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Abstract

Modern criminal investigations heavily rely on trace bodily fluid evidence as a rich source 

of DNA. DNA profiling of such evidence can result in the identification of an individual if a matching 

DNA profile is available. Alternatively, phenotypic profiling based on the analysis of body fluid 

traces can significantly narrow down the pull of suspects in a criminal investigation. Urine stain is 

a frequently encountered specimen at the scene of crime. Raman spectroscopy offers great 

potential as a universal confirmatory method for the identification of all main body fluids, including 

urine. In this proof-of-concept study, Raman spectroscopy combined with advanced statistics was 

used for race differentiation based on the analysis of urine stains. Specifically, a Random Forest 

(RF) model was built, which allowed for differentiating Caucasian (CA) and African American (AA) 

descent donors with 90% accuracy based on Raman spectra of dried urine samples. Raman 

spectra were collected from samples of 28 donors varying in age and sex. This novel technology 

offers great potential as a universal forensic tool for phenotypic profiling of a potential suspect 

immediately at the scene of a crime, providing invaluable information for a criminal investigation.

Introduction

Forensic science is the application of scientific principles and techniques to matters of 

criminal justice, focusing on investigating crimes. Forensic scientists collect, preserve, and 

analyze evidence to aid in solving these crimes. Key areas of forensic science, such as DNA 

analysis, toxicology, fingerprint analysis, digital forensics, and trace evidence examination, 

heavily rely on analytical chemistry [1].

The analysis of body fluid traces at a crime scene is of paramount importance in forensic 

investigations [2]. Identifying the type of body fluid associated with a specific stain can provide 

crucial contextual information, helping investigators determine the stain's relevance to the case. 
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Body fluid traces are particularly significant as they can serve as a source of DNA evidence and 

make a link to a person of interest [3]. Alongside fingerprints, DNA is one of the few physical 

evidence capable of conclusively identifying an individual [4]. 

Along with DNA profiling, it is important to determine the type of bodily fluid, so the prosecutor 

can demonstrate its relevance to the crime. Current forensics methods for body fluid identification 

are primarily based on enzymatic effects or serology [5]. These methods can be time-consuming 

and destructive, sometimes showing false positive results[6]. These limitations are a massive 

downside when the volume of samples collected at crime scenes is low in quality and/or quantity. 

In cases with small amounts of evidence, there is a possibility of using up all of the evidence 

available to identify the body fluid and not having enough remaining for DNA analysis. Forensic 

investigations aim to prioritize critical testing and get the best possible outcome from the evidence 

to identify an individual. Ideally, the body fluid trace should be preserved after identification for 

future tests. Recent literature has discussed that forensic laboratories are dealing with a 

considerable backlog of DNA evidence because all collected stains are subjected to DNA analysis 

without a prior body fluid identification[7]. Our laboratory [3, 5] and others [8-13]have been working 

on developing emerging technologies for identifying body fluid traces. SupreMEtric LLC is 

commercializing a universal, non-destructive test for the confirmatory identification of all main 

body fluids using Raman spectroscopy (www.supremetric.com/). 

A corresponding match is required to utilize the results of a DNA test in a criminal investigation. 

Alternatively, characteristics such as sex and race could be used to create a profile for a person 

of interest. Developing a suspect profile immediately after the crime scene is discovered could be 

invaluable for the investigative leads and narrowing down the pool of potential suspects. Our 

laboratory and others combine vibrational spectroscopy and machine learning for phenotypic 

profiling based on the analysis of body fluids. Specifically, Raman spectroscopy showed 

promising results for determining sex based on the analysis of bloodstains[14]  and saliva[15], 

race based on bloodstain [16] and semen [17], and age group of the donor based on 

bloodstains[18]. In addition, ATR FTIR of bloodstains was used to determine the sex, race [19] , 

and chronological age of the donor [20]. 

