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Positional Ordering Induced by Dynamic Steric Interactions in 
Superparamagnetic Rods 
Chase Austyn Brisbois,a and Monica Olvera de la Cruz*a,b,c

The dynamic motion produced by precessing magnetic fields can drive matter into far-from-equilibrium states. We predict 
1D periodic ordering in systems of precessing rods when magnetic interactions between rods remain insignificant. The 
precession angle of the rods is completely determined by the field’s precession angle and the ratio of the field’s precession 
frequency and the characteristic response frequency of the rods. We develop a molecular dynamics model that 
explicitly calculates magnetic interactions between particles, and we also simulate rods in the limit of a strong and fast 
precessing magnetic field where inter-rod magnetic interactions are negligible, using a purely steric model. Our simulations 
show how steric interactions drive the rods from a positionally disordered phase (nematic) to a layered (smectic) phase. As 
the rod precession angle increases, the nematic-smectic transition density significantly decreases. The minimization of 
unfavorable steric interactions also induces phase separation in binary mixtures of rods of different lengths. This effect is 
general to any force that produces precession in elongated particles. This work will advance the understanding and control 
of out-of-equilibrium soft matter systems.

1   Introduction
Colloidal crystals composed of superparamagnetic particles are 
shown as promising platforms for optoelectronics,1,2 
mechanosensors,3 and filtration4,5 devices due to their 
biocompatibility and responsiveness. By this nature, externally 
applied magnetic fields control the morphological evolution of 
the crystal.6,7,8 While crystalline ordering is usually driven by 
close-packing,9,10 chemical bonds,11,12 or magnetic 
interactions,13,14 it can also be controlled by particle shape and 
motion.15 Such entropic effects emerge when thermal energy is 
significant allowing non-spherical particles to adopt liquid 
crystal phases.16 

Spontaneous 1D positional ordering arises from collections 
of elongated particles (the so-called smectic phase), whereby 
they develop a layered structure.15 Smectic liquid crystals have 
many applications in science and technology such as optical 
films,17 electromechanical sensors,18 actuators,19 and 
fabrication platforms,20 owed to this layered 1D period order. It 
even has an emerging relevance in cell biology.21 Magnetic 
fields can guide the formation of the smectic phase for systems 
where the magnetic interactions between particles is weak.22

Interactions between superparamagnetic particles can be 
estimated by calculating the magnetic coupling constant23 𝛤 =

, where  is the magnetic constant,  is the 𝜇𝑜𝜇2/2𝜋𝑑3𝑘𝐵𝑇 𝜇𝑜 𝜇
dipole magnitude,  is the Boltzmann constant,  is the 𝑘𝐵 𝑇
absolute temperature, and  is the distance between dipoles. It 𝑑
represents the strongest possible magnetic interaction relative 
to thermal energy. If , magnetic interactions dominate 𝛤 ≫ 1
over thermal forces and the system can become fixed in a 
magnetic-stabilized state. New physics can be uncovered by 
studying systems where . In this regime, the magnetic 𝛤 ≪ 1
field manipulates the motion of the particles and the small  𝛤
prevents aggregation or repulsive trapping.24 Magnetic particles 
are often coated in a non-magnetic layer to act as a linking 
agent, biocompatibility layer, and an aggregation inhibitor.25,26 
Additionally, by operating in a low magnetic coupling regime, 
the applicability of results is expanded to any system that 
generates a field or force (electrical, chemical or hydrodynamic) 
that produces similar particle motion.

