves higher energy photons. Schematic 

representation of the energy level diagram of Raman scattering process is depicted in Fig 1(a). RS 

is non-destructive and can be applied to a variety of materials, making it a versatile tool in fields 

ranging from chemistry and physics to biology and materials science.

The working principle of RS involves several key components as depicted in Fig 1(b).  A 

laser source emits monochromatic light, typically in the visible or near-infrared range, onto the 
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sample. The scattered light is collected and passes through a monochromator to separate different 

wavelengths. Filtering out the Rayleigh line in a Raman spectrometer is essential to accurately 

measure Raman signals without interference from the excitation laser's Rayleigh scattering. To 

filter out the Rayleigh line in a Raman spectrometer, notch filters or edge pass filters are commonly 

employed. These filters are designed to block the Rayleigh scattered laser light while transmitting 

the Raman scattered light. Long pass edge filters are also used to transmit light from the sample 

that has been Raman scattered at lower energies, effectively reducing unwanted Rayleigh scattered 

signal laser light. The use of spectral filtering is pivotal for the successful acquisition of Raman 

spectra, as it ensures that only the Raman scattered light, contributing to chemical analysis, is 

directed to the detector. The dispersed light is then detected by a sensitive detector, typically a 

charge coupled device (CCD) detector, and the resulting spectrum reveals the Raman shifts 

corresponding to vibrational modes in the sample. The intensity and frequency of these shifts 

provide detailed information about the molecular structure and chemical composition. RS is 

employed in various modes, including conventional point measurements, confocal microscopy for 

spatial resolution, and even SERS for increased sensitivity. This technique has proven invaluable 

in identifying and characterizing materials at the molecular level, making it an indispensable tool 

in scientific research and industrial applications. 

Spontaneous Raman signal is inherently weak. To overcome this limitation enhancement 

mechanisms are desired. SERS is a powerful analytical technique that enhances the Raman signals 

of molecules adsorbed on or near noble metal surfaces.28-31 The enhancement in signal intensity in 

SERS arises from two main mechanisms: electromagnetic enhancement and chemical 

enhancement. The electromagnetic mechanism involves the excitation of localized surface 

plasmon resonances (LSPRs) on the metal surface by incident light.32-35 This creates intense 
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electromagnetic fields near the metal surface, enhancing the Raman scattering cross-section of 

nearby molecules. The chemical mechanism involves charge transfer between the molecule and 

the metal surface, further amplifying the Raman signals.36, 37 In the electromagnetic mechanism, 

the enhancement is highly dependent on the shape, size, and composition of the nanostructured 

metal surfaces. Nanostructures such as silver and gold nanoparticles, nanorods, or nanostars are 

commonly employed to generate intense localized fields.33-35, 38 The proximity of the analyte to 

these nanostructures results in significant signal enhancement. Chemical enhancement, on the 

other hand, involves the formation of charge transfer complexes between the adsorbed molecule 

and the metal surface. SERS has found wide applicability in investigating biological fluids due to 

its exceptional sensitivity. It enables the detection of low concentrations of biomolecules, making 

it invaluable for studying complex biological systems. In the realm of biological fluid analysis, 

SERS has been utilized for the identification and quantification of biomarkers associated with 

various diseases.39 Its capability to provide detailed molecular information makes SERS a 

promising tool for advancing our understanding of biochemical processes in biological fluids, 

contributing to both basic research and clinical diagnostics.

Experimental Considerations

The analysis of biofluids using RS, both spontaneous and SERS, demands meticulous 

attention to various experimental parameters to ensure accurate and reliable results.21, 24, 25 Biofluid 

sample preparation is a critical initial step, involving careful handling and, at times, dilution to 

achieve optimal concentrations. Spectral acquisition involves exposing the sample to a laser 

source, where spontaneous Raman scattering, or SERS enhancement occurs. An illustrative 

diagram depicting the use of RS in analyzing liquid biopsy for the detection and diagnosis of brain 

disorders is shown in Fig 1(c). Selection of an appropriate laser wavelength is crucial to avoid 
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sample damage and fluorescence interference. In biofluid analysis, spectral correction becomes 

essential due to inherent variations in the background signals, arising from water and other 

biochemical constituents. Fluorescence background removal is particularly pertinent in 

spontaneous Raman and SERS, where the fluorescence emitted by certain biomolecules can 

overshadow Raman signals. Advanced signal processing techniques are employed to subtract 

background noise and enhance the specificity of the acquired spectra.

Several experimental parameters impact the success of biofluid analysis, such as laser 

power, integration time, and the choice of substrate for SERS.40 Optimizing these parameters 

ensures the sensitivity and specificity required for detecting low-concentration biomarkers in 

complex biological matrices. Careful consideration of experimental conditions is paramount, as 

variations can significantly influence the obtained spectra. The selection of an appropriate laser 

wavelength is a crucial factor in RS, influencing the quality and sensitivity of the acquired 

spectra.41-43 The laser wavelength determines the energy of the incident photons and, consequently, 

the energy of the scattered photons. This choice impacts the efficiency of the Raman scattering 

process and the ability to excite specific molecular vibrations. For instance, resonant Raman 

scattering occurs when the laser wavelength closely matches an electronic transition of the 

molecule under investigation.44-47 Matching the resonance condition enhances the Raman signals 

significantly, making certain vibrations more pronounced and detectable. In biofluid analysis, 

avoiding fluorescence interference is crucial. Some biomolecules exhibit fluorescence when 

excited by certain wavelengths. Selecting a laser wavelength that minimizes fluorescence ensures 

that Raman signals are not obscured by background noise. Overall, successful biofluid analysis 

using RS, especially with the enhanced capabilities of SERS, relies on a holistic approach 
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encompassing sample preparation, spectral acquisition, correction techniques, and meticulous 

control of experimental parameters.

 

Fig. 1 (a) Schematic representation of the energy level diagram of Raman scattering process. (b) 
Generic setup for a Raman microspectroscopy system (c) Illustrative diagram depicting the use of 
RS in analyzing liquid biopsy for the detection and diagnosis of brain disorders. (d)  Raman spectra 
of human serum from a healthy donor highlighting the peak assignment for various metabolic 
groups and biomolecules. 
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Variants of Raman Spectroscopy and Microscopy Techniques

RS presents a number of variants and imaging modalities that find application in protein-

based analysis.48-50 These diverse approaches offer unique advantages, such as providing insights 

into protein structure, conformational changes, interactions, and dynamics with high sensitivity 

and spatial resolution. By understanding the mechanisms and underlying theory of Raman 

scattering, researchers can effectively harness these techniques to tackle a myriad of questions in 

protein science and biomedicine. Raman imaging techniques offer the ability to visualize and map 

the distribution of biomolecules within biological samples at the microscopic level.51, 52 This can 

provide valuable insights into the spatial heterogeneity and localization of pathological features 

associated with brain disorders. 

Conventional (Spontaneous) Raman Spectroscopy - Conventional RS serves as a valuable tool 

for identifying and characterizing biomolecules such as proteins, lipids, and nucleic acids 

implicated in brain disorders.44, 53, 54 This is an inelastic scattering process where a molecule in the 

ground state interacts with an incident photon, and the resulting scattered photon has a different 

energy (frequency) from the incident photon. The energy difference corresponds to the vibrational 

energy levels of the molecule. Through the analysis of Raman spectra obtained from biofluids, 

researchers can discern spectral markers indicative of pathological changes, such as protein 

aggregation in neurodegenerative diseases. This label-free approach offers a robust means of 

scrutinizing the molecular composition and structure of the brain, thereby unveiling crucial 

insights into neurological disorders. In addition, this technique has been instrumental in exploring 

changes in lipid and protein composition observed in AD, PD, and other brain disorders.54, 55 By 

probing the vibrational modes of biomolecules, conventional RS provides molecular-specific 
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information, thereby elucidating alterations in molecular composition, structure, and interactions 

associated with brain disorders.

Resonance Raman Spectroscopy (RRS), Stimulated Raman Spectroscopy (SRS), and 

Coherent Anti-Stokes Raman Spectroscopy (CARS) - In these techniques, the involvement of 

two or more photons in the Raman scattering process leads to enhanced signals and unique 

spectroscopic capabilities compared to spontaneous Raman scattering. While RRS relies on 

resonance with electronic transitions, SRS and CARS involve the coherent interaction of multiple 

laser beams with the molecule, leading to stimulated or coherent Raman signals, respectively. 

RRS enables the selective detection and characterization of specific molecular species 

implicated in brain disorders. In RRS, the incident photon energy is close to an electronic transition 

energy of the molecule. This leads to an enhancement of the Raman signal, as the molecule is 

temporarily promoted to a virtual excited electronic state, increasing the polarizability and the 

Raman scattering cross-section (Fig. 2a). By tuning the laser wavelength to align with the 

absorption bands of target molecules, researchers can enhance Raman signals, achieving higher 

sensitivity and specificity for detecting disease-related biomolecules, such as amyloid-beta (Aβ) 

peptides in AD and other brain disorders.44, 56 RRS enhances Raman signals by matching the 

excitation energy of incident photons to the electronic transition energy of target molecules, 

increasing the efficiency of Raman scattering and enabling the selective detection of disease-

specific biomolecules. By selectively enhancing Raman signals from specific molecular vibrations 

through laser tuning, RRS provides detailed structural information about proteins and other key 

biomolecules involved in neurodegenerative diseases and brain tumors, offering insights into 

changes in protein conformation, aggregation, and interactions, hallmarks of many brain 

disorders.1, 57, 58
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SRS is a nonlinear RS technique used for imaging and analyzing biological samples, 

including biofluids relevant to diagnosing brain disorders. It offers several advantages, such as 

high sensitivity, rapid acquisition times, and the ability to perform label-free imaging and detect 

specific biomolecules.59, 60 SRS relies on the simultaneous interaction of two laser beams with the 

sample: a pump beam and a Stokes beam (Fig 2b). The frequency difference between these beams 

matches the vibrational frequency of a specific molecular bond in the sample, resulting in an 

amplification of the Raman signal known as stimulated Raman gain or loss. SRS can analyze 

biofluids like CSF, blood, or urine for specific biomarkers associated with brain disorders.59, 61 For 

instance, in AD, SRS can detect and quantify Aβ peptides or tau proteins in CSF samples, known 

disease biomarkers. SRS microscopy provides high-resolution, chemically selective images of 

biofluids, revealing the spatial distribution of biomolecules of interest. This offers insights into the 

presence and localization of disease-related molecules or aggregates within the sample. As a label-

free technique, SRS preserves the native state of the biofluid and its components, avoiding 

potential alterations or artifacts introduced by labeling procedures. With its rapid acquisition times 

and high sensitivity, SRS enables high-throughput screening of biofluid samples, facilitating 

analysis of large sample sets and potentially enabling early detection or monitoring of brain 

disorders.

CARS, a nonlinear RS technique, is utilized for analyzing biological samples to diagnose 

brain disorders. In this process, three laser beams (pump, Stokes, and probe) interact with the 

sample in a four-wave mixing process.1, 62 Similar to SRS, CARS relies on the frequency difference 

between the pump and Stokes beams matching the vibrational frequency of a specific molecular 

bond in the sample (Fig 2b). However, in CARS, the probe beam interacts with the vibrationally 

excited molecules, generating a signal at a higher frequency than the incident beams, termed the 
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anti-Stokes frequency. The coherent nature of the CARS signal allows for highly sensitive 

detection of biomolecules in biofluids, even at low concentrations. CARS microscopy, renowned 

for label-free, high-resolution imaging of brain tissue, exploits coherent excitation of molecular 

vibrations to generate anti-Stokes photons at specific vibrational frequencies. By scanning laser 

beams across brain tissue, CARS microscopy produces three-dimensional images with molecular 

contrast, enabling visualization of disease-related changes in tissue morphology and composition. 

Valuable insights into brain tumor identification are provided by CARS through detailed 

examination of lipid and biomolecule distribution within the brain. Its high sensitivity, speed, and 

three-dimensional vibrational imaging capabilities make it ideal for analyzing brain structures and 

monitoring changes associated with neurological conditions. By providing contrast for visualizing 

the distribution and dynamics of key biomolecules, CARS reveals pathological alterations in brain 

structure and function. Furthermore, CARS has been crucial in imaging lipid alterations in 

traumatic brain injury models and protein aggregation in neurodegenerative disease models.

Tip-Enhanced Raman Spectroscopy (TERS) and Surface-Enhanced Raman Spectroscopy 

(SERS) - SERS and TERS are techniques that enhance the Raman scattering signal from 

molecules by exploiting the interaction between the molecules and metallic nanostructures or sharp 

metallic tips, respectively. Both SERS and TERS rely on the EM enhancement due to localized 

surface plasmons, but TERS benefits from the additional lightning rod effect and spatial 

confinement provided by the sharp metallic tip. 