One body fluid of interest for forensic analysis is urine, as it is vital evidence often found at crime 

scenes of sexual assault cases[3]. Other times, urine is commonly discovered on the victims of 

kidnapping and confinement[21], drug-related crimes, and on corrections officers after prisoners 

have thrown urine bombs [22]. Forensic investigations aim to identify individuals involved in a 

crime, whether as the culprit or victim, by employing techniques such as DNA profiling from body 
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fluid traces and fingerprint analysis from crime scenes. Studies have reported that DNA can be 

extracted from dry urine traces[23, 24]. However, the challenge in analyzing urine samples lies in 

the composition, as they are predominantly water and contain minimal cellular components [25]. 

Thus, urine provides little DNA, which can be insufficient for profiling and makes identifying an 

individual challenging [26]. Given these complexities, there is a pressing need for novel methods 

in forensic science to analyze urine traces accurately and non-destructively.

Urine is a primarily transparent, amber-colored, sterile liquid generated by the kidneys while 

filtering blood. Humans produce an average of 0.6-2.6 L of urine per day. The generation of urine 

depends upon the water balance in the body [25]. The major components of the urine are 

metabolic byproducts like urea, creatinine, ammonia, creatine, inorganic ions (Na+, K+, Cl-), 

hippuric acid, citric acid, etc [25]. Urine composition can vary depending on donors’ diet, physical 

exercise differences, and environment. Various factors affect the concentration of creatinine[27]. 

Creatinine is formed in the body by spontaneous irreversible dehydration of creatine and creatine 

phosphate from muscle metabolite. The rate of creatinine formation decreases with age. Approx. 

2% of the body's creatine is converted to creatinine every 24 hours. Recent studies have shown 

that the amount of creatinine formation differs among different races because of genetic and 

biological factors [28]. In the context of phenotype profiling based on urine trace evidence, Ayari 

Takakura et al. recently reported a method using Fourier Transform Infrared (FTIR) spectroscopy 

combined with multivariate statistics to determine donor sex from urine traces [29]. 

The advancement of analytical techniques has significantly enhanced forensic trace evidence 

analysis, particularly in the context of body fluid identification. Emerging methods, such as 

advanced Liquid Chromatography Mass Spectrometry (LC-MS), X-ray diffraction, next-generation 

RNA sequencing, nanotechnologies, and lab-on-chip devices, are increasingly employed as 

presumptive and confirmatory tests [30]. Vibrational spectroscopy techniques like Raman 

spectroscopy and infrared spectroscopy (IR) are gaining popularity in forensic evidence analysis 

[31-34]. These techniques require minimal sample preparation, are highly specific, and offer great 

sensitivity with non-destructive and rapid analysis [5, 35]. Specifically, Raman spectroscopy has 

shown great potential in analyzing various types of forensic trace evidence, providing detailed 

information about the molecular composition of samples in a non-destructive manner. Examples 

include paint, hair, ink, fibers, fingerprints, gunshot residues, and body fluid analysis [35-39]. 

Raman spectroscopy also allows for rapid analysis at a crime scene with the help of handheld 

spectrometers, which are commercially available [40, 41]. Handheld Raman instruments, such as 

the TruNarc™ handheld narcotic analyzer from ThermoFisher Scientific 
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(https://www.thermofisher.com/order/catalog/product/TRUNARC), are designed to be compact 

and lightweight. These features enhance their portability, allowing forensic experts to easily 

transport them to crime scenes or other locations requiring on-site forensic analysis. A handheld 

Raman spectrometer allows for real-time analysis and decision-making, which can be critical in 

forensic investigations. The addition of advanced chemometrics for spectroscopic techniques 

makes it a powerful and universal tool for trace evidence analysis[42-46]. Chemometrics utilizes 

the multivariate property of spectral data and can uncover latent relationships of variables. Based 

on these relationships, it can draw a comprehensive output and, specifically, can provide 

classifications and identify significant components based on spectral features [47, 48].

In this proof-of-concept study, we utilize Raman spectroscopy combined with advanced statistical 

analysis to introduce a novel technique for determining the racial background of donors from dry 

urine traces. This approach has the potential to enhance the efficiency of suspect identification 

and streamline forensic investigations.