In this paper, we use a combination of theory and molecular 
dynamics models to demonstrate how a precessing magnetic 
field can drive a system of coated (low ) superparamagnetic 𝛤
rods into the smectic phase. First, we describe the motion of the 
rods using theory and define the valid regime for the purely 
steric “strong precession” molecular dynamics (MD) model that 
forgoes the need for explicit magnetic calculations. Next, we 
explain that the system is defined by two parameters: the 
reduced concentration , and the rod precession angle . On 𝜌𝑑3 𝛽
this phase diagram, we compare simulations using explicit 
magnetic calculations to the steric MD model and see how both 
show larger  favours the smectic phase. Finally, we 𝛽
demonstrate how rod interaction drives phase separation in 
binary mixtures.
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2   Model
We seek to predict the nematic-smectic phase transition in a 
system of precessing superparamagnetic rods. The rods are 
composed of a linear chain of superparamagnetic particles that 
are coated in a non-magnetic material that forms a rigid shell 
(e.g. silica).27 To this end, we begin by calculating the precession 
angle of the rod . While this angle is suppressed at very high 𝛽
densities, this investigation will inform how the phase diagram 
can be constructed. Then, we will describe a purely steric MD 
model that forgoes the need for costly magnetic calculations. 
Finally, we will describe the “full” MD model against which our 
other models can be tested. 

2.1   Precession angle for dilute superparamagnetic rods

An externally applied magnetic field controls the orientation of 
superparamagnetic rods. The orientation of the rod is 
parametrized by the angle with respect to the precession axis   𝛽
and the azimuthal angle . By convention, we align the 𝛼
precession axis in the z-direction and measure the azimuthal 
angle from the x-axis. We apply a precessing magnetic field in 
the direction , where  is 𝑯 = (sin 𝜃cos 𝜔𝑡,sin 𝜃sin 𝜔𝑡,cos 𝜃) 𝜃
the magnetic field precession angle,  is the precession angular 𝜔
frequency, and  is time. For a superparamagnetic system, 𝑡

, where  is the magnetic susceptibility and  is the 𝑯 = 𝝁/𝜒 𝜒 𝝁
dipole moment. When switching between materials with 
different magnetic susceptibilities, the dipole can remain 
constant by modulating the field strength. For , a cos 𝜃 < 1 3
stiff rod will precess synchronous to the field and avoid 
oscillatory behaviour.28 Therefore, we define the orientation of 
the rod using its long axis, , 𝒏 = (sin 𝛽cos 𝛼,sin 𝛽sin 𝛼,cos 𝛽)
where  is the angle from the z-axis, and , where  𝛽 𝛼 = 𝜔𝑡 ― 𝜙 𝜙
is the phase lag. 

The phase lag determines the magnetic torque acting on the 
superparamagnetic rod and must be balanced by the drag 
torque. We define the drag torque according to a Rayleigh 
viscous dissipation function  added to the Euler-Lagrange (EL) 𝑃
equation,29 

𝑑
𝑑𝑡

∂𝐿
∂𝛼 ―

∂𝐿
∂𝛼 +

∂𝑃
∂𝛼 = 0.                             (1)

Where , and  is the Lagrangian, where  is 𝛼 = 𝑑𝛼 𝑑𝑡 𝐿 = 𝑇 ― 𝑈 𝑇
the kinetic energy and  is the potential energy. In a manner 𝑈
similar to previous work on magnetoelastic membranes,30 the 
EL equation is constructed from the interactions of 
superparamagnetic particles moving in a viscous fluid. 
Furthermore, in a Stokes regime, acceleration terms can be 
neglected leaving us with the simple form

∂𝑈
∂𝛼 +

∂𝑃
∂𝛼 = 0.                                     (2)

The rods do not stretch or bend so only the magnetic 
interactions contribute to the potential energy . We use a 𝑈
nearest neighbours approach to calculate the dipole-dipole 
interactions of each superparamagnetic particle. Each dipole is 
identical in strength and orientation leading to 

𝑈 = 2(𝑁 ― 1)
𝜇𝑜𝜇2

4𝜋𝑟3
(1 ― 3(𝝁 ∙ 𝒓)2),                (3)

where  is the number of beads,  is the magnetic constant,  𝑁 𝜇𝑜 𝜇
is the dipole magnitude,  is the distance between dipoles, and 𝑟

 is the displacement vector. In a stiff chain, we take  and 𝒓 𝒓 = 𝒏
the distance  between dipoles to be the size of the particle . 𝑟 𝜎
Taking the derivative with respect to the degree of freedom  𝛼
yields 