TERS, a variant of RS, merges scanning probe microscopy (SPM) principles with SERS 

to achieve enhanced spatial resolution and Raman signal sensitivity. Although predominantly used 

for surface analysis and imaging of solid samples, TERS finds application in biofluid analysis for 

diagnosing brain disorders. In TERS, a metallic tip, often silver or gold, is positioned in close 
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proximity (a few nanometers) to the sample surface, acting as a nanoscale antenna. This enhances 

the electromagnetic field via LSPR, amplifying Raman signals from nearby molecules and 

detecting weak signals with precision.63, 64 The electromagnetic mechanism enhancement in TERS 

stems from the LSPR at the sharp metallic tip, which functions as a nanoantenna concentrating the 

electromagnetic field at its apex, thus creating a highly localized "hot spot" with a significantly 

enhanced field (Fig 2c). Acting as a lightning rod, the sharp metallic tip in TERS further boosts 

the electric field at the tip apex. The field enhancement increases with the sharpness of the tip, 

with sharper tips yielding higher enhancements due to the inverse relationship with the tip's radius 

of curvature. In TERS, the Raman signal emanates from a highly confined region, typically within 

a few nanometers from the tip apex, facilitating high-resolution imaging and spectroscopy of 

nanoscale structures and individual molecules. TERS delves into biofilm formation on surfaces 

relevant to certain brain disorders like AD, where Aβ peptides' aggregation leads to biofilm 

creation. It furnishes high-resolution chemical insights into biofilm composition and structure, 

aiding disease mechanism comprehension. While TERS is surface-focused, it extends to dried 

biofluid sample analysis, such as dried blood spots or CSF droplets.65-68 Here, the metallic tip 

approaches the dried sample closely, facilitating disease biomarker detection with high spatial 

resolution and sensitivity. TERS synergizes with other techniques like mass spectrometry or 

fluorescence microscopy to provide comprehensive biomarker composition and distribution 

information in biofluids. For instance, TERS identifies and locates specific molecular species, 

while mass spectrometry supplements with molecular masses and identities of detected 

compounds.

SERS is a technique that combines principles of RS with metallic nanostructure-induced 

signal enhancement. It holds promise for diagnosing brain disorders through biofluid analysis. 
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Renowned for its high sensitivity, molecular specificity, and ability to detect minute biomarker 

concentrations, SERS capitalizes on the LSPR phenomenon. Herein, the collective oscillation of 

conduction electrons in metallic nanostructures, predominantly gold or silver, resonates with 

incident electromagnetic radiation, inducing a robust enhancement of the local electromagnetic 

field near the nanostructures.25, 33-35 Consequently, Raman signals from molecules in proximity to 

or adsorbed on the metallic surface are amplified. SERS is adept at scrutinizing biofluids like CSF, 

blood, or urine for brain disorder-associated biomarkers.69-72 In AD, for instance, SERS discerns 

and quantifies Aβ peptides, tau proteins, and other pertinent molecules in CSF samples with 

remarkable sensitivity and specificity.73, 74 A pivotal advantage of SERS lies in its capability to 

detect and analyze biomarkers at low concentrations, challenging to discern via conventional 

methods. Multiplexed detection of multiple biomarkers concurrently is feasible with SERS, 

accomplished by employing distinct SERS-active nanoparticles or substrates tailored with specific 

recognition elements (e.g., antibodies or aptamers) for diverse biomarkers.75 The distinct Raman 

signatures of these nanoparticles or substrates facilitate the identification and quantification of 

multiple biomarkers in a single analysis. SERS delves into protein structure, folding, and 

interactions, furnishing insights into the molecular mechanisms underpinning brain disorders. 

With potential for in situ biofluid analysis sans extensive sample preparation or labeling, SERS 

holds promise for real-time biomarker monitoring. Integration with complementary analytical 

techniques like mass spectrometry or fluorescence spectroscopy enriches our understanding of 

biomarker composition and structure in biofluids.

Various Substrates Commonly Employed for SERS

The choice of the substrate material and its surface morphology play a crucial role in 

achieving strong SERS enhancement. It's worth noting that the choice of substrate depends on 
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factors such as the desired SERS enhancement, reproducibility, cost, and compatibility with the 

analyte and experimental conditions. Additionally, various substrate modifications, such as the 

addition of hot spots or incorporation of additional materials, can further enhance the SERS 

signals. 

Fig. 2 Energy level diagram showing (a) Raman scattering, SERS, and RRS and (b) SRS and 
CARS.  Illustration of (c) TERS and (d) SERS. Illustration of working principle of (e) point 
scanning and (f) line scanning of Raman spectral imaging 

1. Metallic Nanoparticles – Gold and silver nanoparticles are the most widely used SERS 

substrates due to their strong plasmonic properties. They can be synthesized as colloidal solutions 

or deposited on solid supports. These nanoparticles can significantly enhance the Raman signal 

through electromagnetic and chemical enhancement mechanisms. Noble metal SERS substrates 

have limitations in practical applications due to disadvantages such as high cost, complex 

synthesis, and the need for large-scale production. 
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2. Anisotropic Plasmonic Nanostructures - Gold or silver nanowires, nanoprisms, nanorods and 

nanostars exhibit strong plasmonic properties, leading to highly enhanced SERS signals. Their 

anisotropic shapes allow for tuning of the plasmon resonance wavelength. Anisotropic plasmonic 

nanostructures may exhibit SERS blinking, which can affect the stability and reproducibility of 

the signal.76 In addition, the optical response of anisotropic nanostructures may vary, impacting 

the uniformity of Raman enhancement. 

3. Bimetallic Nanoparticles - Bimetallic nanoparticles composed of two types of metal atoms, 

such as alloyed and core-shell configurations, have also been explored as SERS substrates. They 

offer tunable properties and enhanced SERS performance compared to monometallic 

nanoparticles.77, 78 There are challenges associated with bimetallic nanoparticles, such as high cost, 

stability issues, and limitations in practicality based on comparison with other substrates. 

4. Metal Nanoparticle Aggregates - Aggregates of gold or silver nanoparticles can provide highly 

enhanced SERS signals compared to individual nanoparticles due to electromagnetic hot spots 

created between closely spaced nanoparticles.79, 80 Aggregates may have limited reproducibility 

and stability, and the aggregation process can be challenging to control. 

5. Nanostructured Metal Films - Thin metal films (gold, silver, copper) deposited on 

nanostructured surfaces like silicon nanowires or nanoparticles provide high SERS enhancement 

due to the high density of hot spots.81, 82 Metal films may suffer from surface roughness and non-

uniformity, affecting SERS reproducibility. Film thickness and morphology need to be carefully 

controlled. 

6. Self-Assembled Metal Nanoparticle Arrays - Colloidal metal nanoparticles can be assembled 

into ordered arrays using techniques like Langmuir-Blodgett deposition, self-assembly, or 
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lithographic patterning.83, 84 Ordered arrays of gold or silver nanoparticles on solid substrates, such 

as silicon or glass, can provide reproducible and tunable SERS enhancement by controlling the 

nanoparticle size, shape, and spacing. These nanoparticle arrays exhibit strong plasmonic coupling 

and SERS activity. However, these substrates have limited control over nanoparticle organization 

and interparticle spacing. In addition, substrates have potential for defects and non-uniformities in 

the assembly. 

7. Metal-Organic Frameworks (MOFs) - MOFs loaded with metal nanoparticles or grown on 

metal surfaces can serve as highly sensitive SERS substrates due to their high porosity and large 

surface area.85, 86 They provide chemical stability and tunable properties. On the other hand, MOF 

synthesis and modification can be complex, and achieving uniform nanoparticle dispersion within 

the MOF matrix may be challenging. 

8. Two-Dimensional (2D) Materials - 2D materials like graphene, MoS2, WS2 combined with 

metal nanostructures have shown promising SERS performance due to their unique electronic and 

optical properties.24, 87 For these types of substrates, control over morphology and defects may be 

challenging and optimization of functionalization methods is required for maximum enhancement. 

Different Scanning and Imaging Techniques - Raman hyperspectral imaging, an advanced 

analytical technique, merges Raman spectroscopy with optical microscopy, offering detailed 

chemical and structural data by capturing spatial and spectral information from samples.88-90 Also 

known as Raman chemical imaging or Raman mapping, it diverges from conventional Raman 

spectroscopy by gathering spectra from various points across a sample's surface. This facilitates 

visualization and analysis of the sample's chemical components or molecular species distribution. 

The process entails scanning a focused laser beam over the sample while simultaneously collecting 

Raman spectra at each scan point. The resulting dataset comprises spectra corresponding to 
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specific sample locations, enabling the generation of hyperspectral images displaying spatial 

distribution patterns. This technique holds promise for chemical analysis and materials 

characterization, providing comprehensive insights into sample composition and distribution. Its 

applications extend to biomedical research, offering valuable information for various analytical 

purposes. Point-scanning Raman imaging has been employed to study the distribution of lipids, 

proteins, and other biomolecules in brain tissue sections from patients with AD, PD, and other 

neurological conditions.91-93 In this approach, a tightly focused laser beam is raster-scanned across 

the sample, and the Raman spectrum is collected at each pixel position (Fig 2e). The collected data 

are then processed to generate chemical maps and images based on the specific Raman signatures 

of the molecules present in the sample. This can reveal the formation of plaques, protein 

aggregates, or chemical changes in specific brain regions.94

The line scanning technique in Raman microscopy is a method used to acquire Raman 

spectral data from a sample in a line-by-line fashion, rather than collecting data from a single point 

at a time (Fig 2f).95, 96 This technique offers several advantages, including faster data acquisition 

times, reduced photobleaching or photodamage to the sample, and the ability to generate high-

resolution Raman images.97 In the line scanning technique, the laser beam is focused into a line 

shape instead of a diffraction-limited spot. This line-shaped illumination is achieved by using a 

cylindrical lens in the excitation path of the microscope. The sample is then raster-scanned in a 

direction perpendicular to the illumination line, and the Raman scattered light from the entire line 

is collected simultaneously by a detector, typically a CCD or an electron-multiplying CCD 

(EMCCD).  Super-resolution Raman microscopy (SRRM) is an advanced imaging technique that 

surpasses the diffraction limit of conventional Raman microscopy, enabling the visualization of 

nanoscale features with enhanced spatial resolution.98 Unlike traditional Raman microscopy, 
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which is limited by diffraction to a spatial resolution of approximately half the wavelength of the 

incident light, SRRM employs various strategies to achieve resolutions beyond this limit, often 

down to tens of nanometers or even single-digit nanometer scales.99, 100 One common approach in 

SRRM is to utilize near-field Raman techniques, such as tip-enhanced Raman spectroscopy 

(TERS), which involves scanning a sharp metallic tip in close proximity to the sample surface.101 

Another approach involves the use of super-resolution optical techniques, such as stimulated 

emission depletion (STED) microscopy or structured illumination microscopy (SIM), in 

combination with RS.102-105 These techniques exploit the principles of fluorescence microscopy to 

achieve super-resolution imaging, which can then be coupled with Raman scattering to provide 

chemically specific information about the sample.

Overall, the various RS techniques, each with their unique mechanisms and capabilities, 

have significantly contributed to unveiling the underlying mechanisms and characteristics of brain 

disorders. From the label-free visualization of pathological structures to the detailed biochemical 

characterization of relevant biomolecules, these Raman-based approaches have provided 

invaluable insights that can aid in the diagnosis, monitoring, and understanding of neurological 

conditions. Leveraging the molecular specificity and non-destructive nature of Raman techniques, 

researchers can gain unprecedented insights into the biochemical changes underlying brain 

disorders. This enables earlier diagnosis, monitoring of disease progression, and evaluation of 

therapeutic interventions. These techniques have the potential to aid in the early detection, 

diagnosis, and monitoring of neurological conditions, as well as contribute to the development of 

new therapeutic strategies by enhancing our understanding of the underlying molecular 

mechanisms.
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Raman Spectra of Biomolecules

RS of Biomolecules relies on the polarizability of chemical bonds, where distinct properties 

of chemical bonds result in varying light scattering. Complex biological samples consist of diverse 

chemical bonds, each inducing unique Raman shifts. The combination of Raman shift intensities 

forms the Raman spectrum of a sample. Biomolecules, integral to life processes, contribute to 

Raman spectra due to their specific chemical signatures. The Raman spectrum of biomolecules 

exhibits distinct characteristics, with unique peaks corresponding to different molecular 

components. These molecular signatures represent distinctive spectral patterns obtained through 

RS analysis of biofluids collected via liquid biopsy techniques. The Stokes Raman spectrum is 

categorized into four vibrational frequency regions.106, 107 (i) The "low frequency (LF) region" 

below 300 cm-1 provides crucial information about biomolecular structural conformation and 

environmental conditions. For instance, chemical processes like ligand binding, enzymatic 

activity, electron transfer, or intermolecular interactions, induce fluctuations in these modes 

providing valuable information about the conformational state of the biomolecule in LF region.106, 

107 (ii) The "fingerprint region" (300-1800 cm-1) is essential for chemical identification, containing 

signals from proteins, nucleic acids, lipids, and carbohydrates. Specific vibrational bands, such as 

Amide I and III, aid in determining protein secondary structure. In proteins, the Raman spectrum 

prominently features peaks associated with the side chain of aromatic amino acids and the peptide 

bond. Notably, Amide I (1645–1680 cm-1, C=O stretching) and Amide III (1225–1280 cm-1, C-N 

stretching coupled to N-H bending) vibrational bands are preferentially utilized for determining 

protein secondary structure.108-110 Nucleic acids contribute to the spectrum with signals from 

individual bases (600–800 cm-1, ring breathing) and the sugar-phosphate backbone. Strong Raman 

peaks in the region of 600 to 800 cm-1, attributed to ring breathing modes of various bases, facilitate 

the differentiation of nucleic acid bases.111-113 Nucleic acids exhibit distinctive bands providing 
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information about their conformation and base pairing. Lipids contribute to the fingerprint region 

with details about hydrocarbon chains and C-C stretching. Lipids, crucial biomolecules with roles 

in energy storage and cellular functions, showcase distinctive Raman peaks. The long hydrocarbon 

chains contribute signals related to scissoring and twisting of CH2 and CH3 groups (1300 and 

