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Building blocks of non-Euclidean ribbons: Size-
controlled self-assembly via discrete frustrated particles

Douglas M. Hall,a Mark J. Stevens,b‡ and Gregory M. Grasona

Geometric frustration offers a pathway to soft matter self-assembly with controllable finite sizes.
While the understanding of frustration in soft matter assembly derives almost exclusively from con-
tinuum elastic descriptions, a current challenge is to understand the connection between microscopic
physical properties of misfitting “building blocks" and emergent assembly behavior at the mesoscale.
We present and analyze a particle-based description of what is arguably the best studied example for
frustrated soft matter assembly, negative-curvature ribbon assembly, observed in both assemblies of
chiral surfactants and shape-frustrated nanoparticles. Based on our particle model, known as saddle
wedge monomers, we numerically test the connection between microscopic shape and interactions of
the misfitting subunits and the emergent behavior at the supra-particle scale, specifically focussing on
the propagation and relaxation of inter-particle strains, the emergent role of extrinsic shape on frus-
trated ribbons and the equilibrium regime of finite width selection. Beyond the intuitive role of shape
misfit, we show that self-limitation is critically dependent on the finite range of cohesive interactions,
with larger size finite assemblies requiring increasing short-range interparticle forces. Additionally, we
demonstrate that non-linearities arising from discrete particle interactions alter self-limiting behavior
due to both strain-softening in shape-flattened assembly and partial yielding of highly strained bonds,
which in turn may give rise to states of hierarchical, multidomain assembly. Tracing the regimes of
frustration-limited assembly to the specific microscopic features of misfitting particle shapes and
interactions provides necessary guidance for translating the theory of size-programmable assembly
into design of intentionally-frustrated colloidal particles.

1 Introduction
Geometric frustration (GF) occurs when the locally preferred or-
dering is incompatible with geometric constraints of extending
that order throughout the assembly.1,2 Canonically, GF is asso-
ciated with bulk systems, where it requires the formation of ex-
tensive arrays of topological defects, as in polytetrahedral sphere
packings3 or liquid crystal blue phases .4 When a self-assembling
system has GF, the presence of free boundaries on potentially
forming finite-sized structures leads to distinct consequences and
a range of exotic, scale-dependent thermodynamic behavior.5 No-
tably, finite and sufficiently soft assemblies need not form defects
in response to GF, which may instead manifest in a superexten-
sive accumulation of intra-assembly stress that, in competition
with the cohesive drive for assembly growth, may shape the as-
sembly’s equilibrium boundary and interior at length scales much
larger than the subunit (e.g. macromolecular or colloidal) di-
mensions.5,6 Arguably, the most notable emergent behavior is
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the ability of the GF to determine the mesoscopic finite equilib-
rium size of assemblies.7 This basic paradigm has been explored
in the context of a range of soft matter systems, from spherical
assemblies of colloids8,9 and protein shells,10 to twisted bun-
dles of filamentous proteins or chiral fibers11–13 and chiral rib-
bons.14–19 The specific dependence on long-range gradients in
intra-assembly stress and the resulting ability of thermodynamics
to sense the mesoscopic size of assemblies distinguishes geomet-
rically frustrated assembly (GFA) from other more familiar ex-
amples of size-selective assemblies, like amphiphilic micelles or
self-closing, curvature limited shells and tubules.

Models for size control in GFAs are generically predicated on
continuum elastic descriptions of the super-extensive growth in
assembly energy.7 These models argue that elastic energy accu-
mulates with size up to an upper size limit, beyond which the as-
sembly distorts away from the locally-preferred packing (at finite
energy cost) to maintain extensive energetic growth with size.6

At these large sizes, frustration is not able to restrain the cohesive
drive to larger size, and equilibrium assembly proceeds to unlim-
ited size, known as frustration escape. There are multiple pos-
sible structural modes of assembly: elastic “shape flattening” of
the preferred frustrated packing into an unfrustrated one;12,20,21
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“filamentation” into structures that remain finite in only a single
direction of assembly but unlimited in others;8,11,22 and incorpo-
ration of topological defect arrays that screen the far-field stresses
responsible for cumulative frustration costs.23–26

At a conceptual level, the possibility of thermodynamic self-
limitation as well as the existence of distinct modes of frustra-
tion escape that delimit the range of self-limitation for any given
GFA is well established. The potential advantages posed by self-
assembling systems that can “sense” their size at ranges that ex-
ceed the subunits themselves raises the possibility of intention-
ally engineering frustration into synthetically fabricated assem-
blies as a means to “program" their assembly behavior.27–29 In
principle, recent progress in the synthesis of colloidal-scale parti-
cles with programmed shape can allow for tunable shape frustra-
tion that can more fully test the continuum theory description of
size control.30,31 Notably, advances in DNA nanotechnology32,33

as well as synthetic protein engineering34–37 allow for both care-
ful design and control of the shape frustration of self-assembling
nanoscale units as well as new opportunities for programming the
interactions to separately tune the strength of cohesion and costs
associated with distinct modes of assembly deformation. How-
ever, due to the primary reliance on continuum descriptions of
GFA, several basic challenges remain to relate emergent thermo-
dynamic behaviors in a particular system of self-assembling frus-
trated subunits. In general, it remains to be understood which
specific structural mechanisms are responsible for frustration es-
cape in any particular system, and moreover, what are the size
ranges, relative to the subunit dimensions, at which frustration
may limit the thermodynamic assembly size. Finally, beyond the
continuum descriptions whose predictions rely on phenomeno-
logical constants of unknown value, how does the structure and
thermodynamic range of self-limiting GFA depend on physical
properties of the subunits themselves, their ill-fitting shapes, in-
teractions and deformability?

In this study, we focus on a particular well-studied model of
GFA: crystalline membrane assemblies frustrated by preferred
negative Gaussian curvature shapes. Initial models of this type
were motivated by observation of ribbon, or tape-like, assemblies
of chiral amphiphiles exhibiting twisted, helicoidal ribbon mor-
phologies with well-defined ribbon width.38–40 In these assem-
blies preference for negative Gaussian curvature derives from the
chirality of the molecules.41 Helicoidal ribbon morphologies have
also been observed in tetrahedral nanoparticles assembly.19,42

The scale-dependent morphology of these structures has been
described by a continuum elastic theory that accounts for growth
of intra-ribbon strains of crystalline order in negatively curved
ribbons, as well as the elastic (bending) preference for negative
curvature. The first model of this type was developed by Ghafouri
and Bruinsma for chiral membranes, but has been subsequently
elaborated on by several other studies.16,17,43,44 The key predic-
tions of the model can be divided into two-regimes: narrow- and
wide-ribbon regimes. Narrow-ribbons largely maintain their pre-
ferred negative Gaussian curvature, and therefore incur elastic
penalties (per unit area) for crystal strains that grow with ribbon
width w as ∼ w4κ4

0 where κ0 is the preferred curvature radius.
This super-extensive elastic cost may, in balance with the cohe-
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Fig. 1 Assembly geometry and the role of φ0 are illustrated. In (a) the
local geometry is a saddle shape with principal curvature ±κ0. Addition-
ally, the principal curvature directions are oriented with respect to the
assembly’s close-packing directions by an angle φ0. (b) Particles packed
according to this geometry adopt angular differences with respect to
their neighbors, rotating parallel to the bonding directions when φ0 = 0
and twisting orthogonal to the bonding directions for φ0 = 45◦. (c) When
the assembly forms a ribbon with edges oriented along the close-packed
directions, the assemblies are described by the isometric family of sur-
faces spanning between the catenoid and helicoid.

sive drive for larger assembly due to line tension, determine a
thermodynamically optimal assembly width that grows with de-
creasing curvature, w0 ∼ κ

−4/5
0 .

For wide ribbons, the in-plane elastic costs of negative Gaussian
curvature overwhelm the (bending) cost to deform ribbons to an
unfrustrated shape, leading to a shape transition from helicoids
to spiral ribbons which expel Gaussian curvature. This transi-
tion, which we refer to as shape-flattening throughout this arti-
cle, is predicted to occur at critical width, w∗ ∼ (B/Y )−1/4κ

−1/2
0

where B and Y are respective bending and in-plane (2D Young’s)
moduli for membrane. Notably this same underlying mechanical
transition has been realized in a range of fabricated ribbon ar-
chitectures,17,45 is proposed as the basis of similar morphological
transitions in a range of elastic structures in biology, 46,47 and
has been verified by a range of finite-element or finite-difference
numerical simulations17,39 where it is characterized by a singular
dependence of equilibrium shape on ribbon width. For the con-
text of self-assembling ribbons, which can adjust their widths via
addition of free subunits, the helicoid-to-spiral transition marks a
shape-flattening transition, in which the shape progressively ex-
pels Gaussian curvature with increasing width. Hence, this me-
chanical transition also has consequences for a second key length
scale, wmax, which marks the upper limit to the thermodynamic
range of frustration limited assembly. Since the elastic energy be-
comes extensive in size for w≫w∗, frustration cannot limit the as-
sembly size in asymptotically wide ribbon regime, and therefore,
it can generically be expected that the shape-transition and maxi-
mal self-limiting size are similar, i.e. w∗ ≈ wmax. For helicoidal as-
semblies, it is observed that optimal assemblies instead close upon
themselves into finite-diameter cylinders, a.k.a. tubules.38,40,48

In this study, we aim to extend the understanding of frustration
in hyperbolic, crystalline membranes from the phenomenologi-
cal continuum descriptions down to the scale of shape-frustrated
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subunits from which they form. Specifically, we introduce a new
class of “saddle-wedge monomers” whose large scale interactions
favor mesoscopic assembly geometries that map onto the exist-
ing continuum models (in the remainder of the article, we refer
to these simply as “monomers"). As shown schematically in Fig.
1, the variable shape of the monomer model encodes both tun-
able frustration (i.e. variable κ0) and also programmable relative
directions of curvature with respect to close-packed crystalline
(bonding) directions. This broader class of geometries has been
recognized as equivalently frustrated,46 and are related to the iso-
metric (Bonnet) family of minimal surfaces spanning the catenoid
and helicoid,49,50 parameterized by curvature angle φ0 between
the crystalline rows and preferred curvature axis.