∂𝑈
∂𝛼 =

―3𝑁𝜇𝑜𝜇2

𝜋𝜎3
(sin2 𝛽sin2 𝜃sin 𝜙(cot 𝛽cot 𝜃 + cos 𝜙)). (4)

Note that in the static-field limit,  and , this expression 𝜙→0 𝛽→𝜃
results in no torque on the rod ( ), as expected.∂𝑈 ∂𝛼→0

The rod of length  is coated in a passive, non-magnetic layer 𝑙
making the diameter . The dissipation function acting on 𝑑 > 𝜎
the rod is approximated as the sum of friction elements along 
the rod,

𝑃 =
1
2

𝑙/2

∑
𝑖

2𝑘𝑣2
𝑖 ,                            (5)

where the sum over each term considers the velocity  at each 𝑣𝑖

element given the friction coefficient , where  is the 𝑘 = 3𝜋𝜂𝑑 𝜂
dynamic viscosity of the fluid. There is a total of  number of 𝑙/𝑑
friction elements each with diameter . In Eq. 5, we see that the 𝑑
sum  along the whole rod  is equal to twice the sum in one 𝑃 𝑙
direction along the rod starting from the center of precession. 
The velocity of each element  is = , where  is the 𝑖 𝑣𝑖 𝑢𝑖 𝜔sin 𝛽 𝑢𝑖

distance along the rod from the center of precession. The 
distance  increments by  because the center of mass (the 𝑢 𝑑/2
stationary point during precession) shifts by this amount. That 
is, the rod precesses around its center element when  is even 𝑙/𝑑

Fig. 1 Precession of a superparamagnetic rod. (a) 
Schematic for a magnetic field  precessing around the z-𝑯
axis at a precession angle . A rod composed of a stiff chain 𝜃
of superparamagnetic particles (blue) of diameter   are 𝜎
coated by a non-magnetic material (orange); the coating 
determines its aspect ratio . The rod orientation is 𝑙/𝑑
measured by its angle  to the precession (z) axis. (b) The 𝛽
external field  drives rod precession for  and . 𝑯 𝜃 = 20° 50°
As the field precession frequency  increases,  decreases. 𝜔 𝛽
The blue shaded region highlights when the diffusion time 
over the rod area is less than the precession period. (inset) 
The reduced frequency at which  as a function  for 𝛽 = 𝜃/2 𝜃
simulated (red) and theory (green dash).
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or precesses between two elements when  is odd. Note that 𝑙/𝑑
the number of drag elements is not the same as the number of 
superparamagnetic beads . For calculating , we can 𝑁 ∑𝑣2

𝑖

replace the terms in  with integers by multiplication (2  𝑢2 𝑢𝑖)2/4
allowing us to replace the sum with an expression for the sum 
of all integers up to , 𝑙/𝑑 ∑(2𝑢𝑖)2 =

. This leads to the equation for the (2𝑙/𝑑 + 1)(𝑙/𝑑 + 1)(𝑙/𝑑)/6
drag torque

∂𝑃
∂𝛼 =

𝜋
4𝜂𝜎𝜔𝑑3(2

𝑙
𝑑 + 1)( 𝑙

𝑑 + 1)( 𝑙
𝑑)sin2 𝛽.        (6)

We see that when  goes to zero (a sphere), so does the drag 𝑙/𝑑
torque. The drag torque can be modified by employing a 
correction factor  derived by Lamb31 for a cylinder, 𝑘′ = 𝑘𝑓
where , where  is Euler’s constant, 𝑓 = (1/2 ― 𝛾 ― ln 𝑅𝑒/8) ―1 𝛾
and  is the Reynolds number, where  is the 𝑅𝑒 = 𝑣𝑖𝑑/𝜈 𝜈
kinematic viscosity. Plugging in our expressions in Eq. 4 and Eq. 
6 into Eq. 2 leads to the relation, 