1400–1500 cm-1) and C-C stretching (1050–1200 cm-1).114 Additionally, lipid headgroups exhibit 

various structures, creating bands in the 710–890 cm-1 region. Carbohydrates create bands in this 

region, crucial for cellular recognition. Some common features are C-O-C stretching at 850 and 

1125 cm-1 and CH3 rocking at 925 cm−1.115 Carbohydrates, essential compounds in living 

organisms, introduce characteristic bands in the fingerprint region. Raman spectra of human serum 

from a healthy donor highlighting the peak assignment for various metabolic groups and 

endogenous biomolecules are shown in Fig 1 (d) in the fingerprint region. (iii) The "silent region" 

(1800-2800 cm-1) excludes biomolecular contributions, suitable for specific tags in RS. This region 

is particularly valuable for incorporating specific molecular fingerprints or tags that are suitable 

for RS, without interference from the inherent signals of biological constituents.116, 117 In this silent 

region, researchers often introduce tags or markers that have distinctive Raman signals, allowing 

for precise identification and tracking of specific molecules or functional groups. The absence of 

interference from the biomolecular background enhances the sensitivity and specificity of RS for 

detecting and characterizing these specific tags. (iv) The "high wavenumber region" (>2800 cm-1) 

is dominated by stretching vibrations of hydrogen bonds, ideal for studying lipids and long-chain 

hydrocarbons. The stretching vibrations of carbon-hydrogen (C-H) bonds are prominent in this 

region. Different types of C-H bonds, such as aliphatic and aromatic, exhibit characteristic 

peaks.114 These vibrations provide information about the types of chemical bonds and the 

environments in which they are present. The stretching vibrations of nitrogen-hydrogen (N-H) and 
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oxygen-hydrogen (O-H) bonds also contribute to this region. These vibrations are significant in 

studying biomolecules like proteins and nucleic acids. The high wavenumber region is particularly 

informative for studying lipids. Stretching vibrations of C-H groups in the long hydrocarbon chains 

of lipids are observed, providing insights into lipid structure. Additionally, vibrations related to 

the C=O bonds in lipids are distinct from those in proteins. Researchers leverage the high 

wavenumber region for detailed molecular analysis, especially in the study of biomolecules like 

lipids, where the distinctive features of this region offer valuable information about their structure 

and interactions. Raman liquid biopsy molecular signatures hold significant promise for non-

invasive diagnosis, prognosis, and personalized management of diseases, including neurological 

disorders. Overall, the Raman spectrum serves as a powerful tool for identifying and characterizing 

the molecular composition of proteins, lipids, nucleic acids, and carbohydrates in biomolecules.  

Advanced Chemometric Methods Applicable in Raman Spectroscopy and Microscopy

RS is a powerful analytical technique that can provide detailed chemical information about 

samples. However, the large amount of data generated can be challenging to analyze. This is where 

advanced chemometric methods step in, playing a pivotal role in Raman spectroscopic 

investigations. These methods are instrumental in gathering valuable information from complex 

spectral data, tackling issues like overlapping bands, spectral interferences, and data interpretation. 

To choose the appropriate method, the first step is to determine if each Raman spectrum responds 

to a known class of chemical property. If the Raman spectra are unlabeled, one can perform 

unsupervised methods to visualize and find clusters. If the label or response variable is known, one 

can choose supervised classification or regression methods. Linear models should first be tried 

since they are more accessible for interpretation and reveal essential Raman regions used in 

classification.
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1. Principal Component Analysis (PCA) - PCA stands out as a robust unsupervised machine 

learning tool extensively employed in RS and microscopy for data analysis and interpretation. Its 

utility is important when grappling with extensive and intricate datasets, as it aids in pattern 

recognition, dimensionality reduction, and distilling key insights from the data. Within RS, PCA 

proves invaluable for delving into data, spotting outliers, and discerning spectral differences tied 

to distinct sample attributes or compositions.118 At its core, PCA transforms a set of potentially 

correlated variables into a fresh array of uncorrelated variables known as principal components 

(PCs).

Before applying PCA, Raman spectral data typically undergo preprocessing steps like 

baseline correction, normalization, and noise filtering to ensure data quality and comparability. 

Following preprocessing, the Raman spectral data undergoes PCA calculations involving 

computing the covariance or correlation matrix and performing eigenvalue decomposition to 

derive principal components. These components are then ordered by associated eigenvalues, 

reflecting the variance explained by each. By selecting the initial few principal components that 

account for a substantial portion of the total variance (e.g., 90% or 95%), data dimensionality can 

be reduced while retaining pertinent information. The PCA scores, projections of the original data 

onto the new principal component space, are often visualized using scatter plots or other graphical 

representations, unveiling patterns or clusters challenging to discern in the original high-

dimensional space. Analyzing PCA loadings, representing contributions of original variables 

(wavenumbers) to each principal component, allows the identification of spectral features or 

molecular signatures underlying observed data patterns or variations. 

In Raman microscopy, PCA can be particularly useful for analyzing hyperspectral Raman 

images, where each pixel contains a full Raman spectrum. PCA can help to identify and separate 
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different chemical components or molecular species present in the sample based on their unique 

Raman spectral signatures.119 Consequently, it facilitates the creation of chemical maps or 

component distribution images, offering valuable insights into the sample's spatial distribution and 

heterogeneity. Fig 3 (a) shows an example of PCA analysis of SERS spectra measured in AD mice 

serum with different disease stages. By applying PCA, the SERS spectra are projected into lower 

dimensions. The PCA scores visualize the spectra and reveal the separation of different disease 

stages. The PCA loadings further produce more information on the SERS peaks that distinguish 

the AD disease stages in the mice serum.

2. K-means Clustering - K-means clustering represents an unsupervised machine learning method 

extensively employed in RS and microscopy for data analysis and pattern recognition. This 

partitioning clustering algorithm seeks to divide the data into K distinct clusters predicated on their 

likeness or divergence. In RS and microscopy, K-means clustering finds application in grouping 

or segmenting Raman spectra or sample points according to their spectral resemblances. This 

enables the delineation of discrete chemical constituents, materials, or regions within a given 

sample.120 

The application of K-means clustering in RS and microscopy typically involves several 

steps. First, an essential aspect of K-means clustering is determining the appropriate number of 

clusters (K) to partition the data into. This can be achieved through various techniques, including 

the elbow method, silhouette analysis, or leveraging domain knowledge. The K-means algorithm 

necessitates initial centroids or cluster centers to commence the iterative process. Each data point 

(Raman spectrum or sample) is then assigned to the nearest cluster centroid based on a chosen 

distance measure, typically Euclidean distance. Following the assignment of all data points to 

clusters, the algorithm iteratively recalculates the centroids of each cluster by computing the mean 
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of all data points within that cluster. Upon convergence, the final clusters are obtained and can be 

analyzed and interpreted based on the spectral characteristics of the Raman spectra within each 

cluster. This analysis offers valuable insights into the chemical composition, molecular structures, 

or spatial distributions of different components or regions within the sample. Fig 3 (b) shows an 

example of using K-means to determine the biochemical composition of lymphocyte cells. By 

coloring the clusters on Raman mapping, K-means reveals different components of the lymphocyte 

cell.121 Leveraging domain knowledge, Schie et al. select the number of clusters equal to 5, plot 

the means (centroids) of each cluster, and assign components to the clusters. In the means of 

clusters, the highlighting areas show significant Raman peaks to determine the biochemical 

composition.

3. Partial Least Squares (PLS) Regression - PLS regression stands as a powerful supervised 

chemometric technique extensively utilized in RS and microscopy for quantitative analysis and 

calibration model development. Its efficacy shines notably in situations involving collinear and 

high-dimensional data, a common occurrence in RS where the number of variables (wavenumbers 

or Raman shifts) can be extensive. The underlying principle of PLS regression revolves around 

establishing a linear relationship between the Raman spectral data (predictor variables, 𝐗) and a 

collection of reference measurements or properties (response variables, 𝐲).122 This is achieved by 

projecting both the predictor and response variables onto a new set of latent variables or 

components, adept at capturing the maximum covariance between 𝐗 and 𝐲.

𝐗 = 𝐙𝐕T + 𝐄

𝐲 = 𝐙𝐛 + 𝐞

The initial step involves organizing the Raman spectral data (𝐗) and the corresponding 

reference measurements or properties (𝐲) into matrices. The 𝑛 × 𝑝 matrix 𝐗 comprises 𝑛 Raman 
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spectra as rows, with each spectrum having 𝑝 wavenumbers or Raman shifts, 𝐗 = [𝐱𝟏, …,𝐱𝐩]. 

Meanwhile, the 𝑛 × 1 matrix 𝐲 contains the reference measurements or property values for each 

spectrum. Prior to constructing the PLS model, it is advisable to partition the data into calibration 

and validation sets, which ensures proper model validation and mitigates the risk of overfitting. 

The PLS algorithm decomposes the 𝐗 matrix into 𝑛 × 𝑘 scores matrix 𝐙 (projections onto the 𝑘 

latent variables) and 𝑘 × 𝑝 loading matrix 𝐕 (transformation of the original variables to the latent 

variables). Then, it decomposes the 𝐲 matrix into 𝐙 and 𝑘 × 1 PLS coefficient 𝑏 (coefficient for 

predicting response). The scores capture the systematic variation in the data, while the loadings 

unveil the significance of each variable (wavenumber or Raman shift) in the model. The 𝐄 and 𝐞 

are residuals, which change depending on the selection of 𝑘. Determining the optimal number of 

latent variables (components) 𝑘 to incorporate in the PLS model involves evaluating the model's 

performance through cross-validation or other validation techniques. Insufficient components may 

lead to underfitting, whereas excessive components can result in overfitting and diminished 

predictive capability. Once developed, the PLS model undergoes validation using the independent 

validation set to gauge its predictive efficacy. Various metrics like root mean squared error 

(RMSE), coefficient of determination (R²), or bias are employed to assess the model's performance 

and robustness. If the PLS model demonstrates satisfactory performance, it can be utilized for the 

quantitative analysis of new Raman spectral data. Additionally, insights into relevant spectral 

features or molecular signatures contributing to the prediction of the response variable can be 

gleaned from the model loadings.
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Fig. 3 (a) Using PCA to analyze SERS spectra measured from AD mice serum at different stages. 
PCA score plot for SERS measured spectra of AD mice serum at different stages. PCA loading 
plot of first three principal components. Adapted with permission from reference 121 Copyright 
2023 Elsevier. (b) K-means cluster-based Raman mapping of lymphocyte cells with different 
numbers of clusters. Mean spectra of clusters with the number of clusters equal to 5. Adapted with 
permission from reference 122 Copyright 2013 SAGE Publications. (c) Using SVM to classify 
Raman spectra measured from mice brain samples with and without AD. Linear SVM trained, 
which classifies the brain samples with and without AD using a hyperplane decision boundary. 
The spectral feature importance obtained from SVM and Raman spectra of potential biomarkers 
of AD. Adapted with permission from reference 23 Copyright 2022 American Chemical Society.
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4. Linear Discriminant Analysis (LDA) - LDA, a supervised chemometric technique, is 

employed for classification and pattern recognition in RS and microscopy. Its objective is to 

identify the optimal linear combination of variables (Raman shifts or wavenumbers) that 

maximizes the distinction between predefined classes or groups while minimizing within-class 

variance. In the realm of RS and microscopy, LDA serves various purposes, including sample 

classification, identification of spectral markers or discriminating features linked to different 

classes, and the development of diagnostic models based on Raman spectral data.122 

The Raman spectral data is structured into a matrix, with each row representing a spectrum. 

Alongside, class labels or group assignments for each sample or spectrum are required. To 

streamline computational efficiency while retaining essential information, LDA can be preceded 

by dimensionality reduction techniques like PCA. The LDA algorithm then identifies the linear 

combination of variables (Raman shifts or wavenumbers) maximizing the ratio of between-class 

variance to within-class variance. This combination, termed the discriminant function, ensures 

optimal separation between predefined classes or groups. To evaluate the model, cross-validation 

or an independent test set is employed to gauge its classification accuracy and robustness using 

metrics like the confusion matrix, sensitivity, specificity, and overall classification rate. Following 

satisfactory performance, the LDA model is utilized to classify new Raman spectral data into 

predefined classes or groups. Furthermore, analysis of discriminant function coefficients or 

loadings aids in identifying the most discriminating Raman shifts or spectral features associated 

with each class, offering insights into molecular or chemical differences between groups.

In Raman microscopy, LDA proves especially valuable for scrutinizing hyperspectral 

Raman images, where every pixel includes a complete Raman spectrum. By incorporating spatial 

information with spectral data, LDA models are crafted to categorize diverse regions or 
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constituents within the sample, leveraging their unique Raman spectral signatures. Consequently, 

this facilitates the creation of classification maps or discernment of spatial patterns linked to 

distinct chemical or molecular species.

5. Support Vector Machines (SVMs) – SVMs stand out as robust supervised machine learning 

algorithms widely employed in RS and microscopy for both classification and regression tasks. 