Materials and methods

A total of 28 human urine samples (14 Caucasian; 14 American of African descent) were 

purchased from BioIVT, Inc. (Westbury, NY). The donor population was selected to accommodate 

sex and age variations. Male and female donors were adequately represented in each sample 

class. The donors ranged in age from 13 to 68 (p > 0.05). All urine samples (1 sample per donor) 

were stored at -20 C until sample preparation. Before deposition, the urine samples were thawed 

and homogenized using a vortex (Heathrow Scientific, Vernon Hills, IL). Aliquots of 10 L were 

deposited onto microscope slides covered with aluminum foil to limit substrate interference [49]. 

The samples were kept in a hood for at least 24 hours at room temperature for drying before 

spectral collection.

Instrumentation

All Raman spectra were collected using an inVia Raman Microscope (Renishaw, Inc. 

Hoffman Estate, IL) using WiRE 3.2 software and equipped with a Leica research-grade 

microscope. The microscope was outfitted with a 50X objective and a PRIOR automatic mapping 

stage, which collected spectra from various points of the sample stain. A 785 nm wavelength laser 

source was used for excitation, with a 1200 g/mm grating achieving a spectral resolution of 

approximately 1.2 cm-1 that was sufficient for this work since the minimum natural bandwidth of 

Raman bands of our samples was approximately 15 cm-1. The spectral collection range used for 

this study was 400–1800 cm-1. A total of 18 spectra per sample were collected by selecting points 
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in a grid pattern, with two 10 s accumulations at each point. A silicon standard was used for the 

calibration (band at 520 cm-1) prior to daily spectral collection. 

Statistical Data Analysis

Spectral Preprocessing 

MATLAB (version R2017b; MathWorks, Inc.) and the PLS Toolbox (version 8.6.2; 

Eigenvector Research, Inc.) were used to preprocess all spectra and for PLS analysis. The R 

project 3.4.3 [50] with the package Random Forest version 4.6–12 [51] was used for Random 

Forest analysis. Urine samples were collected from Caucasians (CA, n = 14 donors) and 

Americans of African descent (AA, n = 14 donors). Ten donors were randomly chosen for external 

validation, and the remaining 18 were used to create the training data set. The spectral dataset 

of the samples selected for external validation was set aside and kept blind for the model. The 

spectra were baseline corrected using an automatic Whittaker filter method (lambda: 400) 

algorithm, normalized by total area and mean-centered for the analysis. To balance the benefits 

of noise reduction with the need to preserve resolution, we have applied the Savitzky-Golay 

automatic smoothing filter. The test dataset was also preprocessed in the same way as the 

training dataset.

Random Forest

We used the supervised technique Partial Least Square Discriminate Analysis (PLS-DA) 

to explore the similarities and differences between the two races within the training data set. This 

involved also examining the underlying structure of the data, identifying any outliers or anomalies, 

and assessing the overall quality of the dataset. Multivariate discrimination models using the PLS 

algorithm are broadly applied to find common variation patterns in complex data [52]. In the PLS-

DA approach, the sources of variability in the data are modeled by latent variables (LV) as linear 

combinations of the predictor variables in a supervised manner. The axes are calculated to 

maximize the separation of the classes using maximization of the covariance between X and Y to 

capture the Y-related variation in X. The scores represent the coordinates of samples in the LV 

projection hyperspace [53]. The scores can be plotted, allowing the graphical visualization of the 

clustering pattern or class separation based on the spectral composition. We implemented a 

Random Forest (RF) algorithm on the urine data to further extend the ability to differentiate CA 

and AA Raman spectra. After the model learned the association between intensity values at 

specific wavelengths of the training spectral data and class membership, we used that trained 

model to make predictions on the external test data set.
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RF is a robust classification method known for its resilience against outliers and non-normal 

distributions (e.g., zero-truncated data, extreme value distributions). It can handle large numbers 

of variables [54] even if they are highly correlated [55] and can estimate the importance of each 

predictor (i.e., representative wavenumbers in spectra). RF is a classification and regression 

machine learning method that constructs an ensemble of numerous de-correlated decision trees 