Ωsin2 𝜃sin 𝜙(cot 𝛽cot 𝜃 + cos 𝜙) + 𝜔 = 0,       (7)

where  for long rods ( ). Ω = 12𝑁𝜇𝑜𝜇2/𝜂𝜋2𝜎3𝑑3(𝑙/𝑑)3 𝑙/𝑑 ≫ 1
The magnetoviscous ratio  is a characteristic frequency that Ω
depends on the strength of the magnetic energy ( ) ~𝑁𝜇𝑜𝜇2/𝜎3

compared to the viscous drag ( ) and can be thought ~𝜂𝑑3(𝑙/𝑑)3

of as a characteristic “response” frequency of the rod in a 
dynamic magnetic field. Solving for , we obtain our final 𝛽
expression for the rod precession angle,

𝛽 = cot ―1 ( 2
3

𝜔′csc 𝜙
sin 2𝜃 ― cos 𝜙tan 𝜃).                (8)

The reduced field frequency  defines the 𝜔′ = 𝜔 3 Ω
relationship between the rod response time and the field 
precession period. While  is a magnetoviscous parameter,30 𝜔′

leaving it as reduced frequency intuitively reflects its role as a 
scaled frequency. Therefore, it is easy to see the  curve for a 𝛽
particular  in Fig. 1a becomes centered at 1 when plotting 𝜃
against . The reduced field frequency can be rewritten in 𝜔′

terms of a set of dimensionless constants,

𝜔′ =
1

72 3

ln ( 𝑙
𝑑 + 1) + 𝐶

𝑅4𝛤𝐷′
,                         (9)

where  is the thickness ratio , the magnetic coupling 𝑅 𝑑/𝜎
constant , where  is the Boltzmann 𝛤 = 𝜇𝑜𝜇2/2𝜋𝑑3𝑘𝐵𝑇 𝑘𝐵

constant, and  is the absolute temperature,  is the 𝑇 𝐷′ = 𝐷/𝜔𝐴
relative diffusion constant relating the diffusion timescale over 
the rod area  to the field precession period. The 𝐴 = 𝑙𝑑

 terms relate to the diffusion ln (𝑙/𝑑 + 1) +𝐶 𝐷 = 𝑘𝐵𝑇(
, where  for sufficiently long ln (𝑙/𝑑 + 1) +𝐶)/3𝜋𝜂𝑙 𝐶 ≈ 0.312

rods (  error for ).32< 5% 𝑙/𝑑 > 4
To find the expression for , we solve Eq. 8 in the slow field 𝜙

limit. Under a pseudo-static field, the rod will maintain 
alignment with the field direction. This limit implies  and 𝛽→𝜃
that the lag is very small leading to . We obtain cos 𝜙→1 𝜙 =

.tan ―1 (𝜔/[(Ω ― 𝜔)(Ω + 𝜔)]) ≈ tan ―1 (𝜔′/ 3)
Eq. 8 shows that there is a well-defined intermediate 

frequency at which . If we set this condition for  and 𝛽 = 𝜃/2 𝛽

solve for , assuming real solutions with , we can expand 𝜔 𝜔 > 0
a power series around  to obtaincos 𝜃 = 1

𝜔′𝜃/2 = 1 +
5
3

(cos 𝜃 ― 1).                      (10)

2.2   Magnetic MD Model
We represent a coated, superparamagnetic rod as a linear chain 
of magnetic beads of diameter  that are covered evenly in a 𝜎
non-magnetic layer with thickness . The rod moves 𝑑 ― 𝜎 = 2𝜎
rigidly in response to a magnetic field. We simulate a system of 
rods suspended in solution with a constant density  under 𝜌
isothermal and isochoric conditions (the  ensemble). Time 𝑁𝑉𝑇
is integrated with a step of , where the unit of time 0.002 𝜏 𝜏 = 𝜎

 where  is the mass of one magnetic bead. The 𝑚/𝜖, 𝑚
temperature of the system is maintained by the Langevin 
method.33 The temperature is set such that the thermal energy 

 is equal to the energy unit  and the damping coefficient is 𝑘𝐵𝑇 𝜖
. 5 𝑚/𝜏

The potential energy of the system is a sum of the magnetic 
and hard-core interactions. The dipole moment , at the centre 𝝁
of each bead is oriented in the direction of field , as described 𝑯