The aim of this discrete monomer study is several fold. First,
we aim to understand how features of the geometry and inter-
actions of building blocks govern the mesoscale shape and ther-
modynamics of optimal assemblies, and more specifically, deter-
mine the mapping of particle-scale properties onto parameters of
the continuum description. Based on this, we analyze how the
range of accessible self-limiting widths compare to the size of the
building blocks themselves. We show that the maximal size range
of self-limitation is critically delimited by the range of cohesive
bonds between monomers. While the shape-flattening and max-
imal self-limiting size are expected to be proportional, it is not
clear, for example, if their relationship varies with extrinsic geom-
etry (i.e. curvature angle φ0). Second, we analyze the responses
to frustration that fall outside of linear elastic descriptions, more
specifically the distinct roles of strain softening and yielding on
size control, and the possibility of partial or incomplete bonding.
Here, strain softening refers to a deviation from the harmonic elas-
tic response, where the penalties for deviations from the preferred
packing fall below the harmonic expansion around the minimum.
By yielding of bonds, we refer to its instability under fixed applied
force, beyond a critical (maximal force) threshold. Both features
apply to a broad range of finite, short-ranged interactions, which
necessarily fall below the harmonic description of the interaction
at sufficiently large distances. In our model, both features are
coupled in their dependence on interaction range, illustrated be-
low in Fig. 3 (a) with characteristic interaction length scale as the
model parameter ra. We show that the former effect of strain soft-
ening tends to slightly depresses the range of thermodynamic self-
limitation, relative to a purely Hookean elastic behavior, while the
latter effect of bond yielding may be associated with a range of
hierarchical ground states possible for sufficiently low tempera-
tures.

The remainder of this manuscript is organized as follows. We
first summarize a continuum scale description that is expected to
capture the mesoscale structure and thermodynamics of saddle-
wedge monomer assembly in Sec. 2.1, and then introduce the
coarse-grained, discrete particle model in Sec. 2.2. Next, in Sec.
3.1 we present numerical results from energy minimization cal-
culations on the stress accumulation and flattening of energetic
ground states of varying width. We analyze the limiting case
of the flattened state, the tube morphology, with numerics and
continuum results considering the effects of anisotropic bending
stiffness and strain softening, which are then used to construct

the self-limitation phase diagrams in terms of monomer geome-
try and interactions in the Sec. 3.2. Next, in Sec. 3.3 we an-
alyze deviations from purely linear-elastic behavior exhibited by
the discrete subunit assembly, in particular, show that finite-range
interactions generically imply the stability of internally-cracked or
weakly-aggregated finite-domain morphologies in regimes where
self-limited structures are favored over unlimited (bulk) struc-
tures. Finally, in Sec. 4 we conclude by discussing the relevance
of the results to assembly at finite temperatures, implications for
hierarchical assembly and we present preliminary evidence of as-
sembly with molecular dynamics (MD) results.

2 Models of frustrated hyperbolic ribbons
We first summarize the key ingredients and predictions of a con-
tinuum elastic model for assembly of hyperbolic, crystalline mem-
branes followed by the introduction of discrete particle model of
monomer whose assembly forms these frustrated morphologies.

2.1 Continuum Theory

Here we summarize a continuum elastic description for the frus-
trated ribbons formed by 2D crystalline membranes with a pref-
erence for negative Gaussian curvature shapes (see B for full de-
tails). The model, which we refer to as “narrow ribbon” (NR)
theory, is essentially an elaboration of the original approach of
Ghafouri and Bruinsma in Ref.16, generalized to include arbitrary
direction or curvature axes relative to crystallographic axis, as in
Ref.17. The approach assumes slender assemblies with an assem-
bly length L and width w such that L ≫ w: either ribbons of width
w much smaller than the (unlimited) assembly length L in the
orthogonal direction, or instead closed rings with width w much
smaller than the assembly circumference L ≫ w. The model in-
cludes three ingredients,

Etot = Ebend +Estrain +Eedge (1)

corresponding, respectively, to elasticity of extrinsic (i.e. bend-
ing) curvature, in-plane elastic strains of the 2D crystalline order,
and the cohesive cost of free edges of the ribbons, dominated by
the two longer edges (i.e. Eedge ∼ 2γL). We consider the case of
in-plane square-lattice order, and due to the energetics of strong
(nearest neighbor) bonding along the lattice directions, assume
that optimal ribbons form with their free edges along the lattice
directions (i.e. either the local x̂ or ŷ direction of the ribbons,
which are the low edge energy directions). Here we take the ŷ
direction to be the long axis of the ribbon).

General considerations of the elasticity of anisotropic mem-
branes, 41 imply a coupling between free energy to the curvature
tensor curvature tensor Ci j of the membrane. According to the
narrow-ribbon approximation, for which |Ci j|w ≪ 1, we assume
that curvatures are roughly constant across the width of mem-
brane, and described by the values at the mid-line: Cyy along
the ribbon’s length, Cxx along the width, and Cxy = Cyx the off-
diagonal element of the curvature tensor. Specifically our systems
are described by the following extrinsic curvature elasticity,

Ebend ≃
wL
2

(
Ci j − (C0)i j

)
Bi jkl

(
Ckl − (C0)kl

)
. (2)
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where Bi jkl is the tensor of elastic bending constants and (C0)i j

is the locally preferred curvature. The nearest neighbor binding
square-lattice model leads to two non-zero elasticity constants,

B∥ = Bxxxx = Byyyy; B⊥ = Bxyxy = Byxyx (3)

for deformations that alter bending and twisting (of the tangent
plane) along lattice rows; the remaining elastic constants are
zero. The preferred (or “target”) shape can be written in matrix
form,

C0 = κ0

(
cos(2φ0) sin(2φ0)

sin(2φ0) −cos(2φ0)

)
, (4)

where κ0 sets the magnitude of the preferred principle curvatures
and φ0 parameterizes the angle between the lattice directions and
the principle curvature directions (see Fig. 1). Notably, this pre-
ferred curvature targets minimal surfaces with a mean curvature
H0 ≡ Tr[C0]/2 = 0 and a preferred negative Gaussian curvature
KG,0 ≡ det[C0] =−κ2

0 . While the original NR approach of Ghafouri
and Bruinsma16 for chiral membranes corresponds to the case
of φ0 = π/4, it was pointed out by Armon and coworkers that
a larger family of target minimal surfaces (corresponding to the
Bonnet family of minimal ribbons) are generated simply by rota-
tion of the preferred curvature axis relative to its pitch axis.17 We
explore the implications of this broader control over frustrated
shape for the design of the monomer and its ultimate assembly
below.

The strain elastic energy takes the from

Estrain =
1
2

∫
dA σi jui j (5)

where ui j and σi j = λukkδi j +2µui j +λ⊥
(
δixδ jxuyy +δiyδ jyuxx

)
are

the in-plane 2D strain and stress tensors for a square crystal. In-
plane strains are coupled to the out-of-plane deflections of the
membrane through its intrinsic curvature, i.e. non-zero Gaussian
curvature generates in-plane stress gradients.51 As described in
Ref. 16 and in Appendix B, these may be solved for long-ribbons
assuming uniform stress along y and constant Gaussian curvature
KG resulting in an elastic cost that grows superextensively with
width yielding,

Estrain/A ≃ Y
1440

K2
Gw4, (6)

where Y = (2µ − λ⊥)(2λ + 2µ + λ⊥)/(λ + 2µ) is the 2D Young’s
modulus of the membrane.

The thermodynamics of the NR approximation follow from the
minimization of the total free energy density with respect to cur-
vature and ribbon width and are summarized schematically in
Fig. 2. For narrow ribbons (corresponding to small γ), the ribbon
adopts a shape close its target hyperbolic shape, C(w → 0) ≃ C0,
so that the dominant elastic costs derive from in-plane strains. As
a result, the stretching energy is super-extensive, growing faster
than the assembly size A, according to Estrain/A ∼ Y κ4

0 w4. In this
regime, the optimal width w0 is set (approximately) by the bal-
ance between in-plane stretching of the target shape and the edge
energy (per unit area), Eedge/A ∼ γ/w, leading to an optimal (self-
limiting) width that grows with edge energy and decreases with
increasing target curvature, w0 ∼ (γ/Y κ4

0 )
1/5. When ribbons grow

sufficiently large, the strain energy cost to maintain the preferred
negative Gaussian curvature overwhelms the cost to unbend that
assembly into an isometric (i.e. KG → 0) shape. The crossover
between bending and stretching energy scalings defines a charac-
teristic width of flattening with scaling w∗ ∼ (B/(Y κ2

0 ))
1/4. Fur-

thermore, for the case φ0 ̸= 0, the mechanical flattening tran-
sition breaks symmetry with isometric (wide) ribbons adopting
zero curvature in one of two directions with respect to the ribbon
(lattice) directions. Hence, the shape transition (from stretching-
dominated to bending-dominated elastic cost) is marked by bi-
furcation in the equilibrium shape at w∗ 17,52 which is detectable
from a singular dependence in the w dependence of curvature
(see Fig. 12 from Appendix B ).