[52, 54]. Each decision tree is trained on a different subset of the data, known as a bootstrap 

sample, drawn with or without replacement from the original training data set. The remaining 

subset of the original data set serves the out-of-bag (OOB) portion, which will be used as a cross-

validation dataset. The OOB error rate is an important metric used to evaluate the cross-validation 

performance (misclassification rate) of the Random Forest model. It is calculated by aggregating 

results from all OOB portions and determining differences between the predictions and the actual 

instances. In a Random Forest, each decision tree is trained on a bootstrapped sample of the 

original dataset. Consequently, specific data points are excluded or considered "out-of-bag" in 

each tree. Calculating the OOB error rate involves evaluating each data point in the training set 

using the trees not trained on that specific data point. This process enables the estimation of the 

model's performance on unseen data. The predicted output of each out-of-bag data point is 

compared to its actual output, resulting in the calculation of the error rate as the proportion of 

misclassified data points. The OOB error rate is typically calculated using the out-of-bag (OOB) 

samples, which are not included in the training of each decision tree within the Random Forest 

ensemble. This error rate provides an overall estimation of the model's performance on unseen 

data." It's important to note that the OOB error rate is specific to Random Forest models and is 

not a standard evaluation metric for other models [54].

We can tune several parameters to optimize the RF model for the intended classification. First is 

node size, which determines the depth of the tree build and the number of observations in each 

node of the classifier tree. Additionally, each node separates the data into two subsets, 

maximizing their homogeneity concerning the classes (races). The size of this subset is the same 

for all trees set by the researcher and referred to as "m-try." To determine the optimal number of 

trees, we have built multiple Random Forest models with different numbers of trees (n-tree values) 

and recorded the OOB error rate. Subsequently, we select the number of trees with a stabilized 

minimum OOB rate. If there are many features in the training dataset, many trees may be 

necessary to encompass the variance. Hence, big data like spectral datasets will need lots of 

computing power and time to determine an optimal number of trees. We can use the Gini index 

feature selection technique for dimensionality reduction, select the most critical spectral feature 

for the discrimination between classes, and eliminate the spectral noise [56]. The GINI index is 
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computed from permuting OOB data and observing how much a prediction error changes when 

the data for that variable is permuted while all others remain unchanged. The prediction error on 

the out-of-bag portion of the data for each tree was recorded as an OOB error rate for 

classification. Gini importance measures the average gain of purity (homogeneity) by splits of a 

given variable. The more critical the variable, the more it splits labeled nodes into pure single-

class nodes. Permuting a vital variable leads to relatively significant decreases in mean Gini 

importance. 

The RF model adopts the Gini index to determine the best-split selection based on spectral 

features. The OOB sample is used to estimate the prediction error and then to evaluate variable 

importance. RF assesses the relative importance of the features during the classification process 

by identifying variables that contribute the most to the analysis.

In addition to predicting outcomes in classification, RF can be applied to the training data sets to 

select essential variables. RF essentially tries to build homogenous groups of samples, and RF 

reveals the features that most strongly influence the formation of these groups. RF allows for 

estimating the importance of elements used for classification, shedding light on the biological 

basis of the classification results.

In the tree-building process, a set of randomly chosen variables are considered candidates for 

each tree split, and the variables that yield the best separation are chosen. For subsequent nodes 

(partitions) in the tree, another optimal binary division is performed until a leaf (or terminal node) 

is created, representing a class. This process is repeated to construct other trees with another 

bootstrap portion from the original data set. Many bootstrap samples and feature subsets are 

drawn from the original data set. Each classification tree is fitted to a bootstrap sample (referred 

to as the "in-bag" spectra) using the subset features. The spectra not sampled (referred to as the 

"out-of-bag" spectra OOB) are left for testing, and the model makes the predictions based on 

these spectra. The predictions for all spectra in the OOB portion are made by traversing down the 

tree, and final predictions were made by averaging over the forecast of all decision trees. During 

the Random Forest (RF) construction, the OOB error rate is calculated to estimate predictive 

performance. The final prediction of the RF is a combination of predictions from all the trees in 

the ensemble. Each tree predicts a class for spectra, and the entire forest generates the 

percentage of votes for each class by aggregating results across all trees. Combining trees and 

their predictions is known as "bagging" and ensures that trees are de-correlated with each other.
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The "bagging" techniques aggregate high-variance trees to enhance prediction accuracy [56]. 