Fig. 2 (a) The magnetic coupling ( ) decreases as the Γ ~1/𝑑3

distance between dipoles (  (red) and  (green)) 𝜇 = 1 2
increases. (a, inset) The orientational order of magnetic rods 
as  increases with error bars representing one standard 𝜇
error in the order. (b) Steric MD model, that assumes small Γ
, where the red bead is the centre of precession for a rod (

) and the white beads fill the skin of a double-cone 𝑙/𝑑 = 8
matching the rod precession angle . (c) The smectic order 𝛽
of the steric model at various precession angles showing 
how increasing  decreases the transition density. Shaded 𝛽
areas represent one standard error. (d) Steric model in the 
smectic phase; for clarity, only the red centre beads are 
shown.
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in Section 2.1. The magnitude of the dipole moments  are 𝜇
identical and have units of . The potential energy is 𝜇𝑜/4𝜋𝜎3𝜖
the sum of all the dipole-dipole interactions for each bead 
within a cut off distance of . The potential energy of one 5𝜎
dipole pair is , where  is the 𝑈𝑖𝑗 = ∑𝑀

𝑖
∑𝑀′

𝑗

𝜇𝑜𝜇2

4𝜋𝑟3(1 ― 3(𝝁 ∙ 𝒓𝑖𝑗)2) 𝑀
total number of beads in the system, and  is the displace 𝒓𝑖𝑗

vector between beads  and . Rod collisions are purely repulsive 𝑖 𝑗
and add to the total potential energy using the defined by the 
Weeks-Chandler-Andersen (WCA) potential,34 where the 
distance parameter  is set to the total rod thickness .𝜎𝑊𝐶𝐴 𝑑

The nematic and smectic phases were quantified by 
calculating their respective order parameters. The orientational 
information in a collection of symmetric rods (or molecules) can 
be determined using the order tensor,35

𝑄 =
1
𝑁

𝑁𝑖

∑
𝑖

(𝑢𝑖,𝛼𝑢𝑖,𝛽 ―
𝛿𝛼𝛽

3 )                        (11)

where  is a second rank tensor,  is the number of rods,  is 𝑄 𝑁 𝑢𝑖

the unit orientation vector of rod , and  and  are the 𝑖 𝛼 𝛽
Cartesian coordinates x, y, and z. It is usually assumed that  is 𝑄
calculated over a small macroscopic volume, which is 
represented by our simulated system. The nematic director  𝒏
corresponds to the eigenvector of  with the largest eigenvalue. 𝑄
The smectic order considers the location of the center of each 
rod, 𝒓

𝜅 = max
𝑑 |⟨exp (2𝜋𝑖

𝒓 ⋅ 𝒏
𝑑 )⟩|,                      (12)

where the layer spacing  is chosen to maximize the order . A 𝑑 𝜅
practical method of extracting smectic order parameter from 
experiments is to use diffusion data.36

The precession around the z-axis implies that, if the smectic 
state is present, the length of the box in the z-direction  must 𝐿𝑧

be an integer number of layers  We don’t know the layer 𝑛.
thickness a priori but it will be a function of the rod length . 𝑓0(𝑙)
There will be a mismatch in the lengths  and . This 𝐿𝑧 𝑛𝑓0(𝑙)
difference will be distributed over all layers . If 𝛿 = 𝐿𝑧/𝑛 ― 𝑓0(𝑙)

 is small, then . We can inform how long to make 𝛿 𝐿𝑧/𝑛 ≈ 𝑓0(𝑙)
 by using the maximum possible value for /2. By 𝐿𝑧 𝛿𝑚𝑎𝑥 = 𝑙

assuming that  for small , we determine that 𝑓0(𝑙)→𝑙 = 24𝜎 𝛽
the maximum error in layer spacing over  layers is . 𝑛 = 50 0.24𝜎
The real number of layers we observe is . The box 50 ± 1
contains  rods that are initialized with a random position 9,800
and orientation. The density begins at  and is slowly 𝑑3𝜌 = 0.01
increased at a rate of  by isotropically 3.125 × 10 ―6𝑑3𝜌/𝜏
shrinking the x-y area.