The model energy functional gives the (approximate) opti-
mal shape Ci j(w) and resulting elastic energy E(w) as a func-
tion of ribbon width (shown schematically in Fig. 2), when
optimized over values of the curvatures. For small curvatures,
E(w)/A ≃ Y κ4

0 w4/1440 as the curvature remains close to the pre-
ferred value. When ribbons reach a critical width w∗, the strain
energy cost to maintain the preferred negative Gaussian curva-
ture overwhelms the cost to unbend that assembly to reduce KG,
and the elastic ground states undergo a symmetry breaking bifur-
cation. For chiral ribbons (φ0 = π/4), this shape transition corre-
sponds to a transformation from helicoids to spirals. In Appendix
B we show that the supercritical shape transition occurs in NR the-
ory for any value φ0 and for 0 < φ0 < π/4, leading to two different
spiral equilibria (degenerate within NR theory). See for example
the two stable branches for w > w∗ for φ0 = 22.5◦ in Fig. 11, which
different in terms of helical pitch and radius.

As shown in Fig. 2B, tn the limit w → ∞, the Gaussian curvature
vanishes at the expense of bending into spiral ribbons of cylindri-
cal shape with energy,

E∞

A
=

1
2

B∥κ
2
0

[
1+

B⊥−B∥
B⊥+B∥

sin2(2φ0)

]
. (7)

The flattened cylindrical shape is identified with frustration es-
cape, as the assembly can grow without increasing elastic energy
density. At large enough widths, the actual assembly will close
up so that the flattened state is a closed tubule. Whereas the ini-
tial stretching cost is independent of φ0, the expression for the
flattening cost E∞ may depend on φ0 when the associated cur-
vature moduli differ B⊥ ̸= B∥. One might naively expect that
the larger flattening cost can extend the range of super-extensive
elastic energy with growing size, and thus increase the range of
size control; that is, the mechanical equilibrium would shift from
self-limiting ribbon shapes to flattened, tube morphology roughly
speaking when the ribbon elastic energy E/A ≃ Y κ4

0 w4/1440 was
equal to E∞/A, so that wmax ∼ (E∞/AY κ4

0 )
1/4 ≈ w∗ would increase

with increasing flattening cost. That is, based on this model,
the mechanics of unbending the membrane away from its curved
shape sets an upper limit to size scales where frustration can
provide a thermodynamic limitation to the ribbon width. Anal-
ysis of equation 1 predicts a moderate reduction in the range
of self-limitation with increasing curvature angle, φ0, as a con-
sequence of the mechanical flattening transition occurring at a
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Fig. 2 (a) Ribbons of increasing width w, for the case φ0 = 45◦, maintain
approximately helicoidal shape up until a width w∗ at which point they
flatten to a cylindrical shape. The flattened ribbons may continue widen-
ing until the edges meet and a closed tubule is formed. (b) Schematic
plots of Ebend (yellow), Estrain (brown) and Eelastic = Ebend +Estrain (solid
blue curve), as a function of the assembly width w. Asymptotic limits
are shown for narrow ribbons Eelastic(w → 0) = Enarrow ∝ Y κ4

0 w4 (dotted
blue) and wide ribbons Eelastic(w → ∞) = E∞ (dashed blue). (c) A self-
limiting state is a minimum in the model free energy Etot = Eelastic +Eedge.
With increasing line tension γ, larger self-limiting sizes may be achieved
up until a point w = wmax, indicated by a dashed vertical line, when the
minimum’s energy is equal to the flattened state’s energy E∞ at which
point the self-limiting state is metastable. Further increase of the line
tension results in larger metastable finite minima until the point at which
the minimum disappears entirely near w = w∗

smaller value of w∗ with increasing flattening cost E∞ (see Fig.
2C). A central goal of this study is to directly assess variation of
the range of frustration-limiting widths with φ0 (i.e. if and how w∗
and wmax change with curvature direction), as the target shape is
varied from catenoidal to helicoidal, for a discrete subunit model
of hyperbolic, 2D crystalline membrane assemblies.

We note that the assumptions of the NR theory, namely that
curvatures are sufficiently uniform across the width of ribbons, do
not strictly hold across the full range of ribbons widths. This is be-
cause torque-free boundary conditions require a boundary layer
of characteristic size proportional to w∗ ∼ (B/Y )1/4κ

−1/2
0 ,17,53,54

so that through-width curvature variation becomes non-negligible
for w>w∗. We show this for an explicit solution for exact (bound-
ary layer) solution below (for φ0 = 0 in Appendix B). This bound-
ary layer correction modifies predictions of elastic energy, partic-
ularly in the large w ≳ w∗ regime. Notably, finite-element calcu-
lations for ribbons 0 < φ0 < π/4 suggest that boundary-layer cor-
rections break the degeneracy between the two large-w equilib-
ria. These detailed corrections for intermediate-w notwithstand-
ing, we argue that the NR approximation works reasonably well
for both the self-limiting (i.e. w small) and the asymptotically
flattened (w → ∞) regimes. The simple and analytically tractable
solutions of the NR theory therefore provide a useful means to
survey how thermodynamics of self-limitation varied with geo-
metric and mechanical properties of the membrane in the contin-
uum elastic description.

2.2 Discrete Model and Methods

To connect discrete-monomer properties and design to assem-
bly behavior, we developed a coarse-grained simulation model,
building from a model previously developed to study microtubule
assembly.55–59 The saddle-wedge monomer is designed for en-
ergy minimization and dynamical assembly simulation using the
LAMMPS software.60–62 The basic shape of the monomer is a
“double-wedge” geometry: four binding faces that promote cur-
vature of opposite signs in the orthogonal directions of the as-
sembly, as illustrated in Fig. 3. The rigid monomer consists of
27 sites of a single type and purely repulsive interactions, sur-
rounded by 16 attractive sites of 8 types, with the attractive sites
arranged in a planar square on each of four bonding sides of the
monomer. The square diagonal of the attractive sites on each face
defines the thickness parameter t that in principle may be used to
tune the relative costs of changes in assembly curvature, bending,
with respect to assembly stretching. For the results presented in
this study, we consider the case t = 0.568d. The monomer width
d is defined by the distance between respective centers of mass
of attractive sites on opposite sides. For the attractive sites, pair-
wise binding only acts between sites of the same type on different
monomers (as denoted by distinct colors of binding sites in Fig.
3). The repulsive sites interact according to a Weeks-Chandler-
Anderson (WCA) pair potential,63 and define the monomer ex-
cluded volume and shape in the low-energy minimized structures.
Their arrangement, with coordinates, are described in more detail
in Appendix A. The attractive sites on a given face are arranged
in a plane parallel to the adjacent plane of repulsive sites on the
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Fig. 3 Monomer design for programming assembly size control. (a) The attractive site pair potential u(r) is plotted as a function or separation r for
varying potential range ra with respect to monomer size d and bond energy u0. The yield point for each case is indicated with an open circle and the
harmonic approximation plotted as a dashed curve. (b) A sphere representation of the monomer design viewed along the c1 and c2 monomer bonding
axes. Gray spheres have radius representing the range of their excluded volume interaction. Attractive sites are spheres of different colors, with four
attractive sites on each of the four bonding faces of the monomer. The four attractive sites on a given side define a frame with attractive site spacing
t between opposite pairs. The frame between opposite sides has distance d defining the monomer size, and rotation θ∥ projected along the frame
displacement and θ⊥ orthogonal to the displacement. (c) Monomer geometries for φ0 = 0,22.5,45◦ are shown viewed along the c1 bonding axis and
along the c3 axis (red) orthogonal to the assembly surface. Sphere representations are shown alongside representations with the excluded volume of
each monomer represented as a polygon.

monomer, so that pairwise attractions of all four sites are possible
without overlaps from purely repulsive sites. The attractive site
interactions each have the form of

u(r) =

 −1
8

u0

[
1+ cos

(
πr
ra

)]
, r ≤ ra

0, r > ra

, (8)

where r is the distance between interacting sites, ra is the inter-
action range and u0 defines the potential well depth, such that
the minimum energy for two monomers binding with all four at-
tractive sites ideally placed is −u0. Figure 3(a) shows the shape
of the attractive interaction with varying interaction range. Full
details of the monomer geometry and interactions are given in
Appendix A. Importantly, ra/d, the range of interaction with re-
spect to the monomer width, controls both the relative stiffness
of the assembly via the elastic moduli defined below and also the
strain necessary for a single bond to reach the point of yielding.