While the RF model randomizes the variable selection during each tree split, making it susceptible 

to overfitting due to its nature of creating multiple decision trees, using the Gini index for the 

feature selection mitigates this risk and prevents overfitting and noise at the spectral level.

 In the context of a Random Forest model applied to a Raman spectral dataset, the mean 

decrease Gini (or Gini index) is a measure used to assess the importance of each spectral 

variable (or feature) in predicting the target variable. The Gini index measures impurity or the 

extent of class mixing within a decision tree node. The mean decrease Gini provides insight into 

which spectral variables contribute more to the predictive power of the Random Forest model for 

the Raman spectral dataset. Variables with higher mean decrease Gini values are typically 

considered more relevant or influential in distinguishing between different classes or categories 

within the dataset [57].

Results and Discussion 

The Raman spectra were acquired from all 28 urine samples and were collected using 

automatic mapping. The mapping techniques collected 18 spectra per sample from different 

points of urine stain to cover the intrinsic heterogeneity. The average Raman spectra of both races 

are shown in Figure 1. The urine spectrum resembles the spectrum of urea and shows some 

peaks corresponding to creatinine. A strong peak at 1013 cm-1 corresponds to the N-C-N 

stretching of urea, and minor peaks at 534 cm-1, 549 cm-1, and 1175 cm-1 can be assigned to urea 

and creatinine [5, 26]. According to the literature, the small response at 1541 cm -1 can be 

attributed to the C-N stretching of urea and the C-C stretching of the aromatic ring of acids in the 

urine [5].

There is a small difference between the preprocessed average Raman spectra of AA and CA 

samples, as evident in Figure 1. The difference between the mean spectra of AA and CA datasets 

is shown in Figure 2, along with one standard spectral deviation for each class. The difference 

spectrum is within one standard deviation for each class, indicating that the difference is most 

probably statistically insignificant. Therefore, using individual bands in the Raman spectra cannot 

identify the donor's race class. Therefore, a statistical analysis of the entire Raman spectra would 

be needed to classify individual Raman spectra [58]. 

We used 18 samples (9-CA and 9-AA) to create a training dataset for the RF model and left aside 

ten randomly chosen samples as the test dataset. The randomized selection of test samples 

ensures that each sample has an equal opportunity to be included in the test set, mitigating 
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potential limitations and biases. After the training data from the 18 donors were processed and 

the final RF model was built, the remaining spectral data from 10 samples in external validation 

(test dataset) was analyzed, and their class was predicted to determine the RF's performance.

The Gini index (or mean decrease Gini) produced by RF was applied for dimensionality reduction. 

Specifically, the Gini index selected the most "important spectral features” to build a simpler 

model. Further, we reran Random Forest, dropping 65 % of the least informative features from 

the model suggested by the Gini index. This step aimed to reduce the Raman spectral region, 

minimize the inclusion of features that may not significantly contribute to the model's predictive 

power, and prevent overfitting the model based on data noise. Using the predictors chosen by the 

Gini index, a new RF model was trained on the entire training data set comprising 316 spectra. 

The Mean Gini index helped to select 500 features (wavenumber regions) from the training 

dataset to build the final model and eliminate noise. Figure 3A shows the mean decrease in the 

Gini coefficient as a measure of how each variable contributes to the homogeneity of the nodes 

in the resulting Random Forest.

Mean decrease Gini values were selected for the critical Raman band of the urine, which is best 

suited for classifying the two racial groups (Figure 3A). Raman shifts are 549 cm-1,780 cm-1, 1013 

cm-1,1610 cm-1, and can be assigned to mostly creatine, urea, and creatinine [25, 26]. The 

literature supports the peak assignment as the creatinine formation rate differs among the races 

[28]. The band at 546 cm-1 has been identified as the most significant based on the Mean Gini 

index. However, it is noted that the mean and standard deviation values of this band exhibit 

substantial overlap between the classes (Figure 3B). Consequently, there is a necessity for a 

machine learning approach that can leverage all features selected by the Gini index, along with 

their combinations, to construct an algorithm capable of effectively harnessing the complexity 

inherent in hyperspectral datasets. This algorithm should be designed to discern donors' race 

accurately.