2.3   Purely steric “strong precession” MD model
In the case of low magnetic coupling between rods, we explore 
a model where the essential physics of the system can be 
captured without explicit dipole-dipole calculations. 
Assumptions for this purely steric model are (1) a strong field to 
maintain the orientation of the rods against Brownian motion, 
(2) a sufficiently thick passive layer to maintain low magnetic 
coupling between rods (large , small ), (3) a precession period 𝑅 𝛤
much faster than the rod diffusion time (small ), and (4) a rod 𝐷′

precession angle  not suppressed by collisions (low ).𝛽 𝑑3𝜌

The first and second assumptions allow us to ignore dipole-
dipole calculations and rotation dynamics. We assume that the 
rods will always point in the direction of the precessing field.  
Regardless of how strong the dipole interactions are to meet 
this condition, the magnetic coupling remains small because the 
nonmagnetic layer is sufficiently thick (Fig. 2a). 

The third assumption relates to how the space swept out by 
a precessing rod over one precession period; that is, distribute 
repulsive particles along the skin of a double-cone to create an 
implicit precession. Superparamagnetic rods of identical lengths 
are in-phase while precessing, meaning that the “precessing” 
white particles (Fig. 2b) do not interact with other white 
particles. Repulsive interaction is only felt between the central 
red particle and all other particles. Due to this interaction, the 
rod must extend  distance away from the center to represent 𝑙
the correct . The density of the white particles is set to 𝑙/𝑑 ~1/

. The fast field or slow diffusion assumption is distinct from 𝜎2

field that is precessing in the limit of infinite precession speed, 
which we have describe previously.37-39 In that case, the field 
was fast compared to the rod (or chain) response time, 
analogous to . We model it as a rigid body and, since it 1/Ω
follows the field, rigid body rotation is restricted.

Assumption (4) depends on dilute conditions. Even in the 
absence of a magnetic field, increasing rod density, forces the 
alignment of the rods. This necessarily suppresses  until, at the 𝛽
high density limit, . However, simulations suggest that 𝛽→0
there is little deviation in  during the nematic-smectic 𝛽
transition, which we show later on in Fig 3.

Based on these conditions we have developed a purely 
repulsive model to represent an ensemble of precessing rods. 
The rods are composed of two types of particles: red and white, 
as shown in Fig. 2b. The repulsive potential between red-red is 
defined by the WCA potential, as mentioned in Section 2.2. 
However, the red-white potential is a soft-core potential40 
reflecting the finite strength of the precession barrier 
preventing rods from freely diffusing. This potential is given as 

𝑈𝑟𝑤 = 4𝜖𝜆𝑏[ 1

𝑤2 ―
1
𝑤],                           (13)

Where the activation parameter , , 𝜆 = 0.1 𝑏 = 1 𝑤 = 𝑝(1 ― 𝜆)2

 where , and  is the bead-bead distance + (𝑟/𝑑)6, 𝑝 = 1/2 𝑟
below the cut off  when the potential reaches zero (𝑟 = 1.1𝑑 𝑈𝑟𝑤

). These parameters result in a soft core barrier (𝑟 = 1.1𝑑) = 0
of .2 𝑘𝐵𝑇

The simulation begins with 1000 rods randomly distributed 
in a cubic box with periodic boundaries. We integrate time using 
an NPT ensemble using a time step of . Like the magnetic 0.001 𝜏
MD model, the temperature is controlled by Langevin dynamics 
and the pressure is maintained using the Nosé-Hoover 
algorithm.41 We apply a slow pressure ramp to maintain quasi-
constant pressure beginning at  to , 𝑃𝜎3/𝜖 = 0.1 1.0
encompassing the relevant range of densities in which the 
nematic-smectic transition occurs. The box axes are allowed to 
relax anisotropically with the x and y axes coupled for visual 
convenience. The transition from nematic to smectic is defined 
by the inflection point (i.e. half max smectic order) averaged 
over 5 simulations.
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For the binary mixtures, the same method as the single 
component simulations was applied with 3,456 rods, randomly 
distributed in an initially cubic box, (1:1 mixture of ,  𝑙/𝑑 = 4 𝛽 =