The orientational geometry relating pairs of monomers bound
together is defined in terms of the orthonormal frame {c1,c2,c3}
associated with each monomer as shown in Fig. 3(b) with the
first two directions pointing along neighbor bonding axes and the
third direction point along the vertical (non-bonding) direction.
The preferred binding geometry is determined by angles defined
in a single rigid monomer. Attractive sites are arranged so that
θ0 is the preferred angle between the c3 axis of bonded neighbor-
ing monomers, when all four interacting sites on their respective
faces coincide. The φ0 angle can be understood as a twist of bind-
ing directions (i.e. orientation of the square of attractive sites)

around the axes connecting the monomer centers to their bind-
ing faces, i.e. by + or - around c1 and c2, respectively (the twist
sense in one bonding direction is chosen to be opposite that in
the other direction to be compatible with membrane geometry
of zero mean curvature). Taking the c3 direction to be normal
to the mid-surface of multi-particle membrane assemblies formed
by monomers, we can relate wedge angle θ0 and curvature angle
φ0 to the target curvature tensor of the membrane, via the angles
θ∥ = θ0 cos2φ0 and θ⊥ = θ0 sin2φ0 illustrated in Fig. 3(b). This is
detailed in Appendix A, but can be visualized in terms of the rel-
ative rotations of the frames defined by binding sites on opposing
faces of the monomer as follows. For example, as shown on the
left panel Fig. 3(b), the apparent wedge angle between opposite
faces (normal to c2) when viewed perpendicularly (i.e. along c1)
defines the target curvature along c2: (C0)22 ≃ θ∥/d (and similarly
(C0)11 ≃ −θ∥/d). Likewise, as shown on the middle panel Fig.
3(b), the relative twist of the binding frames on opposite sides
of the monomer around the c2 vector that separates these faces
defines the off-diagonal target curvature: (C0)12 = (C0)21 ≃ θ⊥/d.
Hence, orientational geometry of monomers map onto preferred
curvature of the form eq. (4) with target principle curvature

κ0 = θ0/d, (9)

which is visible from apparent wedge angle when viewing the
monomer along one of the principle directions as in right panel
Fig. 3(b). Note that while this packing is superficially similar
in texture to saddle-splay (or “biaxial splay”) in liquid crystalline
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textures64, the energetics of saddle-wedge packing actually rep-
resent an anisotropic coupling to extrinsic curvature. Hence,
when expanding energy around the flat membrane state, as in
eq. (2), interactions give rise to a linear coupling to the curvature
tensor, whereas saddle-splay represents a second order coupling
to curvature (i.e. linear in Gaussian curvature).

The attractive site arrangement defines both a monomer width
d that is approximately the preferred distance between neighbor-
ing monomers and a monomer thickness t = 0.568d that controls
the cost of bending deformations. As described in Appendix B, the
effective elastic constants of membrane assemblies of monomer
are determined by consideration of the local deformations on ide-
ally bounded neighbors, imposed by distortions of a crystalline
membrane. As shown schematically in Fig. 10, Y corresponds
to stretching/compressing of inter-face spacing, while B∥ and B⊥
correspond to dihedral and twist angle distortions between bound
monomers. Modeling bound attractive sites as effective springs of
stiffness π2u0/r2

a leads to

Y =
π2u0

2r2
a

; B∥ =
π2t2u0

16r2
a

; B⊥ =
π2t2u0

8r2
a

. (10)

Notably, as monomers are modeled as rigid bodies, eq. (10) high-
lights the role of the range of attraction in controlling the de-
formability of the assembly. Additionally, we note that the char-
acteristic ratio of bend to stretch moduli B/Y ∝ t2 is independent
of interaction parameters, controlled only by the geometric thick-
ness of the monomers. Last, it is important to note that, distinct
from previously studied models of anisotropic bend-elasticity, off-
diagonal bending is stiffer that bending along the lattice direc-
tions (i.e. B⊥ = 2B∥. The greater twist stiffness relative to row
bending, is generic consequence of attraction only binding, and
has consequences in the thermodynamics of frustration escape for
distinct φ0 values of monomers. As discussed further below, one
consequence is the dependence of the flattening transition on φ0,

w∗ = (1440)1/4
√

t/2κ0√
1+ 7

9 sin2(2φ0)
= 3.28

d/
√

θ0√
1+ 7

9 sin2(2φ0)
, (11)

which is derived in Appendix B, eqs. (21)-(33). As we consider
assemblies to form with open edges only along low energy direc-
tions in the bond lattice, it is straightforward to compute the edge
energy per unit length

γ =
u0

2d
, (12)

as (half) the ideal bond energy needed to separate membranes
along their nearest neighbor direction.

To explore the groundstate thermodynamics of size control of
this model, the LAMMPS simulation software was used to min-
imize the energy of preassembled initial configurations. The
LAMMPS minimize command was used with default, conjugate
gradient method. Structures were successively minimized from
a soft, relatively long-range interaction ra/d = 0.199 down to
the target range of interaction, decrementing ra/d by 0.007 and
re-minimizing at each step. Additionally, the monomers were
first minimized at a softer state where intra-monomer geome-
try was maintained with springs (see Appendix A): minimizations

with incrementing ra were run at intra-monomer bond stiffness
kbond = 885 u0/d2 and subsequently the minimization at the final
value of ra was re-minimized at successive values kbond/(u0/d2) =

890,4400,8900,44000 and 89000. The intra-monomer bonds are
found to contribute negligible total energy compared to the to-
tal inter-monomer interaction potential energy (less than 1 part
in 105) after minimization at the larger bond stiffness. The fi-
nal minimization was run until reaching a force tolerance of
0.3× 10−4u0/d. Intermediate steps at higher ra and lower kbond

were run until either the same force tolerance was reached, or
108 steps of minimization.

Multiple pre-assembled initial configurations were sampled
with varying lateral dimensions w/d corresponding to the ring
or ribbon width, which is the number of monomer rows as mea-
sured in the shorter assembly direction. The initial configurations
for varying width were cylindrical geometry φ0 = 0 and flat rect-
angular geometry for φ0 > 0. The flattened tubule state’s energy
was found from initially cylindrical geometry for longer tubes. For
all starting configurations, monomers were arranged at a slightly
dilated spacing of 1.05d. For φ0 = 0, the cylinder circumference
was chosen to be 360◦/θ0, the cylinder length to be the target
assembly size of w/d monomers, with monomer bond directions
aligned along the circumferential and longitudinal directions. For
large-size energetics of all φ0, cylindrical configurations were pre-
pared with successively varying lengths of 100, 110, 120, 130,
140, and 150 monomers and bond directions along the cylindri-
cal surface making an angle φ0 with the tube circumferential di-
rection and axis. For φ0 > 0, a rectangular geometry was used to
sample smaller assembly size. The bonding directions were cho-
sen in-plane and parallel to the boundaries of the rectangle, one
side length was kept to be 100 monomers while the other chosen
to be the target size of w/d monomers.

To determine optimal zero-temperature size of small-width as-
semblies, varying cylindrical ring or rectangular ribbon assembly
widths w were sampled up to 2w∗ where w∗ is the theoretical
transition width from Eq. 11. Structures rendered in figures
are shown with effective strain energy calculated from the av-
erage soft interaction energy, subtracting off the reference value
of −u0 for each bond that was present in the initial configuration.
Structures were analyzed to determine whether any bond initially
present in the starting configuration exceeds the yield point in the
final relaxed state.

The total assembly energy Ua is evaluated in terms of all pair-
wise interactions between sites on different monomers,

Ua =
1
2 ∑

i, j

(
u(ri j)+uWCA(ri j)

)
. (13)

Following similar analyses of geometrically frustrated assem-
blies,7 we define the excess energy as energy of the assembly rela-
tive to the cohesive bulk and edge energetics, and compute it by
subtracting the ideal energy u0 (of an unstrained bond) for every
bond in the assembly

Eex =Ua +2u0wL/d2 −u0(w+L)/d. (14)

In the following sections, we consider the comparison of the ex-
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cess energy of the discrete model Eex to the continuum model
predictions derived from equation 1.

3 Results
Having introduced a discrete monomer model that targets hy-
perbolic ribbon morphologies, it remains to be understood how
well the linear-elastic continuum theory describes the ground
state shape and thermodynamics of finite-width morphologies.
Notably, as mentioned above, the finite range and inter-particle
forces generically introduces non-linearities in the collective be-
havior that fall outside of the scope of linear elastic models,
and hence raise questions about how the mesoscopic structure
and thermodynamics are regulated by microscopic features of the
inter-monomer bonds. In Sec. 3.1 we first analyze the effect of
interaction range to govern the effective (linear) elastic moduli
of the assembly, and thereby, control the shape-flattening transi-
tions of ribbons with increasing width. Finding that large frus-
tration (highly tapered monomers) and relatively shorter range
interactions push flattened (tubular) assemblies into the strain
softening regime, in Sec. 3.2 we explore the implications of soft-
ening the elastic cost for frustration escape for slightly depressing
the stable regime of self-limiting ribbon width relative to expec-
tation of the linear elastic model. Last, in Sec. 3.3 we show
that for conditions where ground-state energetics of the discrete
monomer model exhibit self-limiting minima, frustration in large
width ribbons leads to defective states, characterize by internal
zones of partial bond yield, leading to discrete monomer states
which deviate significantly from the predictions of NR theory. We
describe how these defective states can be thought of in terms of
hierarchical, partially-bound aggregates of otherwise finite-width
ribbon morphologies, suggesting possible motifs for low temper-
ature condensation of self-limiting domains.

Throughout the results presentation we rely on the dimension-
less ratio, θ0d/ra, as a measure of characteristic strains in the
assembly relative to the range of harmonicity of attractive sites.
This ratio follows from the ratio of the characteristic (center-to-
center) displacement of adjacent monomers in a curved mem-
brane, roughly κ0d2 ≃ θ0d to the interaction range ra. For assem-
blies where θ0d/ra ≪ 1 we anticipate strains in the assembly to be
within the harmonic regime and likely well-characterize by linear
(Hookean) elasticity, whereas when θ0d/ra ≳ 1 sufficiently large
assemblies necessarily generate anharmonic displacement of at
least some interactions sites, and likely fall outside the expected
regime of linear elastic behavior.

3.1 Stress accumulation and flattening, beyond harmonic
and isotropic elasticity

In this section, we compare simulated ground states of discrete-
monomer assembly to the predictions of the continuum theory,
illustrating how strain accumulation and elastic shape-flattening
depend on arrangement of attractive sites and the tapered shapes
of monomer binding, focussing on the specific non-linearities as-
sociated with strain-softening of finite-range interactions.