In the next step, we explored how changes in n-tree and m-try affected the OOB error rate. The 

m-try = 12 was obtained by the automatic tuning function in R software (Liaw and Wiener 2001). 

We also plotted RF models with varying numbers of trees against the corresponding OOB error 

rate. Figure 4 shows that after about 200 trees, the error stabilizes and reaches the minimum. 

Consequently, the final RF model was based on 200 classification trees with twelve variables at 

each split (m-try). Regarding the node size parameter (the minimum number of observations 

required to create a terminal node), we kept the default settings of the package (node size=1), 

which results in deeper trees with more final nodes.
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The final RF model was based on 200 classification trees with 12 variables at each split (m-try). 

Once the RF model was created, it was used to predict the test dataset of 175 spectra from ten 

different donors. The OOB error rate is calculated during model training and indicates the model’s 

error approximation [59]. This error rate, derived from the prediction accuracy of all other trees, 

assessed the final RF model's performance. Once the final random forest model is trained, it is 

then applied to the external test dataset to evaluate its performance on completely new and 

unseen data. The performance of the final model on the test dataset was summarized by the 

confusion matrix that provides a detailed breakdown of the model's predictions compared to the 

actual classes in the test dataset.

The OOB error rate of the final RF model was estimated as 2%, corresponding with seven 

misclassified spectra (Table 1), which indicates a high predictive performance of the constructed 

RF model. All donors in the training data set were correctly classified. The mean decrease Gini 

index for the feature selection helped improve the performance and prediction ability of the 

Random Forest model by selecting the spectral region that contributes most to the discrimination 

of two races while eliminating noise and spurious data points. The OOB error rate provided a 

robust estimation of error, validating the model's effectiveness. 

 The OOB provided very stable prediction results with high prediction accuracy and low error for 

the cross-validation. However, the cross-validation is performed solely on the training dataset. To 

determine the model’s true performance, we conducted external validation using ten samples that 

were withheld from the training process and were kept separate from the model during the training 

phase. In random forests (RF), predictions are made by aggregating votes from all decision trees 

in the ensemble. Each spectrum is classified based on the majority vote, with the class receiving 

the highest number of votes considered the prediction. Thus, each unknown spectrum is 

ultimately assigned to one of the races, CA or AA, with a higher classification probability. It means 

the default 50% threshold was applied to the model's spectral level predictions. A total of 175 

spectra from 10 donors were selected for external validation, ensuring they were not used in 

model training, and were introduced into the final RF model. The classification prediction for the 

spectra from 10 donors from the external validation dataset is shown in Figure 5, with the 

probabilities (per spectrum) to be assigned to class CA. This analysis allowed for the 

discrimination of CA and AA races with an accuracy of 91% at the spectral level (Table 1). Urine 

stains display inherent heterogeneity with a non-uniform distribution of components throughout 

the stain. This heterogeneity results from evaporation, diffusion, and crystallization processes, 

which impact urine constituents' concentration and spatial organization. As a result, distinct 
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variations in the Raman spectra are observed across different regions of the stain, highlighting 

the influence of these processes on the spectroscopic characteristics of urine stains. Spectral 

misclassification is not an unusual result as not all the Raman spectra collected from urine stains 

will reflect the characteristic Raman signature of the race intended because of the low 

concentration regions of the biomarkers in urine stains, as mentioned above. Hence, it is vital to 

perform sample-level classification using spectral level prediction with 50% default threshold. 

Considering the donor-level predictions with an appropriate threshold (50%), external validation 

reached 90% accuracy for predicting the class of unknown donors. Nine of ten donors were 

classified correctly, with most of the spectra assigned to an actual class, thus confirming the 

method's reliability for this proof-of-concept study of race differentiation based on human urine 

traces analyzed by Raman spectroscopy. 