,  ; , ). This combination is 29° 𝜎 = 0.97 𝑙/𝑑 = 8 𝛽 = 12°,  𝜎 = 1.0
consistent with rods under a field precessing at  and 𝜃 = 40°

. The difference in their  and  alone 𝜔 = 0.14/𝜏 𝑙/𝑑 𝜎 (~𝜇1/3)
result in a different angle of precession. In this case, the implicit 
magnetic coupling remains below one (   and  for Γ = 0.06 0.07
the  and , respectively). In addition, the reduced 𝑙/𝑑 = 4 𝑙/𝑑 = 8
diffusion is also small (   and  for the  𝐷′ = 2 × 10 ―3 10 ―3 𝑙/𝑑 = 4
and , respectively).𝑙/𝑑 = 8

3   Results and Discussion
The viscous drag on a rotating superparamagnetic rod 
significantly impacts its motion in precessing magnetic fields. 
The rod’s precession angle  and azimuthal phase lag  must 𝛽 𝜙
result in a magnetic torque (Eq. 4) that balances the drag torque 
(Eq. 6). We show in Fig. 1b the curve describing the rod 
precession angle  as a function of the field precession 𝛽
frequency  (for  and ). In the static field limit (small 𝜔 𝜃 = 20° 50°

), the rod precession matches the field angle . As  𝜔 𝛽 = 𝜃 𝜔
increases,   according to Eq. 8, having good agreement with 𝛽→0
MD simulations.

To uniquely determine , two variables must be known:  𝛽 𝜃
and the reduced field frequency . This dimensionless 𝜔′

parameter from Eq. 9 rescales  relative to the magnetoviscous 𝜔

response frequency of the rod, and otherwise acts conceptually 
identical to the field frequency. In Eq. 8, we theoretically derive 

 and produce a curve (Fig. 1b, dashed line) nearly 𝛽(𝜃,𝜔′)
identical to that of MD simulations (Fig. 1b, solid line).

The inflection point in the  curve is a characteristic 𝛽(𝜃,𝜔′)
frequency at which . In Eq. 10, we expand Eq. 8 in a 𝛽 = 𝜃/2
power series to obtain a simple relationship to predict the 
characteristic frequency , which remains accurate for small 𝜔′𝜃/2

precession angles (Fig. 1b, inset). This frequency is well-defined 
at experimentally realizable intermediate frequencies and is 
useful as a way of describing the system’s precession 
properties, such as the reduced diffusion constant  from 𝐷′(𝜔)
Eq. 9. 

Precession induced properties are dependent on  𝐷′ ≪ 1
because this is the regime where the precession period is 
shorter than the diffusion time across the precession barrier. In 
Fig. 1b, we shade the region where the rods diffuse faster than 
the field precesses. Diffusion time decreases with decreasing 
temperature; however, the temperature cannot be arbitrarily 
lowered because the magnetic coupling  must also be Γ ~ 1/T
less than  to ensure thermal energy dominates over magnetic-1
induced effects.  

We control the magnetic coupling by coating the rods with 
a non-magnetic layer. Increasing the distance between 
superparamagnetic dipoles rapidly decreases . The Γ ~ 1/𝑑3

magnetic coupling can also be decreased by weakening the 
magnetic field, but doing so may collapse orientational 
(nematic) order42 (Fig. 2a, inset). From Fig 2a, we see that for 
any reasonable magnitude for the dipole moment , the 𝜇
magnetic coupling  quickly decays to below 1 when the Γ
thickness of the passive layer is on the order of the magnetic 
particle diameter. For our model, we consider rods coated by a 

 thick passive layer, where  is the diameter of the magnetic 𝜎 𝜎
nanoparticles, for a total rod diameter of . 3𝜎

With the conditions   and   met, we introduce 𝐷′ ≪ 1 Γ ≪ 1
the purely steric “strong precession” model, described in detail 
in Section 2.3. The skin of a double-cone, swept out by the rod, 
is treated as a soft barrier to the centres of other rods (Fig. 2b). 