SVMs excel when confronted with high-dimensional datasets, such as Raman spectra, and 

proficiently manage non-linear relationships between the input data and target variables. Within 

the realm of RS and microscopy, SVMs find application in various tasks, including sample 

classification, identification of spectral markers or discriminating features linked to distinct 

classes, and the formulation of quantitative models for predicting properties or concentrations 

based on Raman spectral data.10, 23

The application of SVMs in RS and microscopy typically involves several steps. Firstly, 

the Raman spectral data is structured into a matrix 𝐗, with each row representing a sample or 

spectrum 𝐱. Additionally, class labels or target variables (for classification or regression tasks) 𝑦 

must be assigned to each sample or spectrum. To optimize computational efficiency and 

interpretability, feature selection techniques (e.g., variable importance in projection, recursive 

feature elimination) or dimensionality reduction methods (e.g., principal component analysis) can 

be employed on the Raman spectral data. The SVM algorithm then constructs a hyperplane or 

decision boundary in a high-dimensional space 𝛚·𝐱 +b = 0, maximizing the margin between 

different classes or groups. The prediction is defined as the following, where +1 and -1 are two 

classes.

𝑦 =  +1 𝑖𝑓  𝛚·𝐱 + b ≥ 0
―1 𝑖𝑓 𝛚·𝐱 + b ≤ 0
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By transforming the input data into a higher-dimensional feature space using kernel 

functions (e.g., polynomial, radial basis function), SVM is able to handle non-linear relationships. 

To optimize the SVM model's performance, hyperparameters such as the kernel function, the 

regularization parameter (C), and the kernel parameters (e.g., gamma for the RBF kernel) are tuned 

using cross-validation or grid search techniques. The developed SVM model is evaluated using an 

independent test set or cross-validation to assess its performance. For classification tasks, metrics 

such as accuracy, precision, recall, and F1-score are employed, while for regression tasks, metrics 

like mean squared error (MSE), coefficient of determination (R²), and root mean squared error 

(RMSE) are utilized. If the SVM model achieves satisfactory performance, it can be deployed to 

classify new Raman spectral data into predefined classes or predict target variables based on the 

Raman spectral input. Furthermore, techniques like permutation importance or weight vector (𝛚) 

analysis for linear SVM can be utilized to identify the most discriminative or relevant Raman shifts 

or spectral features contributing to the model's predictions.

In Raman microscopy, SVMs are particularly valuable for analyzing hyperspectral Raman 

images, where every pixel encompasses a complete Raman spectrum. By integrating spatial 

information with spectral data, SVM models can be crafted to classify various regions or 

components within the sample, relying on their distinctive Raman spectral signatures. This 

capability facilitates the creation of classification maps or the anticipation of spatial distributions 

of chemical components or properties within the sample. Fig 3 (c) shows an example of using 

linear SVM to diagnose AD mice brain slices and identify potential AD biomarkers. The Raman 

spectra measured with and without AD are fed into the linear SVM model. After training, the linear 

SVM constructs a hyperplane decision boundary. By extracting the coefficient, Wang et al. plot 
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spectra feature importance map, identify essential Raman peaks that are correlated to AD, and 

reveal new potential biomarkers.23

Liquid Biopsy Investigation for Brain Disorders Through Spontaneous and Enhanced 
Raman Spectroscopic Techniques

Blood-Based Investigations

Liquid biopsy of AD biomarkers, such as Aβ and tau proteins, in blood samples holds great 

promise for cost-effective, widely accessible, easily-administered, and minimally-invasive 

detection and follow-up of AD. Blood is a valuable reservoir of potential biomarkers essential for 

disease screening, risk assessment, detection, and prognosis. It contains free-floating erythrocytes, 

leukocytes, platelets, and a nutrient-rich plasma fluid, making it easier to collect samples compared 

to solid tissue biopsies.123 This enables the regular monitoring of a patient's health status over time. 

Blood-based biomarkers are of particular interest due to their minimally-invasive nature and ease 

of sample collection.124, 125 Research has focused on identifying proteins such as tau, Aβ, 

microRNA, and other molecules associated with NDs in blood. The spectra obtained through 

Raman analysis of blood exhibit multicollinearity, coupled with the presence of autofluorescence 

background and various types of noise.26, 126 Selecting an appropriate method for processing 

experimental data from blood spectra is imperative to derive statistically reliable insights into a 

pathological process within the body. Previous studies have investigated multivariate analysis 

methods of blood Raman spectra classification which is useful in detecting AD.26 Typically, 

diagnosis of AD through RS involves utilizing spectrochemical analysis of blood. This analytical 

approach aims to identify distinct chemical patterns or biomarkers in the blood that may 

distinguish AD from other conditions. By examining the unique spectrochemical profiles, 

researchers and clinicians seek to improve the accuracy and specificity of AD diagnosis, paving 

the way for more effective and targeted interventions. Spectrochemical analysis in blood holds 
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promise as a minimally-invasive and potentially reliable method for discriminating AD from other 

disorders. 

Early studies used platelets from animal models of NDs to distinguish healthy and diseased 

cases. For instance, Hu and coworkers achieved over 90% accuracy of distinguishing AD, PD, and 

vascular dementia.127 In a subsequent work by the same research group extended this work to 

detect AD by Raman spectra of rat’s platelets. Recent developments in machine learning enabled 

new opportunities for accurate diagnosis of AD. For instance, in a recent work by Lin et al. reported 

laser tweezers RS combined with machine learning for diagnosis of AD.128 By utilizing AD 

platelets from transgenic rats at different ages, the researchers were able to differentiate between 

normal and diseases platelets of 3-, 6-, and 12-month AD samples (Fig 4 a,b). Raman spectra of 

diseased samples and healthy controls showed unique features. Firstly, the intensity ratio of 1127 

cm-1 peak to 1001 cm-1 peak increases significantly with the AD severity. This was attributed to 

changes of amyloid precursor protein metabolism of AD and normal platelets. Another feature is 

the intensity ratio of 1654 cm-1 peak to 1600 cm-1 peak decreases with the AD severity. This was 

explained based on the α helix structure and amyloid precursor protein changes of AD platelets. 

With the help of machine learning techniques, the researchers achieved accuracy of 91%, 68% and 

97% for distinguishing normal and diseased samples of 3-, 6- and 12-month. Hu and coworkers 

developed classification models for early and advanced AD as well as the control group using 

fewer features.129 They applied mechanisms for noise reduction to enhance the accuracy of the 

models. Raman spectra of platelets were acquired from animal models, encompassing early and 

advanced stages of AD transgenic mice, non-transgenic controls, and PD mice (Fig 4 c,d,e,f) . 

Here they adopted an adaptive classification method based on the Gaussian process for 

classification. The study conducted by Ralbovsky et al. introduced a statistical algorithm design to 
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differentiate between two groups of rats: those subjected to a standard diet and those exposed to a 

high-fat diet leading to the pre-AD state.130 The algorithm was constructed and trained using a 

calibration dataset, and its diagnostic capabilities were assessed through external validation with 

new, unseen data. The application of partial least squares discriminant analysis achieved an 89% 

sensitivity and specificity at the donor level during cross-validation. External validation further 

confirmed the accuracy of the algorithm, achieving a 100% rate of correctly predicting the class 

of a donor. Notably, genetic algorithm analysis tentatively identified proteins and lipids as 

influential factors in discriminating between the two classes of blood serum donors.
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Fig. 4 (a) Raman spectra of platelets at different stages of AD from different 3xTg-AD transgenic 
rats. (b) The discriminant scores plot result of partial least square discriminant analysis (PLS-DA) 
algorithm related to 3xTg-AD transgenic rats. Adapted with permission from reference 65 
Copyright 2022 Elsevier. (c,e) The visual display of first step and (d,f) second step of gaussian 
process (GP) classification of spectral data from 4 month AD and 12 month AD platelets, and the 
control data based on two features. Adapted with permission from reference 66 Copyright 2014 
IOP Science. 
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Carmona et al. investigated diagnostic potential of RS for prion disease.131, 132 This was 

done through Raman analysis of prion protein in blood cell membranes from naturally affected 

scrapie sheep. Membrane fractions obtained from the blood of 150 healthy sheep and 31 sheep 

infected with scrapie were examined to detect the presence of β-sheet structure in the Amide I 

region (1670 cm–1), indicating the conversion of cellular prion protein (PrPC) to proteinase-

resistant prion protein (PrPSC). The diagnosis of scrapie-infected sheep achieved a 100% accuracy 

rate, as confirmed by postmortem analysis. Moreover, this research showcased the potential of RS 

in monitoring disease progression, as evidenced by continuous increases in β-sheet intensity 

observed one month after the onset of sickness. Alvarez-Puebla et al. conducted a study on the 

rapid direct detection of prions in serum and blood utilizing the SERS effect of gold nanorods.133. 

They developed a SERS substrate based on supercrystals of gold nanorods and performed 

scrambled prion detection. The primary chemical structure of both PrPC and PrPSC prions is very 

similar, and their respective vibrational patterns were detected. Bands located at 762 cm−1, 

assigned to the interaction of Au-S-C, and a triplet in PrPC (1390, 1416, and 1446 cm−1) which 

becomes a singlet (1448 cm−1) in the scrambled version, were observed. The SERS spectrum of 

PrPSC∶PrPC in serum showed dominant bands corresponding to the C-N stretching (1,118 cm−1), 

phenylalanine (1,003 and 1,033 cm−1), tryptophan (1,011 and 1,560 cm−1), tyrosine (845 cm−1), 

and cystine (720 cm−1). Even upon sequential dilution of the prion mixture (1% of PrPSC in 99% 

of PrPC) in serum, the characteristic prion bands remained clearly recognizable down to 

concentrations as low as 10−10 M. 

Rickard et al. presented a novel sensing strategy by integrating SERS with an optofluidic 

device for the rapid and label-free detection of biomarkers associated with TBI in biofluids, 

achieving a picomolar limit of detection (LOD).134 The authors fabricated a SERS-active substrate 
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using electrohydrodynamically produced submicrometer pillars, which were then incorporated 

into an optofluidic chip. A plasmon-active nanometric gold layer was applied to coat the pillars, 

creating the SERS-active platform. Utilizing this device, the researchers successfully detected N-

acetylaspartate, a potential biomarker released from the central nervous system post-TBI, directly 

from finger-prick blood samples (Fig 5 a,b,c,d). This study demonstrates the suitability of the 

proposed strategy for constructing SERS devices, offering the potential for on-site and real-time 

target detection. Notably, the authors engineered a miniaturized Raman system for multiplexed 

and high-throughput analysis of biomarkers. Harris and colleagues employed RS-based detection 

to characterize a panel of 18 TBI-indicative biomarkers, encompassing both raw (human, animal, 

and synthetically derived) samples and their aqueous solutions.135 Colorimetric paper lateral flow 

strips (PLFS) could have drawbacks their low sensitivity and susceptibility to interference from 

complex sample matrices like blood. To address these issues, a new PLFS has been developed, 

incorporating SERS for signal transduction.136 Here gold nano-pyramid array chip was integrated 

into the detection zone of the PLFS for SERS enhancement. The design includes a hierarchical 

three-dimensional nanostructure creating "hot spots" to amplify SERS signals, resulting in high 

sensitivity. This PLFS demonstrates a low LOD of 5.0 pg/mL for the TBI biomarker S-100β in 

blood plasma (Fig 5e,f). It has been successfully applied for rapid S-100β measurement in clinical 

samples from TBI patients in emergency departments. The availability of this PLFS for blood 

testing is transformative in TBI patient management, and its adaptability suggests potential for 

rapid detection of various human diseases by measuring low levels of protein blood biomarkers in 

complex human fluids.  
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Serum and plasma from clinical samples have been employed in distinguishing NDs from 

healthy controls. Carmona et al. utilized plasma Raman spectral data to categorize cases of mild, 

moderate, and severe AD.137, 138 Their findings indicate an elevated ratio between spectral bands 

at 758 and 744 cm-1 in the blood plasma of patients with both mild and severe AD. Specifically, 

the 758 cm−1 band corresponds to the tryptophan side chain indole-ring breathing mode, while the 

744 cm-1 band likely corresponds to mitochondrial cytochrome c from platelets, demonstrating a 

potential biomarker for disease severity. More recent research has revealed that the blood 

concentration levels of p-tau at threonine 181 (p-tau181) could aid in the diagnosis and 

differentiation of AD from other NDs.139 Habartova et al. reported a protocol focus on blood-based 

analyses for AD using chiroptical spectroscopy, including Raman optical activity (ROA) and 

electronic circular dichroism.140 This approach was supplemented with conventional vibrational 

spectroscopy (infrared, Raman) and metabolomics (high-performance liquid chromatography with 

high-resolution mass detection). The combination of these techniques allows for the identification 

of spectral patterns associated with AD and variations in metabolite levels (Fig 6 a,b). Through 

linear discriminant analysis, the spectral data can differentiate between AD patients and control 

subjects. For instance, average Raman spectra of the blood plasma of patients with AD showed 

notably lower intensities of the carotenoid spectral band. This was attributed to their utilization for 

protection against oxidative stress and disruptions in lipid metabolism. No differences were 

observed for the Amide I band but intensity decrease was detected for Amide III region which is 

due to AD-induced structural change in proteins/peptides. The less invasive nature of this approach 

highlighted its strong potential for identifying disease-related changes in essential plasmatic 

biomolecules and metabolites. Recently, it has been revealed that hollow gold nanospheres in 

conjunction with the redox molecules 4-mercaptobenzoic acid and Nile blue A, exhibit the 

Page 39 of 83 Nanoscale



potential to enhance the speed and accuracy of visually detecting neuron-specific enolase (NSE) 

and S100-β protein, both associated with brain damage, using the SERS technique.141 This study 

determined the lowest concentration for NSE and S100-β protein, with a linear range spanning 

from 0.2 to 22 ng/mL, to be 0.1 and 0.06 ng/mL, respectively. In a different report, Davies and 

coworkers presented utility of RS as a neuromonitoring tool in TBI.142 In this work, the researchers 

presented clinical potential of RS in diagnosis of brain disorders (Fig 6c).