For this proof-of-concept study, we used 18 samples, each with 18 spectra from different spots, 

totaling approximately 316 spectra. The high-dimensional nature of Raman spectroscopy, with 

numerous features per spectrum, compensated for the limited sample size in the calibration 

dataset. The Random Forests are effective with small datasets [54], and bootstrapping cross-

validation with out-of-bag error estimation further supports our model's reliability by training on 

multiple data subsets and validating with the remaining data[60]. Our binary Random Forest 

model achieved an impressive 90% accuracy on external validation samples, which were 

completely unknown to the model, demonstrating its robustness. Urine serves as an ultrafiltrate 

of blood, containing cellular components indicative of genetic and hereditary traits. The results 

obtained affirm that Raman spectroscopy's selectivity enables the capture of distinct genetic 

markers present within urine stains found at the crime scene.

Conclusion

A novel analytical technique is highly in demand for the forensic analysis of body fluids. 

Urine, primarily consisting of water with minimal cellular components, poses challenges for 

forensic scientists due to the limited abundance of biochemical features. Raman spectroscopy 

presents a rapid, non-destructive, label-free, and highly sensitive method, which are the 

fundamental advantages of forensic trace evidence analysis. In this proof-of-concept study, we 

have demonstrated a novel method for differentiating Americans of African descent and 

Caucasians using Raman spectroscopy paired with a Random Forest classification model. The 

optimized RF model could distinguish between Caucasians and African Americans with 90% 

accuracy at the donor level by correctly identifying the donor's race in 9 out of 10 external 

validation samples. However, further investigation is required, which covers variations such as 
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the time of the urine collection, donors’ diet, environmental factors, and medical conditions that 

can affect the spectral output of urine. This proof-of-concept study included only two racial groups, 

Caucasian and African American. Future research will utilize a larger donor pool to include a 

broader range of ethnicities and mixed-race donors. The reliability of our results is supported by 

the external validation, which achieved a 90% accuracy for the nine additional samples that were 

not included to the training dataset.
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---------Figures and tables-----------

Table 1: The parameters and results of the final Random Forest model regarding the out-of-bag 

(OOB) estimate of error rate and confusion matrix for distinguishing between CA and AA race 

from urine samples. Additionally, the table shows a confusion matrix of the external validation 

spectra.

Type of random forest Classification

Number of trees 200

Number of variables at each split 12

Node size 1

OOB estimate of error rate 2%

Confusion Matrix (Cross Validation): CA (Actual) AA (Actual)

CA (Predicted) 152 3

AA (Predicted) 4 157

Confusion Matrix (External Validation) CA AA

CA (Predicted) 84 13

AA (Predicted) 3 75

External validation (Donor level) CA (Actual) AA (Actual)

CA (Predicted) 5 1

AA (Predicted) 0 4
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Figure 1. Average Raman spectra of both races: American of African Decent (AA, green) and 
Caucasian American (CA, blue).
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Figure 2. Difference mean Raman spectrum (red) and in-class standard deviations of urine 
spectra of Caucasian American (blue) and American of African descent (green) classes.
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Figure 3. (A) The Variable importance of the feature set selected for the Random Forest model. 
The most important features of the model are the highest in the plot and have the largest Mean 
Decrease Gini Values. (B) This figure illustrates the mean intensity levels for the Raman band at 
546 cm-1 (highest mean decrease Gini value Raman band) for donors in the calibration dataset. 
The red line represents the overall mean for both classes, with error bars indicating standard 
deviation. Green circles depict AA donors, while blue squares represent CA donors.
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Figure 4: The OOB error rate (proportion of misclassifications) changes as a function of the 
number of trees for both classes and their average (black). The error line for the AA race is 
shown in green, and for the CA race in blue.
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Figure 5: External validation of the RF model. The estimated classification probability for each 
spectrum is shown. All urine spectra were scored with the likelihood attributed to the CA race.
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Data are available upon request from the corresponding author.
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