Fig. 4 A (50% cyan : 50% red ) binary 𝑙/𝑑 = 4 𝑙/𝑑 = 8
mixture of rods in the smectic regime, centres shown for 
clarity.

Fig. 3 (a) Magnetic MD model below (left) and above 
(right) the nematic-smectic transition ( ). 𝜃 = 20°,  𝜔′ = 0.2
(b) The smectic order  and rod angle  for the magnetic 𝜅 𝛽
MD model as the system density  increases. (c) The 𝜌𝑑3

phase diagram separating the nematic and smectic regions. 
The data points represent the density at half of the 
maximum smectic order . The orange data is the strong 𝑑3𝜌𝜅′
precession model and the black squares denote the 
observed transition from the magnetic MD model, with 
green and blue highlight snapshots from (a).
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Since, the rods are in-phase, the beads in the white “double-
cone” beads can overlap with white beads in other rods. This 
model specifies  as a constant, which implicitly sets  and  𝛽 𝜃 𝜔′

without needing to perform dipole-dipole calculations. In Fig. 
2c, we show that the transition to the layered (smectic) phase 
occurs at a lower density for larger precession angles. The 
transition is defined by the density at which the system reaches 
half the maximum smectic order. The centres of the rods in the 
smectic phase can be seen in Fig. 2d. Obscuring the white beads 
allows us to see the disordered layers that indicate a small 
magnetic coupling regime.

We observe the same density suppression for the nematic-
smectic transition using the full magnetic MD model. The 
sharpness of the transition and the maximum smectic order 
depends on the strength of the precession barrier. As the 
system density increases, the collision frequency between rods 
increases and results in a continuous transition to the smectic 
phase, given a constant  (Fig 3b). The magnetic MD model is 𝛽
not in the strong precession limit, therefore, the density 
required to induce the nematic-smectic transition is slightly 
higher than the steric model (Fig. 3c). This indicates that the 
precession barrier is easier to diffuse across, meaning that 
different temperatures can be modelled by adjusting the energy 
barrier in the steric model. Finally we should note that, the MD 
model validates the steric model’s assumption that the 
precession angle does not change by showing that the transition 
occurs over densities with negligible changes to .𝛽

In Fig. 4, we use for the steric model to investigate the 
behaviour of binary mixtures of different length rods, 𝑙/𝑑 = 4 
(cyan) and  (red), where the system would normally be too 8
large to investigate using the magnetic mode. We see 
synchronization-driven phase separation occurring due to the 
steric repulsion of incompatibly precessing rods.43 We observe 
two phases: a mixed phase and a phase rich in short rods. The 
short rods precess at a larger angle and therefore the steric cost 
of the mixed phase decreases more with a short rod rich phase 
than a long rod rich phase. Full segregation does not occur due 
to the entropy of the diffusing rods. The presence of the 
interstitial layers suggests possible consequence of local 
alignment. In the absence of sufficient fluctuations or shear 
forces, layers may stabilize defects such as two regions of the 
long-rod phase offset by one short-rod layer.

4   Conclusions
In summary, the density at which the nematic-to-smectic 
transition occurs in a system of precessing rods decreases with 
increasing precession angle. We show this effect using a purely 
steric molecular dynamics model and validate it in a 
superparamagnetic system. Systems with rods of disparate 
lengths will phase separate and can form stable defects in the 
smectic layers. Future work is needed to define the phase 
boundaries present in systems of binary mixtures. We 
anticipate that a better understanding of liquid crystal phase 
transitions in dynamic magnetic fields will advance the design 
and control of liquid crystal-based devices. 
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