Hao et al. proposed a diagnostic system that incorporates acoustofluidic principles and 

employed a multimodal approach for rapid detection of AD biomarkers from human plasma.143 In 

this work, a surface acoustic wave-based separation device has been designed to enhance signal-

to-noise ratio (SNR) by isolating and purifying AD biomarkers. By utilizing ZnO nanorods and 

Ag nanoparticles, the developed system enabled label-free detections through SERS and 

electrochemical immunosensors (Fig 6d). Raman spectral analysis identified key biochemical 

differences in human blood plasma for healthy individuals and AD group (Fig 6 e,f). AD patients 

were characterized by higher concentration of xanthine, uric acid, and ascorbic acid based on 

difference Raman spectrum. Xanthine and uric acid primarily serve as purine metabolites within 

the salvage pathway in the brain. The system demonstrates high sensitivity and specificity in label-

free detections of clinical plasma samples from both AD patients and healthy controls. The 

efficient integration of these techniques presents promising solutions for the early diagnosis of 

AD. 
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Fig. 5 (a) Histogram of the measured electromagnetic enhancement factors of the SERS substrate. 
Inset: principal component score plots of PC1 and PC2 show the relationship between the 
multiplex spectra of the three single biomarkers. The blue cluster is N-acetylasparate (NAA) 
spectra (n = 23), the purple cluster represents S100B (n = 18) and the red is glial–fibrillary acidic 
protein (n = 13). (b) Calibration curves of SERS spectra acquired with an excitation laser of 
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785 nm. Inset: representative NAA levels as a function of SERS intensity for the dilution series 
and the calculated LOD values for each biomarker (inset table). (c) Classification matrices of the 
feature selection of subset of relevant features, used to establish the important peaks and their 
correlations reveals decision boundaries of multilayer perception with distribution of the selected 
peaks with clear separation at each subset between the STBI and the healthy volunteer patients. 
Inset: the NAA molecular structure and the major assignments of major SERS peaks of NAA on 
RED substrate. σ, stretching vibration; δ, bending vibration; δs, symmetric bending vibration; ρ, 
rocking, in-plane bending; γ, wagging; ν, breathing; τ, twisting. Raman intensity: s, strong; m, 
medium; w, weak. (d) Average SERS spectrum (n = 5) of healthy volunteers (i; bottom panel) 
excited at 785 nm are compared to the SERS spectrum of STBI only (ii), STBI + EC (iii) and to 
the fingerprint spectrum of NAA (iv; top panel) with the representative significant peaks 
highlighted with vertical grey (i), blue (ii), red (iii) and dotted (iv) lines, accordingly, highlighting 
the correspondence or the absence of the NAA peaks with some vibrational frequencies of the 
bands being unchanged in SERS spectra whereas several are red-shifted or not evident in the 
healthy volunteer spectrum. Inset: barcode derived from SERS spectra shown in e for severe 
traumatic brain injury (STBI) diagnostics. Adapted with permission from reference 71 Copyright 
2020 Nature Publishing Group. (e) SERS spectra of PLFS acquired from the buffer solution 
containing various concentrations of S-100β (f) SERS spectra of PLFS taken at various 
concentrations of S-100β. Adapted with permission from reference 73 Copyright 2021 Elsevier. 

In another work, a device utilizing Au nanostar@Raman Reporter@silica sandwich 

nanoparticles as SERS probes, was developed ensuring high sensitivity for the detection of NSE, 

a TBI protein biomarker.144 The device achieved a LOD of 0.86 ng/mL in diluted blood plasma 

samples. Due to the merits of SERS this device exhibits superior sensitivity and a lower LOD in 

blood plasma-containing samples. Furthermore, the SERS-PLFS demonstrated successful NSE 

level measurement in clinical blood plasma samples from deidentified TBI patients. This study 

highlights the potential of SERS-PLFS for point-of-care screening of TBI patients. Yang et al. 

reported sandwich immunoassay using silver nanogap shells (AgNGSs) functionalized with Aβ 

antibody as SERS nanoprobes.145 These nanoprobes demonstrated sensitive, selective, and 

multiplexed detection of Aβ1–40 and Aβ1–42 peptides in blood. Through precise control of AgNGSs 

formation as plasmonic hot spots on silica nanoparticles at a one-nanometer resolution, the assay 

achieved a remarkable LOD of 0.25 pg/mL for Aβ1–40 and 0.33 pg/mL for Aβ1–42. Notably, these 
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LODs were one order of magnitude lower than those of the ELISA test. Phung et al presented 

SERS detection of dopamine levels in human blood plasms.146 By Ag-plated AuNPs deposited on 

ITO glass SERS substrate was developed and achieved lowest detection limit of ∼10−11 M for 

dopamine. NSE in blood plasma was detected using lateral flow glass-hemostix (FGH) in 

conjunction with Au nanocage as SERS substrates, achieving a LOD of 0.74 ng/mL.147

In a work by Bedoni and coworkers, the analysis of serum using RS was enhanced by 

introducing nanostructures to induce a SERS signal, resulting in more detailed and intense Raman 

spectra.71 Standardization of all analyzed parameters was conducted to ensure the best repeatability 

and minimize variables. Following the methodological optimization, the established parameters 

were applied to analyze serum samples from 10 AD and 11 healthy control subjects. The obtained 

results, utilizing an innovative nanotechnology-based biosensor, were correlated with MRI 

findings in evaluating AD patients. This correlation provides a robust foundation for further 

exploration of the biosensor's applicability in monitoring AD progression and rehabilitation 

treatments. Overall, SERS technology contributes to the development of sensitive and noninvasive 

methods for detecting biomarkers with low concentrations. This advancement is conducive to early 

diagnosis and can potentially delay the progression of AD and other NDs.  

Ryzhikova et al. employed an artificial neural network for classifying spectroscopic data, 

conducting learning and subsequent validation on subsets of the measured data.148 The neural 

network demonstrated a capability to distinguish between AD, other forms of dementia, and 

healthy controls with specificity and sensitivity exceeding 95%. However, the algorithm couldn't 

pinpoint the specific regions in the Raman spectra crucial for this differentiation. To address this, 

a genetic algorithm was employed, facilitating the identification of specific spectral regions 

deemed most significant for discriminating the measured spectra. Carotenoids, renowned for their 
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antioxidant properties, are present in various biofluids and could potentially serve as a diagnostic 

tool for RS-based biopsies. Studies have shown that the levels of these carotenoids in biofluids, 

such as blood serum and plasma, may serve as biomarkers for NDs like AD and PD. Resonant 

Raman serves as the primary mechanism for amplification in the case of carotenoids, leading to 

the augmentation of three specific Raman bands positioned approximately at 1005, 1155, and 1520 

cm-1. Kralova et al. conducted a comparative analysis of data derived from blood plasma samples 

collected from individuals with AD and healthy elderly controls.44 Four distinct 

techniques/experimental setups—RS with excitations at 532 and 785 nm, ROA, and SERS were 

employed for this purpose. The study revealed the impact of experimental design on the Raman 

spectra of blood plasma. Each of the four experimental setups resulted in distinctive spectral 

signatures. Conventional RS (excitations at 785 and 532 nm) and ROA primarily exhibited 

sensitivity to the protein fraction of blood plasma. However, due to resonance enhancement, 

Raman and ROA spectra obtained with 532 nm excitation also featured intense bands associated 

with carotenoids. ROA, utilizing circularly polarized light, produced spectral bands, especially in 

Amide I and extended Amide III, providing valuable information about the spatial structure of 

biomolecules. This suggests the potential of ROA to offer insights into disease-induced changes 

in the structure of blood plasma components. SERS spectroscopy, with its signal enhancement 

near plasmonic nanoparticles, particularly influenced low-molecular-weight metabolites. The 

SERS spectra of the low-molecular-weight blood plasma fraction and the whole blood plasma 

primarily exhibited bands related to uric acid, hypoxanthine, and ergothioneine. Overall, the study 

demonstrated that each RS technique provides distinct information about biomolecules in blood 

plasma or their conformation, offering diverse perspectives on the underlying biochemical 

processes associated with the disease.

Page 44 of 83Nanoscale



 

Fig. 6 (a) Average Raman spectra of the blood plasma of patients with AD (red; n = 35) and non-
demented elderly controls (black; n = 29). (b) Average Raman optical activity spectra of the blood 
plasma of patients with AD (red; n = 35) and non-demented elderly controls (black; n = 29). 
Adapted with permission from reference 77 Copyright 2019 Elsevier. (c) Illustration of a 
simplified RS system and its potential application in clinical environments. Adapted with 
permission from reference 79 Copyright 2022 MDPI. (d) FDTD simulations at different settings 
showing the electromagnetic field distributions of the energized nanoarray on glass (i) and Au 
substrate (ii-iv). The distance between the two nanorod cylinders was 150 nm (i-iii) and 50 nm 
(iv). (e) SERS spectra of AD plasma samples before and after isolation treatment. (f) Difference 
spectra obtained from subtracting the AD sample spectra from the healthy control sample 
spectra. Adapted with permission from reference 80 Copyright 2021 Elsevier.
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Paraskevaidi and colleagues employed RS on blood plasma along with machine learning 

techniques to effectively distinguish AD from both healthy individuals and patients with Dementia 

with Lewy Bodies.149 Given the shared symptoms and clinical characteristics between these two 

diseases, the potential for misdiagnosis exists. The study involved the analysis of 56 samples 

categorized into four groups, including early and severe stages of AD, dementia with Lewy bodies, 

and healthy controls. Spectral data were processed using cross-validated PCA-LDA and a support 

vector machine algorithm. Six distinct statistical models were developed to compare all groups. 

Multiple binary algorithms were developed using support vector machines (SVM) to discern 

between healthy controls, early-stage AD donors, late-stage AD donors, and donors with dementia 

with Lewy bodies. The classification algorithms demonstrated an average sensitivity of 81.3% and 

specificity of 85.7%, underscoring the importance of pairing an optimal biological sample with an 

appropriate statistical analysis method for accurate analysis. Significant spectral bands crucial for 

discrimination were identified, such as Amide I (~1650 cm−1) and Amide II (~1530 cm−1). The 

latter exhibited an up-shift in the spectra of both early and severe stages of AD, attributed to an 

increase in tau protein or NFL in plasma. Additionally, a lower intensity band at ~1432 cm−1 was 

observed, suggested to be due to decreased lipid levels resulting from oxidative stress-induced 

damage to phospholipid membranes. Moreover, the level of phenylalanine increased in dementia 

with Lewy bodies compared to healthy controls. In another study, Sharma et al. utilized RS to 

identify internal variances in erythrocytes of PD patients.150 α-synuclein is closely associated with 

PD and other related conditions known as synucleinopathies. However, no discernible erythrocytic 

behavioral changes (eryptosis) or variations in hemoglobin were observed due to presence of α-

synuclein.  An increased level of plasmin-antiplasmin complexes was noted in the plasma of PD 

patients, suggesting activation of the fibrinolytic system. Huefner et al. employed RS to distinguish 
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Huntington's disease (HD) patients from healthy controls using serum samples.151 Their study 

revealed notable alterations in the spectra associated with the progression of the disease. 

Additionally, the researchers identified differences corresponding to genotype and gender when 

analyzing serum samples from individuals with HD and those without the condition (Fig 7 a-f). 

The use of RS in this context showcases its potential as a valuable tool for probing molecular 

changes associated with HD and offers insights into potential biomarkers for diagnostic purposes. 

Schipper and colleagues employed a combination of RS and near-infrared spectroscopy (NIRS) to 

differentiate between blood samples of PD patients and a control group by analyzing various 

spectroscopic properties linked to oxidative stress.152 Patients with PD exhibited a reduction in 

bands associated with hydrocarbons (2990 cm−1), coupled with an increase in bands related to 

amines (3200 cm−1) and alcohols (3300 cm−1). These changes are likely indicative of oxidative 

stress. By utilizing these identified bands as biomarkers, the researchers established a 

discrimination model with 75% sensitivity and specificity. 

Two-dimensional (2D) materials have garnered significant attention for their unique 

properties and diverse applications, including their potential role in the field of biomarker sensing 

for NDs. These materials, such as graphene and transition metal dichalcogenides, offer high 

surface area, excellent conductivity, and biocompatibility. Their unique electronic and optical 

properties make them promising candidates for developing highly sensitive biosensors. Demeritte 

et al. discovered that the modification of graphene oxide with magnetic nanoparticles enables the 

early detection of AD by identifying Aβ42 peptide and total-tau (t-tau) proteins.153, 154 In this study, 

researchers employed magnetic core and plasmonic shell nanoparticles, which were conjugated 

with graphene oxide (GO) and further modified with anti-Aβ42 antibodies and anti-tau antibodies. 