We focus on three values of curvature direction, with φ0 = 0
the closed ring that approximates a catenoid surface in the nar-

row limit, φ0 = 45◦ approximating a helicoidal ribbon in the nar-
row limit, and φ0 = 22.5◦ an intermediate case. The excess elas-
tic energy Eex computed from energy minimizations are plotted
along with (narrow-ribbon) continuum model predictions in Fig.
4(a-c), for varying taper angle (θ0), curvature direction (φ0), and
interaction range (ra/d). In each case, the continuum model
accurately captures the excess energy of discrete assemblies in
the w → 0 regime as well as the transition from super-extensive
growth at small w to extensive growth (i.e. saturated Eex/N ∼ w0)
at large w. Typical structures for the progression through the
mechanical transition are rendered in Fig. 4(d-f). The cases
for θ0 ̸= 0 both show an apparently sharp shape transition be-
tween low- to high-w values, as highlighted by the dashed lines
in Fig. 4(e-f). In Fig. 11, we compare the predicted curvatures
from NR theory to shapes from the monomer ribbon minimiza-
tions for φ0 = 22.5◦ and 45◦. The general w-dependence of simu-
lated ribbon shapes is well-captured by the NR model, with abrupt
changes in shape occurring near to the predicted values of w∗.
We note that our energy minimizations seemed to resolve only
the larger pitch solution for large-w cases of the φ0 = 22.5◦, and
attempts to seed and sample the lower-pitch branch were unsuc-
cessful in finding these equilibria. This, combined with the ob-
servation from finite-element simulations17 that the larger pitch
branch has higher elastic energy, would seem to account for an
apparent jump in the computed Eex value for φ0 = 22.5◦ as the
ribbon shape transitions from low- to high-w equilibrium shapes
(i.e. visible in between w/d = 8 and 9 in Fig. 4b). In Fig. 12a-b,
we show, nevertheless, that the basic dependence of w∗ on cur-
vature angle θ0 is well captured by NR theory for both φ0 = 22.5◦

and φ0 = 45◦ ribbons. As there is no symmetry breaking transition
for catenoidal (φ0 = 0◦) membranes, the exact (boundary layer)
formalism summarized in eqs. (35)-(45) shows that the shape
evolution with increasing w is fully-continuous for this case. No
attempt to extract a shape-flattening size from simulated φ0 = 0◦

membranes was made.
The comparison of discrete and continuum results for Eex(w) is

made clearer when results are rescaled by the parameter combi-
nation Nu0d2θ 2

0 /r2
a (proportional to shape flattening energy) and

rescaling widths by the characteristic elastic scale d/
√

θ0 ∼ w∗
in Fig. 5(a). Here, the results show good agreement with the
approximate continuum theory, plotted as dashed lines, for the
limit of small w. In this limit, the curves coincide for varying φ0,
showing the monomers are equivalently frustrated with Ea/A ∼
Y κ4

0 w4/1440 independent of φ0. Beyond the flattening transition,
a noticeable discrepancy is due to the continuum model approx-
imation of uniform curvature, whereas a boundary layer forms
for wider structures, lowering the elastic energy accumulation
below the NR theory approximation. The exact boundary layer
solution for the catenoidal case of φ0 = 0, eq. (41), is plotted in
5(a), showing better agreement with the discrete monomer nu-
merics.65 Notwithstanding the discrepancy at intermediate scale,
the flattening cost, E∞ = Eex(w → ∞), is the same in the narrow-
ribbon approximation and boundary layer solutions as indicated
on the right of 5(a). The difference in energies with φ0 for large w
is interpreted to be largely due to the differing values of E∞. Some
numerical results at small θ0, in the case of φ0 = 45◦ were at unex-
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Fig. 4 Excess energy accumulation and flattening for assemblies of increasing width, for φ0 = 0,22.5,45◦, θ0 = 2.5,5,10◦ and ra/d = 0.14,0.17,0.20.
(a-c) Average excess energy density Eex/Nu0 after numerical minimization (points), for varying assembly width w/d and monomer parameters θ0,ra,
is compared to the continuum theory E/Nu0 prediction (dashed curves). (d-e) The progression of structures with increasing width generically shows
a transition to flattened shape, close to a critical width w∗ defined in Eq. 11. Structures have widths w/d = 4,8,10,12,14, ra/d = 0.14 and θ0 = 5◦.
Monomers are colored by relative excess energy E(wedge)

ex .

pectedly large energy after minimization. This is attributed to the
limited resolution of the minimization for the smallest values of
θ0, which reach low force tolerance to meet the stopping criterion
without fully resolving the small residual strains in the structure.

The elastic energy due to shape flattening E∞ in the limit w→∞

was further analyzed by minimization of tubule assemblies of
monomers. Closed tubules were prepared with monomer bonds
aligned to minimize the bending energy, e.g. monomers with
φ0 = 0 had bonds aligned parallel and perpendicular to the tube
axis whereas for φ0 = 45◦ the bonding directions are at 45◦ with
respect to the tube axis. For intermediate φ0 values we ana-
lyzed the higher pitch helical geometry, but confirmed that both
branches are degenerate in the w → ∞ limit (i.e. in the limit
of vanishing boundary layer contributions). To account for the
boundary layer relaxation of finite-length tubes, tubes of vary-
ing length were minimized, from 100d to 150d in increments of
10d. The flattening energy was then found by extrapolation to
infinite length. The results for five values of φ0 and varying θ0/ra

are shown in Fig. 5(b). The dependence of flattening cost on
φ0 via the anisotropic bending costs is captured by the harmonic
approximation, eq. (7). However, results with significant strains
associated with flattening, δ r ≈ tθ0/2, relative to the range of in-
teraction ra, show a reduction in the flattening cost due to strain
softening as the interaction potential drops significantly below
its harmonic approximation (see Fig. 3(a)). The modified pre-
dictions for flattening cost, plotted for varying θ0d/ra as dashed
curves in Fig. 5(b), are computed by minimizing attractive in-
teractions over monomer orientations while enforcing uniform
flattening with monomers maintaining spacing d (i.e. numerical

minimization of eq. (27) over Ci j subject to KG = 0 using the fully
non-linear form of soft attractive potential). The flattening geom-
etry for φ0 = 0 and 45◦ is illustrated in 5(c), where the monomers
in the tube are colored by excess energy to show the significant
strain relaxation near the boundary and uniform strain energy
density in the interior. The comparison between (cylindrically)
flattened and (hyperbolic) target geometry are illustrated for a
9×9 cross array of monomers. Notably, this highlights that shape
flattening for catenoidal monomers (φ0 = 0) membranes gener-
ates row unbending, whereas for helicoidal monomers (φ0 = 45◦)
rows are untwisted from their target binding. The combined
effects of shape flattening transitioning from unbending to un-
twisting as φ0 increases with a greater twist stiffness than row-
bending stiffness (B⊥ = 2B∥), leads to the (∼ 30%) increase in
elastic shape-flattening energy from catenoidal to helicoidal as-
sembly observed in Fig. 5(b).

To summarize, ring and ribbon morphologies of SMWs exhibit
ground-state energetics that are well-described by the NR theory
as summarized in Sec. 2.1. Additionally, we find that the wide-
ribbon regime, where shape-flattening leads to saturation of the
frustration cost, is also well described to a first approximation by
the continuum model, eq. (7), although strain softening effects
reduce this energy by up to ∼ 10% for large wedge angles. Build-
ing from these results, we consider the zero-temperature thermo-
dynamics of width limitation in the next section.

3.2 Self-limitation and range of size control

Here we evaluate the range of self-limitation achievable in this
model as a function of the model parameters. We study varying
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0 w4. Dashed
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the predicted values for the flattening transition w∗ for each value of φ0. (b) Extrapolations of numerical minimizations of tubes to infinite length,
shown as discrete points, compared to flattened-state solutions of the nonlinear continuum bending energy shown as dashed curves. (c) Minimized
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(target) geometries.

assembly width and analyze zero-temperature energetics guided
by the theory developed in the previous sections accounting for
the demonstrated effects of role of strain softening in the shape-
flattened (tubular) state.

By including the effect of edge energy due to missing bonds
at the assembly boundaries (i.e. the effects of Eedge), we de-
velop predictions for the possible equilibrium self limitation in
the monomer model in the limit of zero temperature. The compe-
tition between surface energy and super-extensive elastic energy
may result in minima in the energy-density landscape U(w)/A at
finite w. This minima is the self-limiting state, when its energy
density is less than the bulk flattened state E∞/A, which in this
case is a self-closing tubule with a vanished edge energy contri-
bution.7 In Fig. 6, typical data from minimizations for varying
φ0,θ0,ra are shown. The corresponding linear-elastic, narrow-
ribbon continuum model predictions are shown as dashed curves,
along with flat dotted lines for the prediction of E∞ according to
the strain-softened flattening (bend) energy shown in Fig. 5(b)
. Typical monomer ground state structures are rendered in Fig.
6(d-f), for φ0 = 0◦,22.5◦ and 45◦.

We start by noting the existence of a well-defined minimum
at w0 = (5-6)d for the smallest attraction range (ra = 0.014d),

or equivalently higher stiffness to cohesion ratio Y/γ ∝ r−2
a ,

for both catenoidal and helicoidal assemblies, with quantitative
agreement between discrete monomer model and the continuum
model. These minimal energy states fall well below the expected
flattening energy from continuum theory, suggesting the thermo-
dynamic ground state has frustrated-limited finite width *. No-
tably, and as discussed in detail in Section 3.3 below, ground state
structures for larger widths than the minimum fall off the curve
predicted by the continuum theory, an effect which can be at-
tributed to non-linear yielding of highly strained monomer bonds
(locally yielded bonds appear as high-energy density bands in Fig.
6(c-d)).

For larger values of ra, the monomer ground states show gen-
eral agreement with the predictions of the continuum model, in-
cluding an optimal w0 and energy substantially increasing for
successively larger w notwithstanding the instability associated
with yielding for large enough structures. With increasing ra,
which leads to effectively softer assemblies, the minimum be-
comes more shallow and eventually metastable to the defrus-

* E∞ is not shown in Fig. 6(a-b) for the cases with smallest ra, when the corresponding
strains exceed the inflection points of the attractive potential, ε ≈ θ0t/2 = ra/2.
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Fig. 6 Self-limiting assembly and yielded states. (a-b) Average energy density Ua/N of minimized structures shown as points, for θ0 = 2.5◦ and
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Typical structures are shown, with monomers colored by relative potential energy E(wedge)

ex . Structures (ii) and (iii) are yielded for both (c) and (d),
corresponding to interaction sites separated > ra/2.

trated (i.e. KG → 0) state. Metastable minima can be resolved
for increasingly soft assembly parameters, but cannot be resolved
beyond w = w∗ despite minimizations extending up to w = 2w∗.
Self-limiting minima beyond w∗ are not predicted for the NR con-
tinuum model(see B).

The predictions for equilibrium self-limiting size are presented
in Fig. 7, for the full range of parameters investigated. Specif-
ically, we denote monomer assembly self-limiting for parameters
where we resolve a local minimum in the energy density and that
minimum falls below the predicted shape flattening energy den-
sity. For this range of monomer taper angles (θ0 ≥ 2.5), we find
the range of size control agrees with the continuum model (in-
cluding strain-softening corrections to E∞), with equilibrium sizes
up to 9 monomer widths in length, consistent with w0 ≤ w∗ †.
Taken together, these results show that anharmonic (i.e. strain-
softening) effects of bonds in the discrete monomer model, hav-
ing little effect on the small-width assembly energetics, lead to
measurable reductions in the range of size control relative to
purely linear-elastic model descriptions.

† The boundary layer corrected prediction for moderately larger sizes achievable for
φ0 = 0 is not apparent, and may be too small of an effect to appear in the discrete
model

3.3 Role of bond yielding in self-limiting assembly

Having identified the conditions for a well-developed, finite-
width minima that are stable relative to shape-flattened tubes, we
now turned to a more detailed consideration of partially-yielded,
defective states of the discrete monomer model which strongly
deviate from predictions of elasticity theory.

The structures with large internal strain energies shown in Fig.
6(c-d) are a consequence of bond yielding, which occurs at the in-
flection point in Fig. 3. In general, models of self-assembly with
geometric frustration and also with finite-range interactions can
exhibit regimes where the internal strains associated with stress
accumulation are greater than the interactions can support. This
can result in a distinct mode of thermodynamic escape from self
limitation, such as the nucleation of low-symmetry, cracked as-
semblies in curvature frustrated tubules.21 In this regime, com-
plex branched morphologies are expected, which are composed
of stronger bound and elastically coupled regions, weakly bound
together by partially yielded, yet at least slightly cohesive zones,
as we observe in the partially yielded monomer ground states in
Fig. 6(c-d).

To further rationalize the energetics of yielded structures, we
consider the simpler case of the low-energy yielded structure (ii)
from Fig. 6(c), a catenoidal ring. Here, the yielded bonds are
approximately in the middle of the structure, and the structure of
total width w/d = 10 is nearly twice the width of the self-limiting
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structure at width w/d = 6. We consider this structure as a com-
posite of two non-yielded structures with yielded bonds acting as
weak, partial bonding between the two structures. For this par-
ticular monomer geometry and parameters, we further explore
the energetics of partial-bonding between self-limiting rings, with
results presented in Fig. 8. Additional minimizations were con-
ducted, starting with the minimized and non-yielded structures
of width w/d = 4, 5, and 6. For each starting width new struc-
tures were prepared by arranging stacked copies of that struc-
ture, such that the copies did not interpenetrate but partial bonds
were made, where one of the four attractors on a binding face co-
incided with its neighbor. After further minimization to the same
force tolerance 0.3×10−4u0/d, the results are presented, with col-
ors corresponding to the number of copies. The energetics of this

composite ring morphologies are well-described by an augmented
model that uses equation 1 to describe the energies of the con-
stituent non-yielded rings and fits a constant energy of 0.15u0 to
each of the partial bonds. These partially bonded structures are
of lower net cohesive energy than the isolated, non-yielded struc-
tures.

More general considerations (i.e. at least weakly cohesive bind-
ing between elastically coherent self-limiting membranes) imply
that such hierarchical morphologies are possible for any monomer
assembly, at least at sizes sufficiently larger than w0, and generi-
cally such structures should have at least slightly lower total en-
ergy than the elastically self-limiting states (i.e. associated with
the minimum in the energy density). However, due to the rela-
tively weaker cohesive energy binding the structures at these yield
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bonds, it is expected these hierarchical structures may be broken
up due to entropic considerations at sufficient high temperature,
leading to an equilibrium state dominated by the elastically self-
limiting morphologies identified in the phase diagram shown in
Fig. 7.

4 Discussion and conclusions
In summary we have developed and studied a discrete monomer
model of hyperbolic membrane assemblies with crystalline order.
Detailed analysis of the minimal energy density morphologies is
compared to predictions of linear-elastic, continuum theory il-
luminating the connection between microscopic features of the
frustrated particles and their mesoscopic structure and thermody-
namics. To conclude we discuss the implications of these results
for the understanding and engineering of self-limiting assembly
of geometrically frustrated building blocks.

4.1 Controlling self-limiting dimensions through discrete
building block shape and interactions

In this work, we identify the role of extrinsic geometry to shape
equilibrium self-limitation via, φ0, the angle relating bonding di-
rections to the direction of rotation between bonded monomers.
While the saddle-wedge monomer model realizes equivalent
stress accumulation, E ∼Y κ4

0 w4 independent of φ0, the elastic cost
of escaping frustration through shape flattening can vary with φ0

when there is anisotropic bending cost (i.e. B⊥ ≥ B∥) ‡. For this
reason, the extrinsic geometry has the potential to influence as-
sembly energetics because φ0 relates the directions of preferred
curvature to the bonding directions, determining the extent to
which different modes of bending are activated with associated
moduli B⊥,B∥. This is most clear in dependence of flattening en-
ergy E∞ on φ0 shown in Fig. 5b, which derives from the tran-
sition from unbending (φ0 = 0) to untwisting (φ0 = 45◦) in the
flattened tubule geometry. A consequence of the increasing es-
cape energy with φ0 is that the flattening size w∗, and to a smaller
extent wmax, are predicted by NR theory to decrease with φ0, as
shown in Fig. 12c. A countervailing trend might be anticipated,
based on the previously reported effects of the boundary-layer
corrections on the shape-flattening transition17 for equal bend
and twist constants (B⊥ = B∥), as shown Fig. 12d, which shows
that w∗ instead increases by ∼ 20% with φ0. To assess whether
the shape-flattening width should decrease with increasing φ0 as
suggested by NR theory or whether boundary layer corrections
dominate and lead to the opposite dependence, we extracted the
apparent w∗ (for φ0 ̸= 0) and wmax from monomer ground state
simulations. Plotting these in Fig. 12c, we note that there may be
a slight tendency for w∗ to decrease with φ0, but this is obscured
by the resolution limits imposed by discreteness of the changes
in w possible for the monomer model. We observe no measur-

‡ Notably, while the prior continuum analyses 17 are based on isotropic bending elas-
ticity (B⊥ = B∥) the anisotropic case B⊥ ≥ B∥ is fairly generic for purely attractive
binding geometries, as twist deformations load all cohesive bonds in proportion to
their distance form the rotation axis, whereas bend distortions only load bonds in
proportion to projected distance to the neutral axis of bending.

able changes in the maximum self-limiting size with curvature
angle. Hence, notwithstanding these two possible mechanisms
for φ0 dependence, the size-range of self-limitation and stress-
accumulation appear to relatively insensitive to intrinsic geome-
try of the monomer ribbon morphology.