This innovative design serves as a robust 3D SERS platform specifically tailored for the detection 
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of Aβ and tau in whole blood samples. The platform demonstrated the capability to detect target 

AD biomarkers at remarkably low concentrations, detecting Aβ42 peptide as low as 500 fg/mL and 

t-tau protein as low as 100 fg/mL showcasing its high sensitivity in detecting minute 

concentrations of the target biomarker in complex biological samples. This multifunctional 

nanoplatform was utilized to selectively collect more than 98% of AD biomarkers from whole 

blood samples. In their continued research, researchers expanded their approach by developing 

iron-gold core-shell nanoparticles (CSNPs) affixed to shell hybrid graphene oxide.153 This 

advancement aimed at identifying Aβ and tau from whole blood samples, resulting in remarkable 

detection limits of 100 fg/mL for Aβ and 0.15 ng/mL for tau (Fig 7 g,h). Notably, the nanoplatform 

exhibited the capability to differentiate between Aβ and tau biomarkers and human serum albumin, 

a highly abundant protein in the CSF. This underscores the specificity and versatility of the 

developed nanoplatform for effective biomarker discrimination in complex biological samples.

Furthermore, Yu and colleagues devised a SERS-based immunoassay employing specific 

antibodies tethered to Fe3O4@GOs and silver probes labeled with 4-mercaptobenzoic acid (4-

MBA).74 The resulting SERS spectrum of 4-MBA signifies the capture of the target protein, 

showcasing a detection limit in clinical serum samples that can reach the femtomolar level. The 

established SERS-based immunoassay proficiently probed Aβ1-42 and phosphorylated-tau (p-tau)-

181 in human serum samples, positioning it as a promising approach for the early detection of AD. 

This innovation opens up novel avenues for detecting clinical biomarkers with increased 

sensitivity. In the context of NDs, the use of 2D materials in biomarker sensing could revolutionize 

diagnostic approaches by providing rapid and accurate detection of specific biomolecules 

associated with conditions like AD or PD. The enhanced sensitivity and specificity offered by 

these materials hold great potential for advancing early disease diagnosis and monitoring. 
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Collectively, these findings suggest that blood-based liquid biopsy investigations are a promising 

avenue for early diagnosis, disease prevention, and biomarker detection for a range of brain 

disorders.

Fig. 7 (a) Average Raman spectrum and (b) SERS spectra of serum from healthy control subjects 
(blue lines) and HD patients (red line) and standard deviations (c) and (d), respectively (e) The 
different spectra of the averages for Raman spectrum (black line) (f) The different spectra of the 
averages for SERS (black line). LD loadings are shown by colored lines and yellow marked regions 
indicate important peaks. Adapted with permission from reference 89 Copyright 2020 The Royal 
Society of Chemistry. (g) Concentration dependent SERS spectra from tau protein conjugated 
nanoplatform after magnetic separation of the nanocomposite. (h) SERS enhancement of Raman 
signal from 50 ng tau protein in the presence of CSNPs and from 500 ng tau protein in the presence 
of CSNPs attached graphene oxide hybrid. Adapted with permission from reference 91 Copyright 
2015 American Chemical Society. 
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Saliva-Based Investigations

Saliva is readily accessible and has been investigated for potential biomarkers associated 

with NDs. Due to its non-invasive collection method, minimal or no pre-processing requirements 

before analysis, and possessing a molecular composition similar to blood, this intricate biofluid 

has garnered growing scientific interest.155, 156 Saliva has shown its success as a biofluid for disease 

diagnosis and biomarker sensing of different diseases.157, 158 Saliva reflects the systemic changes 

occurring in the body. Saliva-based RS liquid biopsy investigations for brain disorders represent a 

burgeoning field with transformative potential in non-invasive diagnostics. By probing molecular 

signatures present in saliva samples, this approach offers a convenient and accessible means of 

detecting biomarkers associated with various brain disorders, including AD and PD. With 

advancements in RS techniques and data analysis algorithms, researchers can uncover subtle 

molecular changes indicative of disease pathology, enabling early detection and intervention. 

Saliva-based liquid biopsy holds promise for facilitating population-wide screening initiatives, 

enabling scalable and cost-effective disease monitoring strategies. Moreover, the non-invasive 

nature of saliva sampling enhances patient compliance and reduces procedural barriers, making it 

an attractive option for routine diagnostic assessments and longitudinal monitoring of brain 

disorders. As NDs often involve systemic alterations, analyzing saliva provides a holistic view of 

the overall health status and specific molecular changes associated with these conditions. Saliva 

can be collected repeatedly over time, allowing for longitudinal studies and real-time monitoring 

of disease progression. This is especially beneficial for assessing the dynamic nature of NDs. 

Moreover, saliva contains a diverse range of molecules, including proteins, nucleic acids, and 

metabolites. Changes in the composition of these molecules can serve as potential biomarkers for 

NDs, and RS can effectively analyze these alterations. 
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Fig. 8 (a) Schematic representation of saliva preparation RS measurements, and machine learning 
data analysis. Adapted with permission from reference 97 Copyright 2021 Frontiers. (b) PD 
average signal, (c) AD average signal and (d) CTRL average signal. (e) Overlapped average 
spectra of the experimental groups. Adapted with permission from reference 104 Copyright 2020 
Springer Nature

Saliva contains detectable levels of t-tau, p-tau, Aβ, and α-synuclein proteins. Initial 

investigations indicate promising potential for the use of saliva in diagnostic applications.159 

Several pilot studies have demonstrated that the presence of salivary Aβ42 is detectable and 
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elevated in AD, while Aβ40 levels remain unchanged.160-163 RS also demonstrated its utility in the 

field.156, 164 For instance, Carlomagno et al. investigated the efficacy of RS in distinguishing 

various NDs and gaining insights into their pathogenesis by analyzing saliva samples from 10 

healthy controls, 19 patients with amyotrophic lateral sclerosis (ALS), 10 with PD, and 10 with 

AD.165 SERS combined with PCA-LDA proved successful in revealing significant differences 

between groups, particularly distinguishing ALS from healthy controls, where RS peaks 

corresponding to phosphatidylinositol, phospholipids, nucleic acids, glycogen, and glucose played 

a differentiating role (Fig 8 b,c). Their findings suggested the involvement of carbohydrate 

metabolism, protein aggregation and misfolding, damage to membrane lipids, and alterations in 

DNA/RNA in ALS. The authors also highlighted the significant role of membrane phospholipids 

in distinguishing between ALS, AD, and PD, where peaks associated with phosphatidylinositol 

(500 and 576 cm−1) exhibited higher intensity in ALS samples, indicating increased activity of the 

phosphatidylinositol 3-kinase enzyme (Fig 8 d,e). The Lednev group employed RS in conjunction 

with machine learning to diagnose early AD by identifying potential biomarkers.166 This project 

utilized Raman hyper-spectroscopy and focused on saliva samples obtained from both a normal 

individual and someone with AD and mild cognitive impairment. The results indicated that Raman 

hyper-spectroscopic analysis of saliva holds promise as an effective diagnostic method for early-

stage AD. 

Raman analysis was employed to capture the comprehensive signal from the saliva of 23 

PD patients, along with relevant pathological and healthy control subjects. Utilizing both machine 

and deep learning approaches, the acquired spectra were processed. Leveraging a Raman database, 

a classification model was developed, demonstrating the capability to accurately distinguish each 

spectrum into the correct group with accuracy, specificity, and sensitivity exceeding 97% for 
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individual spectrum attribution. Additionally, each patient was correctly assigned with a 

discriminatory power exceeding 90% representing innovative non-invasive procedures for early 

detection of the diseases, with potential use in the future clinical applications. Furthermore, the 

extracted data exhibited significant correlations with clinical data currently employed for PD 

diagnosis and monitoring. Altuntas and Buyujserin examined artificial saliva containing various 

candidate biomarkers for AD.167 They integrated a SERS substrate for the detection of Aβ in 

artificial saliva, successfully achieving a LOD of 0.5 pg/mL for Aβ. Initially, polymeric films 

featuring surfaces with multibranched nanopillars (MNS) were crafted through the drop-casting of 

polycarbonate solutions onto anodized aluminum oxide molds, characterized by hierarchically 

branched pores. Following the extraction from the nanoporous molds, a 20-nm gold coating was 

applied to enable these MNS substrates to detect sub-picomolar concentrations of thioflavin-T, a 

SERS-active dye commonly employed in clinical settings for diagnosing the presence of amyloid 

plaques. Incorporating RS into the analysis of saliva adds a layer of specificity and sensitivity, 

enabling the identification of molecular changes associated with NDs. This non-invasive and 

patient-friendly approach holds great promise for advancing early diagnosis, understanding 

disease mechanisms, and monitoring treatment responses. Collectively, these findings suggest that 

saliva-based liquid biopsy investigations are a promising avenue for early diagnosis, disease 

prevention, and biomarker detection for a range of brain disorders.

Tear-Based Investigations

Human tears are a valuable reservoir of information reflecting the health status of the eyes 

and overall bodily functions. The richness of tear composition arises from the diverse array of salts 

and organic components present, encompassing proteins, lipids, metabolites, nucleic acids, and 

electrolytes.168-172 Changes in the concentrations of these constituents can serve as indicators of 
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various pathologies, eye-related disorders, and inflammatory processes. Tear-based RS liquid 

biopsy investigations for brain disorders represent a novel and non-invasive approach to detecting 

biomarkers associated with neurological conditions. By analyzing molecular signatures present in 

tears, this method offers a convenient and accessible means of early detection and monitoring of 

brain disorders such as AD and PD. Tear-based sampling is relatively simple and can be performed 

without specialized equipment, making it suitable for widespread screening and remote 

monitoring. Tears have gained attention for their potential role in reflecting changes related to 

NDs. For instance, AD patients exhibit a noteworthy increase in tear production and tear protein 

concentrations compared to healthy individuals.173 Alterations in tear composition are also evident 

in AD patients, characterized by an elevated concentration of dermcidin and reduced levels of 

lysozyme-C, lactotransferrin, prolactin, lipocalin-1, extracellular glycoprotein lacritin, among 

others.174 Moreover, there is a significant rise in t-tau and Aβ42 levels in the tears of AD patients 

compared to controls.175 Another study highlights elevated levels of microRNA-200b-5p in the 

tear fluids of AD patients relative to controls.174 A noticeable reduction in tear volume is well-

correlated with the progression and severity of PD. This decline in tear secretion in PD individuals 

is likely attributed to autonomic dysfunction.176, 177 Additionally, elevated levels of soluble α-

synuclein are observed in tear fluids of PD patients when compared to age-matched healthier 

individuals.178-180 Furthermore, PD subjects exhibit higher levels of TNF-α in tears than healthy 

subjects, suggesting TNF-α as a potential diagnostic biomarker for PD.181 

Some studies have explored proteins and other molecules in tears as potential biomarkers 

for conditions like AD with the assistance of RS. In a study by Ami et al., the researchers employed 

a combination of FTIR and RS to analyze tear samples, which contain proteins associated with 

ALS, from both healthy individuals and ALS patients.182 Utilizing a variety of machine learning 
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methods, including multivariate analysis, PLS-DA, neural networks, and extreme gradient 

boosting, the authors successfully characterized the Raman spectra of tears from ALS patients with 

a specificity and sensitivity of 100% (Fig 9 a-d). The investigation revealed that phenylalanine 

bands exhibited significantly lower intensity in ALS patient samples compared to the healthy 

cohort, suggesting a rewiring of amino acid metabolism in ALS (Fig 9c). Peaks associated with 

protein β-sheet structures at ∼1670 cm−1 and C=O stretching of lipids at 1770 cm−1 had higher 

intensity in ALS patients, indicating potential alterations in protein conformation linked to the 

evidence of the role of protein misfolding and aggregation in NDs. 
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Fig. 9 (a) Schematic representation of tear sample collection from ALS patients for Raman data 
acquisition and analysis (b) Overall performances of PLS-DA and xgbTree methods in the 900–
1800 cm–1 spectral range (c) Comparison of the mean Raman spectra obtained by considering all 
the measured tears from ALS patients and healthy controls. The shadowed area refers to the 
standard deviation of the data. (d) Spectrally resolved differential average Raman spectra of the 
two investigated groups. Adapted with permission from reference 121. Copyright 2021 American 
Chemical Society. (e) SERS spectrum of tears from a healthy subject. (f) Spectrum of tear obtained 
by conventional RS in similar acquisition conditions. (g) Averaged SERS spectra of tear samples 
from healthy subjects (Ctr-green line), mild cognitive disease-affected subjects (MCI-blue line), 
and AD-affected subjects (AD-red line). The gray areas represent the standard deviation of the 
signal intensities within the considered data. (h) Signal differences concerning the control data of 
AD (red area) and MCI (blue area) spectrum. The green lines indicate the signal dispersion range 
(0.68 of the standard deviation). The statistically significant signal differences (p-value <0.05 in 
the one-way ANOVA statistics) are indicated by blue (MCI) and red (AD) marks, respectively. 
Adapted with permission from reference 122 Copyright 2020 SPIE.

Cennamo et al. introduced a diagnostic approach utilizing SERS of tears for the detection 

of NDs, encompassing various forms of dementia and AD.72 The study enlisted 18 AD patients, 8 

individuals with mild cognitive impairment, and 6 control volunteers. SERS measurements of tear 

fluids from individuals with AD and healthy subjects revealed changes in the acquired spectra, 

indicating conformational alterations in tear proteins. Spectral variations were observed in classes 

associated with lactoferrin and lysozyme protein components (Fig 9 e-h). Additionally, the 

quantitative assessment of changes related to pathological conditions was achieved by identifying 

the I1342/I1243 ratio, attributed to the C-H deformation and Amide III β-sheet. Overall, these findings 

suggest that delving into tear-based liquid biopsy techniques shows potential for early diagnosis, 

disease prevention, and biomarker detection related to a variety of brain disorders.