Beyond the role of extrinsic geometry (i.e. the direction of
curvature axes), the monomer model highlights the special de-
pendence of self-limitation on the range of interactions via the
stiffness associated with accumulating frustration costs to the as-
sembly. Consistent with the generic predictions of continuum
theory, results in Fig. 7 confirm that the maximum self-limiting
width, wmax, for a given block geometry is dictated by the flat-
tening size scale, wmax ≲ w∗ ∝ (B/Y )1/4κ

−1/2
0 , simply because the

energetics approach extensive scaling in this limit. In the simplest
case, where interactions are purely cohesive, the ratio of bend to
stretch ratio is controlled by the thickness (i.e. B/Y ∝ t2) which
itself is of order of the particle size d. Hence, this suggests the
maximum self-limiting size wmax ≈ d/

√
θ0, which implies that the

self-limiting dimensions that far exceed the size of the building
block require small taper angles, θ0 ≪ 1. Additionally, the rela-
tions determining equilibrium size Y κ4

0 w5
0 ≈ γ/w0 imply that that

decreasing the degree of frustration through the wedge angle also
decreases the range of edge energies for equilibrium, self-limited
structures, which are characterized by the maximum edge energy
γmax/Y ≈ κ4

0 w5
max ≈ dθ

3/2
0 . Notably, the ratio γ/Y ∝ r2

a/d is a co-
hesive elastic length scale, which is most strongly dependent on
the range (more strictly, the stiffness) of the cohesive interactions
between subunits. Taken together, these two relations show that
decreasing the degree of frustration through reduced wedge an-
gle increases the size range of frustrated limited assembly, but
does so at the expense of requiring narrowed range of interaction
stiffness. In particular, thermodynamic self-limitation by frustra-
tion is only possible for ra/d ≲ (wmax/d)−3/2 ∝ θ

−3/4
0 , implying

that self-selection on larger, multi-subunit dimensions requires in-
creasingly shorter range (i.e. stiffer) cohesive interactions, which
is consistent with the shift to smaller ra range with decreasing θ0

shown in Fig. 7.
Notably, this basic result is predicated on two assumptions: (i)

that deformations in assembly primarily strain interactions while
subunits are considered rigid and (ii) binding interactions are
purely attractive. Relative to the case considered here, including
additional deformability in the subunits themselves as in models
of Refs. 6,21,22, the expectation may be to reduce the cohesive-
elastic ratio γ/Y below the (upper bound) limited by interaction
stiffness, such that for any finite interaction range, inter-subunit
deformability should only further depress the feasible size-range.
On the other hand, it can be shown that more complex bind-
ing geometries, incorporating distinct spatial patterns of local at-
traction and repulsion can give rise to effective elasticity where
B/Y ≳ t2,20 thereby extending the elastic scale where shape flat-
tening takes place.

Applying these elementary considerations to the experimental
C12-β12 gemini amphiphile system studied in Ref. 18 where width-
dependent helicoidal ribbons morphologies were carefully char-
acterized, we note, of course, that macromolecular subunits are
both highly deformable and realize highly complex interactions.
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width with curves generated from the non-yielded harmonic theoryincluding an additional contribution from yielded bonds fit to uyield = 0.15u0.

Nevertheless, we may assess the apparent effects of the likely
ranges of interactions on the overall morphologies and likely equi-
librium states. In these experiments, at early times, helicoidal
ribbons are observed with mesoscopic pitches of order ∼ 100 nm.
Based on considerations of local packing in the “twisted crystal” of
amphiphiles, 18 it was estimated that d ≈ 0.6 nm, κ0 ≈ 0.03 nm−1.
Assuming the naive estimate

√
B/Y ≈ d, this suggests a shape-

flattening size scale w∗ ≈ 40 nm, and at this shape-flattening
size, ribbons are of order w∗/d ≈ 60− 70 sub-units across. No-
tably the estimate of w∗ is consistent with the fact that at longer
times, as ribbons grow larger than this size range, they exhibit
a shape-transition to spiral ribbons, consistent with the basic pre-
dictions of the continuum elastic theory, but ultimately suggesting
that thermodynamic equilibrium does not correspond to a regime
where frustration stabilizes the open-boundary helicoidal ribbon,
presumably because the assembly is too ductile. This raises a ba-
sic question: presuming cohesive interactions govern the elastic-
ity of assembly, how close might such a molecular system be to an
equilibrium state of frustration limitation? Applying the estimate
of the upper limit on interaction range for the gemini amphiphile
membrane, we find ra/d ≲ (w∗/d)−3/2 10−2. Notably, as subunits
are molecular in dimension, this corresponds to a limiting inter-
action range that is sub-Angstrom, clearly much shorter range
than what might reasonably be expected from van der Waals or
hydrophobic interactions which bond the amphiphilic subunits to-
gether. That interactions likely far exceed this range is consistent
with the observed long-time growth of chiral amphiphile assem-
blies into shape-flattened tubules at long times, and more gener-
ally suggests that the possibility of frustration-limited assembly in
molecular crystalline membranes may be difficult to achieve, if at
all possible.

The restrictions placed on the elasticity and range of frustration
accumulation by the interaction range suggest the feasible avenue
for engineering self-limiting systems requires the combination of
(larger) colloidal-scale particles bound by shorter range interac-

tions. We point out a recent example of DNA origami particles
32,33,66 designed to be triangular subunits, ∼ 50 nm in size with
controllable inter-particle geometry, and large w ≫ d, assemblies
driven by short-range base-stacking interactions, whose interac-
tions range may be less than ∼ 1 nm.67 Beyond the requirement
of shorter-range interactions relative to subunit size, frustration-
limitation will also require engineered colloidal particles with the
combination of precise geometry binding and also stiffness com-
parable to or exceeding that from the short-range stacking inter-
actions.

4.2 Role of finite interaction ranges: hierarchical aggrega-
tion

The results presented here show features of discrete systems that
are not captured by the linear-elastic continuum description. Two
possible features have been proposed to augment the continuum
description. Firstly, we identified the relevance of nonlinear elas-
ticity, which becomes relevant as the scale of deformations in
the equilibrium structures ∼ dκ0t becomes comparable with the
range of interactions ∼ ra. Strain softening was shown to re-
duce the cost of tubule formation, with results presented in Fig.
5 that were well-described by the nonlinear elastic description
of bending costs. Secondly, as the scale of deformations ap-
proaches the range of interactions, structures become mechani-
cally unstable when individual interactions reach the yield point
of the interactions. For our soft-binding model this corresponds
to ry = ra/2 ≈ dκ0t. The zero-temperature results on optimal
size w0, presented in Fig. 7, do not show a deviation from the-
ory due to the breakup of bonds at high strains. However, the
weakly-cohesive aggregation of otherwise elastically deformed,
cohesive and finite assembly domains suggested here (as well as
the low-symmetry internal cracking exhibited in the model of Ref.
21) constitutes an alternative manner of escaping the self-limiting
thermodynamic consequences of frustration, that will occur in
any realistic, particle-based description of frustrated assembly.
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In summary, if there is a minimal energy density at width w0,
then two of these structures can at least weakly bind together (i.e.
through partial yielding of cohesive bonds, or some set of bonds
that do not transmit effects of frustration between domains) with-
out introducing additional elastic costs into those two structures.
Hence, it is straightforward to argue that at T = 0, the energy
density of multiple weakly-aggregated domains of size w0 will
fall at least slightly below the single domain minimum. This
simple argument suggests that generically even in states where
a self-limiting domain minimum falls below the energy of the
(smooth) shaped-flattened states, at sufficiently low temperature
(and high concentration), self-limiting aggregates would be un-
stable to some condensed, multi-aggregate morphology that is ef-
fective unlimited in size, and points to the importance of finite-T
entropic effects in stabilize any putative regime of self-limitation.

4.3 Modeling frustrated assemblies at finite temperature

While the core analysis of this study focuses on purely ener-
getic ground states at T = 0, the conclusions detailed above im-
ply some important open challenges for understanding frustrated
self-assembly at finite temperature.

For one, while the frustrated assembly seemingly offers an at-
tractive paradigm for controlling equilibrium self-limiting assem-
bly through engineering misfit of building blocks, 27 we find that
realizing such self-limitation at non-trivial size scales places im-
portant restrictions on the range of interactions. In particular, the
thermodynamic conditions where frustration-limited morpholo-
gies outcompete shape-flattened morphologies require that at-
tractive interactions between subunits are short-ranged to subunit
size. For the range of parameters studied for the monomer model
at T = 0, the ground state is self-limiting only when interactions
are much shorter-range than the size scale of the subunits.

Using molecular dynamics to sample equilibration of frustrated
discrete particle models, in the self-limiting regimes faces addi-
tional challenges. Not only are the time scales to equilibrate such
systems long, but stiff potentials require shorter time steps in-
creasing the total computational cost. In addition, simulations of
assembly of free particles will have a short capture radius, which
will increase the simulation time.68,69

As a preliminary picture into the finite temperature self-
assembly behavior of the discrete particle model, we carried
out MD simulations of monomer model starting from disasso-
ciated configurations. In these simulations, 500 free subunits
are randomly placed in the simulation box and the tempera-
ture is 0.8ε. The simulation system has 500 subunits at a den-
sity of 6.35 · 10−4 particles/σ3, and the subunit parameters are
φ0 = 0,ra = 0.5σ (i.e. relatively large range) and θ0 = 10◦. Fig.
9 shows that initial assembly does occur for this system in this
time window, with multiple rectangular assemblies formed after
1 billion time steps. While further work is needed to determine
the equilibrium structures and more fully explore the kinetics of
assembly, it is clear that monomer parameters can be identified
where MD simulation is viable.

Notably, while the free monomer simulations are free to sample
much more irregular morphologies, the assembled clusters shown

(a) (b)
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Fig. 9 (a) Monomers with angles φ0 = 0 and θ0 = 10◦ assemble into
clusters at moderate interaction range ra/d = 0.14 and temperature
kBT/u0 = 0.054. The clusters have edges predominantly oriented in the
closed-packed directions. (b) Averaging the interaction energies over
many timesteps reveals the gradients in strain energy that develop in
clusters.

in Fig. 9(a) are mostly rectangular with boundaries aligned
along the close-packed directions, which is favorable for cohe-
sive assemblies to optimize the number of bonds formed for a
given number of particles. This feature suggests the possibil-
ity that larger assemblies will maintain boundaries along the
close-packed directions, which was implicit in the choice of pre-
assembled structures of varying-w that were generated for the
T = 0 results presented here. Coloring monomers by their re-
spective interaction energy in Fig. 9(a) reveals that in addition to
bonds forming and breaking, there are varying degrees of strain
in the interior of each cluster, evidenced by patches of lighter
color corresponding to more strained bonds. Further analysis re-
vealed gradients in strain within the clusters assembled at finite
T , shown in Fig. 9(b). These more regular patterns of coher-
ent strain gradients were extracted by averaging local binding in
clusters over multiple time steps. Time sampling was chosen to be
sufficiently short with respect to the lifetime of bonds but longer
than the apparent correlation of elastic fluctuations or phonons
within the structure. The appearance of these coherent strain
gradients, which grow in magnitude with size, are consistent with
the fact accumulation of frustration costs in the monomer model
shape finite temperature pathways.