Cerebrospinal Fluid (CSF)-Based Investigations

CSF-based RS liquid biopsy investigations for brain disorders represent a promising 

avenue for minimally-invasive diagnosis and monitoring of neurological conditions. By analyzing 

molecular signatures present in the CSF, this approach offers insights into the biochemical changes 

associated with brain disorders such as AD and PD. CSF is in direct contact with the central 
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nervous system and is considered a rich source of biomarkers for NDs. CSF sampling allows for 

direct access to the central nervous system and provides a rich source of biomarkers reflective of 

brain health and pathology. RS enables the identification and quantification of specific molecules 

in the CSF, facilitating early detection, disease monitoring, and personalized treatment strategies. 

Commonly studied CSF biomarkers include tau, Aβ, and p-tau.183 Yu and colleagues developed a 

SERS biosensing platform for the simultaneous detection of Aβ1−42 oligomers and tau protein.184 

This platform utilized different Raman dye-coded polyA aptamer-AuNPs (PAapt-AuNPs) 

conjugates. The conjugation of PAapt–AuNPs occurs through the self-assembly of polyA block 

nucleotides and nonfluorescent Raman dyes on the surface of AuNPs. Facilitating attachment to 

the AuNPs surface, the polyA block plays a crucial role, while protein recognition is executed by 

polyA block nucleotides that consist of oligonucleotides. Upon introducing a protein biomarker 

into the reaction system, the polyA block nucleotide separates from the AuNP surface. This 

separation is facilitated by the hybridization of the target protein with its specific aptamer. 

Consequently, aggregates of AuNPs form, creating enhanced electromagnetic hotspots within the 

gaps between nanoparticles and yielding a significantly stronger SERS signal. The researchers 

achieved LOD of 4.2 x 10-4 pM for tau protein and LOD of 3.7 x 10-2 nM Aβ1-42 oligomer (Fig 10 

c,d). The effectiveness of this strategy was demonstrated by successfully detecting tau protein and 

Aβ1−42 oligomers in artificial CSF samples, yielding satisfactory results. Lhiyani et al. introduced 

a RS method employing machine learning for the in vivo detection of Aβ and tau in human CSF.185 

Their findings highlight the significance of the proteins' concentration in the CSF as indicative of 

AD condition.

Chou and colleagues introduced a nanofluidic biosensor utilizing SERS for the detection 

of conformational states of the Aβ peptide.186 The biosensor comprises a fluidic channel with a 
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specific design, featuring a shallow region in the middle that induces capillary flow within the 

microchannel. This capillary flow is instrumental in creating SERS active sites by trapping large 

gold nanoparticles (AuNPs) at the entrance to the nanochannel. Simultaneously, the capillary flow 

enhances the concentration of target molecules, including Aβ, by transporting them through the 

interstices of the nanoparticle clusters. The device demonstrated effectiveness in distinguishing 

Aβ from confounding proteins commonly present in CSF. Ryzhikova and team achieved AD 

diagnoses by analyzing CSF using RS, attaining 84% sensitivity and specificity.187 In this study, 

the researchers presented a novel diagnostic approach for AD utilizing CSF through near-infrared 

(NIR) RS combined with machine learning analysis (Fig 10 e,f). NIR Raman spectra were obtained 

from CSF samples collected from 21 patients diagnosed with AD and 16 healthy control (HC) 

subjects. Artificial neural networks and support vector machine discriminant analysis (SVM-DA) 

were employed for differentiation, resulting in classification models demonstrating a high 

discriminative power. This suggests the method holds significant potential for effective AD 

diagnostics. Taken together, these results indicate that exploring CSF-based liquid biopsy 

techniques holds promise for early diagnosis, preventing diseases, and detecting biomarkers 

associated with various brain disorders.

In addition, extracellular vesicles also emerged as a liquid biopsy for neurological disorders 

expanding the utility of liquid biopsies.188 We would like to note that researchers have utilized 

diseased cells or tissues in order to diagnose different NDs.23, 189 For instance, in HD, RS has 

previously been used to study fibroblast from patients.190-192 Wang et al. introduced graphene-

assisted RS for rapid biomarker sensing of AD.23 Applying a single layer of graphene to brain 

slices significantly enhanced the SNR in Raman measurements taken from brain tissue. This 
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improvement led to an increase in the accuracy of classification from 77% to 98%. In-depth 

discussion of these methods is beyond the scope of this article.  
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Fig. 10 (a) Raman signature for samples of pure CSF and CSF with different volumes of Aβ 
scheme. (b) Raman signature for samples of pure CSF and CSF with different volumes of tau 
scheme. Adapted with permission from reference 125 Copyright 2023 Optica Publishing Group. 
(c) SERS signals in responses to tau protein of varying concentrations. (d) SERS signals in 
response to Aβ1−42 oligomers of varying concentrations. Adapted with permission from reference 
124 Copyright 2019 American Chemical Society. (e) Mean Raman spectra of CSF from AD (red 
line) and healthy control (blue line) cohorts. (f) Difference spectrum (black line) and spectral 
variations around the mean (±2 standard deviations). Adapted with permission from reference 127 
Copyright 2020 Elsevier.

León-Bejarano and colleagues utilized SERS to analyze α-synuclein levels in skin biopsies 

from PD patients.189 Their study revealed distinct alterations in the Raman bands of the protein, 

with shifts observed from 1655, 1664, and 1680 cm−1 to 1650, 1670, and 1687 cm−1 when 

comparing control subjects to those with PD. These spectral changes were attributed to protein 

aggregation, suggesting the potential of SERS in detecting aggregated α-synuclein in skin samples. 

This non-invasive approach offers a promising avenue for disease detection, minimizing the need 

for invasive diagnostic procedures. This expansion of the types of biopsies for Raman investigation 

in the context of brain disorders represents a significant advancement in diagnostic techniques. 

This expansion opens up new possibilities for early diagnosis, disease monitoring, and 

understanding the underlying molecular mechanisms of brain disorders. Additionally, it offers the 

potential for personalized medicine approaches tailored to individual patients based on their 

specific biomarker profiles. Overall, the diversification of biopsy sources for Raman investigation 

holds great promise for improving the management and treatment of brain disorders.

Table 1 summarizes the most important Raman signatures and biomarkers to identify 

different brain disorders using liquid biopsy. The primary constraints associated with all the 

mentioned molecules and biomarkers stem from their overlap with biomarkers found in other 

comparable conditions (such as PD and AD) and the methodologies utilized for their 
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characterization. One of the key challenges in the field of biomarkers is the issue of specificity. 

Many biomolecules and biomarkers can be present in more than one condition, making it difficult 

to differentiate between them. This overlap can lead to difficulties in accurately identifying and 

characterizing biomarkers for specific conditions, such as PD and AD. The intricate similarities in 

molecular signatures across these NDs necessitate precise characterization techniques to 

distinguish specific biomarkers unique to each condition. In addressing these constraints, ongoing 

research and technological advancements aim to enhance the specificity of biomarkers, develop 

more refined characterization methodologies, and explore innovative approaches such as multi-

modal biomarker strategies to improve accuracy and reliability in disease diagnosis and 

monitoring. Overall, the challenges associated with biomolecules and biomarkers underscore the 

need for continued innovation and collaboration within the scientific community to overcome 

these constraints and advance the field of biomarker research for improved disease detection, 

treatment, and management.

Table 1 Most important Raman signatures and biomarkers to identify different brain disorders 

using liquid biopsy.

Most important Raman signatures, biomolecules, and biomarkersBrain 
Disorder Blood Tear Saliva CSF

Aβ143, 145, 184 Urea182 Aβ166, 167 Aβ140, 187

Tau143, 184 Phenylalanine182 Tau166 Tau140, 187

Exosomes143 Amide I182 Lactoferrin159 Phenylalanine 
186

Carotenoids140 α-helices182 AChE159 Tyrosine186

Tryptophan140 β-sheet182 α-synuclein159 Histidine186, 187

Alanine140 Lipids182 Acetylcholinesterase159 Amide III (β-
sheet)186

Tyrosine140 Dermcidin172 Amide III (α-
helix)186

Phenylalanine140 Lysozyme-C
lactotransferrin172

Glycine187

AD

β-components140 Prolactin172 Proline187
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Intensity ratio of 
indole and 

tryptophan137

Lipocalin-1172 Arginine187

Histidine153 Extracellular 
glycoprotein 

lacritin172

Valine187

Proteinic side 
chain structure127

Tau172

Amide I127 Aβ172

Intensity ratio of  
1127 to 1001 cm-1 

(protein, lipids to 
phenylalanine) 128

microRNA-200b-
5p172

Intensity ratio of 
1654 to 1600 cm-1 

128 (α-helix 
structure to  

amyloid precursor 
protein)

Tryptophan72

Ascorbic acid71 Tyrosine72

Hypoxantine71 Lactoferrin72

Uric acid71 Lysozyme72

Lipocalin72

Albumin72

α-synuclein150 CCL-2172 α-synuclein150 α-synuclein150

Plasmin-
antiplasmin150

DJ-1172 Phosphatidylinositol158 Autosomal 
enzymes158

Extracellular 
vesicles193

Proteins from 
S100 superfamily 

172

Ester of cholesterol158 Amyloid 
species158

Autosomal 
enzymes158

Peroxiredoxin-
6172

Tryptophan158 Micro-RNA158

Amide I193 Annexin-X5172 Cytosine158 Cytokines 
expression 
patterns158

Lipids193 Glutathione-
stransferase-

A1172

Guanine158

Carbohydrates193 Apolipoprotein 
superfamily -

ApoD172

Phenylalanine158

Porphyrin193 ApoA4 and 
ApoA1172

Phospholipids158

PD

Pyrimidine193 TNF-α172 Glucose/glycogen158
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Carotenoids193 α-synuclein172 Lipids158

Saccharide and 
disaccharide193

Amide I158

Dopamine146 Tyrosine158

Nucleic acids158

Amide III158

Mucins158

Cholesterol190 Mutant 
huntingtin 
protein194

Huntingtin protein195 Neurogranin and 
TREM2196

β-sheet190 Amylase195 T-tau197

Phospholipids190 Cortisol195 mHTT197

Phenylalanine190 C-reactive protein195 Neurofilament 
Light Chain 

(NfL)198

Proteins190 Uric acid195

DNA190

Mutant Huntingtin 
protein151

Neurofilament 
light chain151

Proline151

β-sheet protein151

Uric acid151

Adenine151

Amide III151

HD

Amide I151

S-100β
134, 136, 141, 147

GFAP199 Micro-RNA200 S-100β 136, 141, 147

NSE136, 141, 144, 147 Tau199 Salivary extracellular 
vesicles200

NSE136, 141, 144, 147

Myelin basic 
protein (MBP)136

NfL199 NAA134

Glial fibrillary 
acidic protein 

(GFAP)134, 136, 147

MBP134

NAA134

Cleaved tau134

T-tau134

P-tau134

Ubiquitin C-
terminal hydrolase 

134

TBI

Aβ1-42
134
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αII-spectrin 
breakdown 
products134

Gamma-
Enolase134

Selectivity and Sensitivity of Raman Spectroscopy with Other Analytical Techniques 
Routinely Employed in Biomedical Applications

RS offers distinct advantages in terms of selectivity and sensitivity compared to other 

analytical techniques commonly used in biomedical applications. One notable advantage is its high 

molecular specificity, allowing for the identification and characterization of individual chemical 

bonds and functional groups within complex biological samples.201-203 This molecular specificity 

arises from the unique fingerprint-like Raman spectra produced by different biomolecules, 

enabling the differentiation of closely related species and the detection of subtle structural 

variations. In contrast, techniques such as infrared spectroscopy may struggle with spectral overlap 

and lack the ability to distinguish between similar molecular species. Furthermore, RS is inherently 

non-destructive and non-invasive, making it particularly well-suited for analyzing delicate 

biological samples without the need for extensive sample preparation or labeling.28, 204 This 

preserves the integrity of the sample and allows for repeated measurements over time, facilitating 

longitudinal studies and minimizing experimental artifacts. In contrast, techniques such as mass 

spectrometry often require sample ionization or derivatization, which can alter the native state of 

biomolecules and introduce artifacts into the analysis. 

In terms of sensitivity, RS offers advantages over traditional fluorescence spectroscopy, 

especially in complex biological matrices with high autofluorescence background.201, 205 

Combining RS with techniques like SERS, SRS, and CARS can significantly enhance the 

Page 64 of 83Nanoscale



sensitivity and provide advantages over traditional techniques like fluorescence spectroscopy.206 

The extraordinary signal enhancement allows the detection of extremely low concentrations of 

analytes, down to single-molecule levels. Raman signals arise from inelastic scattering processes 

and are therefore independent of excitation wavelength, allowing for excitation at longer 

wavelengths where autofluorescence is minimized. This enables the detection of low 

concentrations of analytes within highly autofluorescent samples, enhancing sensitivity and 

enabling the analysis of a wide range of biomolecules. Overall, Raman spectroscopy's combination 

of molecular specificity, non-destructiveness, and sensitivity makes it a valuable tool for a wide 

range of biomedical applications, including disease diagnosis, drug discovery, and tissue 

engineering. While other analytical techniques may offer complementary advantages in certain 

scenarios, RS remains a powerful and versatile tool for understanding the molecular basis of health 

and disease.

CARS, TERS, and SRRM spectroscopy have been explored in various biomedical 

applications, including the detection and diagnosis of neurodegenerative diseases. CARS has 

shown promise in distinguishing Aβ, a key biomarker for AD, through label-free vibrational 

imaging.207, 208 Cunha et al. applied a multimodal imaging approach, including spontaneous 

Raman, CARS, SRS, and Second harmonic generation, to examine the core and halo of Aβ plaques 

in the hippocampus and cortex of brain tissues from an AD mouse model.207 Additionally, 

Tabatabaei et al. conducted TERS on neuronal spines exposed to Aβ treatment, revealing insights 

into Aβ accumulations at the surface of spines.65 Super-Resolution Vibrational Imaging Using 

Expansion SRS microscopy has been utilized to track nanoscale features of protein synthesis in 

protein aggregates using metabolic labeling of small metabolites.209 Aβ proteins forming the 

plaques show distinctive Raman spectral features. While these techniques have shown promise in 
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imaging biological samples such as tissues with high spatial resolution and chemical specificity, 

their application to liquid biopsy for the diagnosis of brain disorders has been limited due to several 

factors. These include the low concentration of biomarkers in blood, the complexity of blood 

composition, and the need for highly sensitive detection methods.

Practical Challenges Associated with Raman Techniques and Transitioning into a 
Quantitative Technique

Raman spectroscopic techniques offer great potential for biomedical applications due to 

their ability to provide detailed molecular information and chemical fingerprints of biological 

samples. However, there are several practical challenges associated with these techniques that need 

to be addressed to enable their widespread adoption and transition into quantitative techniques in 

biomedical applications.

Reproducibility Challenges - Variations in sample preparation protocols, such as handling, 

drying, and substrate or nanoparticle immobilization, can introduce inconsistencies in acquired 

Raman or SERS spectra, impacting reproducibility. Furthermore, differences in instrumentation, 

including laser sources, optics, detectors, and calibration procedures, can contribute to spectral 

measurement variability. Environmental factors such as temperature, humidity, and ambient light 

conditions may also influence Raman or SERS signals, adding to the variability. To address 

reproducibility challenges, standardized sample preparation protocols, instrument calibration 

procedures, and stringent environmental controls are essential.107, 210 Additionally, employing 

internal standards, spectral normalization techniques, and robust data analysis methods can help 

mitigate variations.

Quantification Challenges - The intensity of Raman or SERS signals can vary significantly due 

to factors like sample concentration, substrate or nanoparticle properties, and molecular 
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orientations, posing challenges for quantitative analysis. Biological samples, such as biofluids or 

tissues, present complex matrices that can interfere with these signals, further complicating 

quantitative analysis. Moreover, biological samples are inherently complex, with numerous 

molecular species having overlapping Raman spectra, making it difficult to interpret signals and 

identify specific biomarkers or molecular signatures associated with disease states. Unlike other 

analytical techniques, there is a lack of well-established and widely accepted calibration standards 

for Raman or SERS techniques in biomedical applications. To address these quantification 

challenges, several approaches can be adopted. Firstly, robust calibration models can be developed 

using multivariate data analysis techniques such as PLS regression or artificial neural networks 

(ANNs) to accommodate signal variations and matrix effects. Additionally, employing internal 

standards or spiked samples with known concentrations can establish quantitative relationships 

between signal intensity and analyte concentration. Exploring advanced SERS substrates or 

nanoparticles with controlled and reproducible enhancement factors can improve signal 

reproducibility and eliminate quantification challenges.28, 201 Lastly, combining Raman or SERS 

techniques with other analytical methods such as chromatography or mass spectrometry can 

provide complementary quantitative information, enhancing the overall analytical capabilities.

Sample Complexity and Interference - Biological samples often exhibit intrinsic fluorescence, 

which can interfere with Raman signals, complicating data acquisition and interpretation. 

Moreover, biological samples are frequently heterogeneous, with varying chemical compositions 

and distributions, further complicating the interpretation of Raman spectra. Background signals 

from substrates, solvents, or other sample components can also affect Raman spectra, necessitating 

careful background subtraction and data processing. To overcome these challenges, various 

strategies can be employed. Advanced data processing techniques such as baseline correction, 
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background subtraction, and multivariate curve resolution can be implemented to isolate the 

desired Raman signals from interfering signals.205, 211 Exploring alternative excitation wavelengths 

or resonance Raman techniques to minimize autofluorescence interference is also crucial. 

Additionally, developing sample pretreatment protocols such as extraction, purification, or 

separation techniques can simplify complex biological matrices, reducing interference and 

improving the quality of Raman measurements.

Time and Spatial Resolution - RS faces numerous challenges in clinical applications, particularly 

concerning time and spatial resolution. Time resolution limitations are notably evident in achieving 

acceptable SNR for practical use. Longer exposure times and optimized data acquisition strategies 

are necessary to maximize Raman signal and minimize noise for improved SNR. Spatial resolution 

challenges significantly affect the technique's ability to capture Raman spectra from deeper tissue 

layers accurately. Ensuring high spatial resolution requires precise sample focus and alignment of 

optics to optimize the Raman signal, critical for reliable clinical diagnostics and guidance. 

However, maintaining a balance between high spatial resolution and SNR is essential for obtaining 

dependable results. Conventional Raman microscopy techniques often suffer from limited spatial 

resolution, hampering the accurate characterization of cellular or subcellular features. To address 

this, advanced microscopy techniques such as confocal Raman microscopy, TERS, or SRS 

microscopy can be employed to achieve sub-micron spatial resolution.28, 67, 98, 101, 103 These 

methods utilize confocal optics, plasmonic enhancement, or nonlinear optical processes to enhance 

spatial resolution and enable detailed imaging of biological samples at the cellular or subcellular 

level.

Technological advancements have been developed to tackle challenges related to time and 

spatial resolution in RS for clinical applications. These include enhanced spectral resolution, 
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confocality, and the use of shorter wavelength lasers and high numerical aperture (NA) immersion 

objectives. Optimizing exposure time and utilizing multiple exposures are fundamental practices 

to improve Raman spectra quality. Additionally, advancements aim to enhance the anti-

interference capacity of RS for faster data acquisition and analysis, facilitating timely medical 

treatment. Spatial resolution enhancements are achieved through high NA immersion objectives 

and confocal RS implementation. Furthermore, advancements in super-resolution imaging 

restoration techniques and structured illumination methods have contributed to improving spatial 

resolution, particularly for clinical applications.98-100, 105 These advancements enable detailed 

spectral information retrieval related to specific molecular structures and substances, aiding in 

precise disease diagnosis such as cancer, infections, and neurodegenerative conditions. Integration 

of RS with other imaging modalities, like optical coherence tomography (OCT) or fluorescence 

microscopy, can provide complementary information and enhance spatial resolution in clinical 

settings.212-214 Combining RS with high-resolution imaging techniques enables clinicians to obtain 

comprehensive molecular and structural information from biological samples, facilitating accurate 

disease diagnosis and monitoring.

Data Interpretation and Classification - RS holds significant promise for clinical applications, 

yet it encounters challenges in accurately interpreting and classifying acquired data. A primary 

hurdle is the inherently weak Raman scattering signal, necessitating extended acquisition times to 

achieve an acceptable SNR for practical use. This limitation in signal strength hampers rapid 

spectral imaging, limiting the technique's applicability in real-time clinical diagnostics and 

monitoring. Additionally, the complexity of Raman spectra from biological samples presents a 

substantial challenge. The broad peaks in these spectra represent a mix of molecules and 
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neighboring molecular structures, complicating the identification of specific molecular 

fingerprints. This complexity impedes the accurate interpretation of data for clinical applications.

To address the challenges in interpreting and classifying RS data for clinical use, various 

strategies and technological advancements have been explored. These include the use of genetic 

algorithms to optimize preprocessing strategies and classification models, such as Support SVM. 

These approaches aim to enhance the accuracy and reliability of Raman spectral analysis for 

clinical diagnostics. Furthermore, advancements in machine learning techniques have been 

investigated to facilitate precise classification methods for clinical diagnoses using RS. For 

instance, there is recognition of Raman spectroscopy's potential to aid clinical decision-making, 

such as in classifying oncological samples, prompting the application of machine learning 

approaches to address the complexities of Raman spectra interpretation.215, 216 Additionally, efforts 

have been directed towards developing effective data processing techniques, including advanced 

spectral preprocessing and statistical analysis methods, to extract pure Raman signals from in vivo 

or ex vivo tissue samples.

Instrumentation and Cost - Raman/SERS techniques often require specialized and expensive 

instrumentation, such as high-quality lasers, spectrometers, and detectors, which can limit their 

widespread adoption in biomedical settings. Moreover, Raman/SERS instrumentation demands 

regular maintenance, calibration, and expertise to operate and interpret the data, posing challenges 

in resource-limited settings. To address these instrumentation and cost challenges, several 

approaches can be explored. Firstly, it is crucial to develop cost-effective and portable 

Raman/SERS instrumentation tailored for specific biomedical applications, leveraging advances 

in miniaturization and integrated photonics. Additionally, exploring the use of handheld or fiber-

optic Raman/SERS probes for in vivo or point-of-care applications can broaden accessibility.46, 
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217-219 Establishing dedicated Raman/SERS facilities or core facilities in research institutions or 

hospitals can centralize expertise and resources, facilitating broader access to these techniques. 

Moreover, collaborating with instrument manufacturers to develop user-friendly and cost-effective 

solutions for biomedical applications can help overcome barriers related to instrumentation and 

expertise.

By addressing these practical challenges through a combination of technological 

advancements, robust data analysis methods, standardized protocols, and interdisciplinary 

collaborations among physicists, chemists, biologists, and clinicians, Raman and SERS techniques 

can be transformed into quantitative and reliable analytical tools for various biomedical 

applications, such as disease diagnosis, therapeutic monitoring, and biomarker discovery. Ongoing 

advancements in instrumentation, data analysis algorithms, and sample preparation methodologies 

will continue to drive the progress of Raman-based biomedical research and facilitate its 

translation into clinical practice.

Conclusion and Future Prospects

Researchers continue to explore and validate potential biomarkers with the goal of improving early 

detection and understanding the underlying mechanisms of diseases such as AD, PD, and others. 

The future of Raman-based liquid biopsy detection systems for NDs and brain disorders holds 

significant promise in revolutionizing diagnostic and monitoring approaches220, 221. Early detection 

is crucial for initiating interventions before significant neurological damage occurs. Continued 

efforts to identify novel biomarkers associated with NDs in biofluids may lead to the discovery of 

early and predictive markers. Research is focused on integrating multiple biomarkers from various 

biofluids to create comprehensive panels107. Leveraging the sensitivity and specificity of RS, liquid 

biopsy techniques offer a minimally- to non-invasive and highly accurate means of detecting 
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molecular biomarkers associated with various NDs, including AD and PD. With advancements in 

technology and methodologies, Raman-based liquid biopsy platforms are poised to provide real-

time, point-of-care diagnostics, enabling early disease detection and intervention. Multimodal 

approaches combining genomics, proteomics, metabolomics, and imaging techniques may offer a 

more holistic understanding of NDs46. The concept of "liquid biopsy" for NDs may gain traction, 

allowing for minimally invasive diagnostic procedures. Biofluids, such as blood and CSF, could 

serve as liquid biopsy sources, providing valuable information about disease status. The synergy 

between liquid biopsy and RS holds great promise for advancing our understanding of brain 

disorders. This integrated approach not only provides a less-invasive means to access crucial 

diagnostic information but also offers molecular insights into the intricate biochemical processes 

underlying neurological conditions. As ongoing research endeavors seek to refine and validate 

these techniques, the potential impact on early detection, disease monitoring, and treatment 

assessment for brain disorders becomes increasingly apparent, paving the way for more effective 

and personalized healthcare strategies. Ongoing advancements in analytical techniques, including 

RS, mass spectrometry, and next-generation sequencing, may enhance the sensitivity and 

specificity of biomarker detection. Integration of these technologies could contribute to more 

accurate and reliable diagnostic tools. Development of point-of-care and wearable diagnostic 

devices may facilitate on-the-spot biomarker analysis. These devices could enable continuous 

monitoring, early detection of changes, and timely intervention. The use of big data analytics and 

AI algorithms may help process complex datasets generated from biofluid analyses222, 223. Machine 

learning approaches could assist in identifying subtle patterns and correlations in biomarker 

profiles for improved diagnostic accuracy. Collaborative efforts between academia, industry, and 

healthcare institutions are likely to accelerate biomarker discovery and validation. Large-scale 
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studies involving diverse patient populations may provide a more comprehensive understanding 

of the heterogeneity of NDs. Biomarkers from biofluids may be crucial for patient stratification in 

clinical trials, helping to identify suitable participants and monitor treatment responses. This could 

enhance the efficiency of drug development and facilitate the discovery of disease-modifying 

therapies. Successful validation of biofluid-based biomarkers may lead to regulatory approvals and 

their incorporation into routine clinical practice. Widespread adoption of validated biomarkers 

could significantly impact the early diagnosis and management of NDs.

In summary, the future of using biofluids for NDs diagnosis holds great potential for early 

detection, personalized treatment approaches, and advancements in our understanding of these 

complex conditions. Ongoing interdisciplinary research and technological innovations are likely 

to shape the landscape of NDs diagnostics in the coming years. Raman-based liquid biopsy 

detection systems are expected to play a pivotal role in personalized medicine, guiding treatment 

strategies, monitoring disease progression, and ultimately improving patient outcomes in the realm 

of NDs and brain disorders.
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