What remains to be determined are how these effects of strain
accumulation also influence the kinetics of reaching equilibrium
states, and furthermore, whether and how finite temperature ef-
fects shift the expected phase boundaries between equilibrium
self-limiting states and states of bulk assembly. Not only do we
expect that especially soft and weakly frustrated systems will es-
cape frustration and transition to unlimited, shape-flatted struc-
tures, but we also expect, based on the analysis described in
Sec. 3.3 that at low temperatures, otherwise frustration lim-
ited structures may condense or aggregate into (presumably low-
symmetry) clusters held together by partially yielding bonds.
Hence, a further open challenge is to identify how non-linear fea-
tures of the inter-particle binding that control yield will shape
the critical temperature and concentration conditions at which
translation entropy favors break-up (or melting) of hierarchical
clusters into free, size-controlled aggregates.
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A monomer design details and pairwise elasticity
This section details the monomer geometry, the interactions de-
fined by repulsive and attractive potentials, and the resulting elas-
tic response of a bound pair of monomers. The monomer geome-
try is designed so that pairs of bonded monomers prefer to adopt
a target configuration with opposite rotation sense of neighbors
in the two bonding directions, a discrete analogue to local curva-
tures of a minimal surface and the rotation of that surface’s nor-
mal vector. Here, the monomer’s coordinate frame is denoted by
unit vectors c1 and c2 that are orthogonal and point in directions
of bonding faces (see the coordinate frame illustrated in Fig. 3 in
the main text) and c3 is assumed to point along the local normal
to the mid-surface spanned by the 2D assembly.

The rotation axes of the target configuration, relating a
monomer’s coordinate frame to those of neighbors bonded in the
c1 and c2 directions are, respectively,

r1 ≡−sin2φ0 c1 + cos2φ0 c2,

r2 ≡ cos2φ0 c1 + sin2φ0 c2. (15)

In the target configuration, the frame of a monomer is related to
its four neighbors’ frames by a displacement along the bond di-
rection 1

2 dcα (α = 1 or 2), rotation of angle θ0 about rα , and ad-
ditional displacement of 1

2 dcα
′ where cα

′ is the neighbor’s frame
after the rotation about rα . Here, d is the nominal monomer
width related to the actual monomer geometry and the arrange-
ment of its attractive sites, detailed below. To leading order in
θ0, this transformation is a bending angle between neighboring
monomers of θ∥ ≡ θ0 cos2φ0 projected along the bond direction
cα and a twist angle θ⊥ ≡ θ0 sin2φ0 of rotation about cα . The
definition of rα enforces opposite sense of bending angle in the
two bond directions, analogous to a minimal surface having cur-
vature tensor with zero trace, and opposite sense of twist, which
is true for a smooth surface that necessarily has symmetric cur-
vature tensor. Assuming that c3 corresponds to the local normal
of the membrane assembly of monomers, relative rotation of c3,
when projected only local in-plane coordinates define local cur-
vatures. Specifically, defining c′3(cα ) to be the c3 direction of the
neighbor monomer in the cα direction of the particle, we can de-
fine a discrete approximation to the curvature tensor at the loca-
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Fig. 10 Pairwise elasticity due to attractor interactions. The energy of a pair of monomers for different deformations away from the preferred
configuration is shown for θ0 = 10◦,ra = 0.11d, with the harmonic approximation shown as a dashed curve. The repulsive interactions become nonzero
at deformations much larger than seen for assemblies in this study, e.g. for compression δ r <−0.1d or bending deformation angle |∆θ |> 20◦.

tion of a single monomer as

Cαβ ≃ d−1[c′3(cα )− c3] · cβ . (16)

Combining this relation with the relative rotations between
monomer centers and binding faces results in the target curva-
tures defined in the main text (i.e. (C0)11 = −(C0)22 ≃ θ∥/d and
(C0)12 = (C0)21 ≃ θ⊥/d)

The monomer design consists of an array of repulsive sites that
define an excluded volume to monomer overlap, and attractive
sites on four sides that determine the geometry of bound neigh-
bors. This design is inspired by previous work on tubule-forming
monomers in Ref. 55–57. Repulsive sites are of a single type and
interact with the repulsive sites on other monomers according to
the Weeks-Chandler-Anderson potential,

uWCA(r) =

 4ε

[(
σ

r

)12
−
(

σ

r

)6
−
(

σ

rc

)12
+

(
σ

rc

)6
]
, r ≤ rc

0, r > rc

(17)

where r is the distance between interacting sites, σ and ε are
the reference distance and energy units chosen for simulations.
For this study, the soft attractive interaction was chosen so that
u0 = 14ε, consistent with attractive interaction strengths which fa-
vored finite temperature assembly in the tube-forming system.55

The cutoff length rc = 21/6σ yields a purely repulsive interaction
that reaches zero energy and zero force at r = rc. The nominal
monomer width is related to σ by d = (2.4+ 21/6)σ , which fol-
lows from the attractive site arrangement specified below.

The arrangement of a monomer’s 27 repulsive sites can be spec-
ified in terms of the orthonormal coordinate frame for a given
monomer with c1,c2 the bonding directions and c3 = c1 × c2. The
arrangement varies with curvature angles θ0,φ0 to maintain sep-
aration between repulsive sites of bound neighbors that are close
to the target configuration. Adopting indices i1, i2, i3 that each
take values −1,0,1, the repulsive site coordinates are

Rrep
i1,i2,i3 = σ

[
i1 + i1i3 cos(2φ0) tan

(
θ0
2

)
+ i2i3 sin(2φ0) tan

(
θ0
2

)]
c1

+σ

[
i2 − i2i3 cos(2φ0) tan

(
θ0
2

)
+ i1i3 sin(2φ0) tan

(
θ0
2

)]
c2

+σ i3 c3. (18)

Repulsive sites in the midplane z = 0 are arranged on the cor-
ners and edge centers of a square of side length 2σ , the repul-
sive interaction has range 21/6σ , so the attractive sites are chosen
to sit approximately 0.2σ from the effective excluded volume of
the monomer. Note that for φ0 ̸= 0 the locations of the repul-
sive sites do not lie along planar faces (as shown schematically in
Fig. 3c), but more accurately instead skew quadrilateral surfaces
which deviate slightly from planarity. In Fig. 10, plots of pairwise
energy under small deformations illustrate that repulsive sites do
not play a role for the deformations up to the point of yielding
(which can be roughly identified with the inflection point for en-
ergy vs. displacement), and for the parameters used in this work.

The interaction between attractive sites of the same type is
given by the pair potential defined in Eq. 8 and there is no in-
teraction between sites of different type. The 8 types at differ-
ent locations (see Fig. 3) are used to control monomer face-face
binding orientation. Based on the form of Eq. 8, the depth of
each attractive potential pair is −u0/4, so that an unfrustrated
(θ0 = 0) bulk assembly has potential energy −2u0 per monomer
(there is energy −u0 per bond in the assembly, consisting of four
attractive site pairs). There are four attractive sites on each side
of the monomer (arrayed on a common plane), with correspond-
ing types on opposite sides (see attractive sites colored by type in
Fig. 3b-c).

The attractive sites on each side are arrayed in a strictly planar
configuration, which is not generally the case for the repulsive
sites arranged according to Eq. 18. For the side binding with re-
spect to the cα direction, the four attractive sites have center of
mass at 1

2 dcα with respect to the monomer center. From the cen-
ter of mass, each attractive site is displaced a distance of ≈ t/2=σ

in either the ±c′3 (i.e. vertically on the face) or ±cα
′ × c′3 (i.e.

horizontally on the face), where c′3 and cα
′ are the monomer’s

coordinate frame after rotation about rα by θ0/2.
The two attractive sites per side that are activated by both

bending and twist deformations discussed below, displaced “ver-
tically” from the center of each binding face, are defined using
the monomer coordinate frame c1,c2,c3 by
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Rvert
i, j =

[
d
2 cos

( iπ
2
)
+σ(−1)i(−1) j tan

(
θ0
2

)
cos
(

πi
2 +2φ0

)]
c1

+
[

d
2 sin

( iπ
2
)
+σ(−1)i(−1) j tan

(
θ0
2

)
sin
(

πi
2 +2φ0

)]
c2

+σ(−1) jc3, (19)

for i = 1..4 indexing the four bonding directions and j = 1,2 ref-
erencing sites above/below the monomer midplane. From the
coordinates above, the magnitude of the displacement from the
midplane is tvert/2 = σ

√
1+ tan2(θ0/2).

The attractive sites activated with twisting rotation about the
bond axis but not bending rotations about the orthogonal direc-
tion, displaced “horizontally” from the center of the binding face,
are defined by

Rhoriz
i, j =

[
d
2 cos

( iπ
2
)
−σ(−1)i(−1) j sin

(
πi
2

)]
c1

+
[

d
2 sin

( iπ
2
)
+σ(−1)i(−1) j cos

(
πi
2
)]

c2

+σ(−1)1+i(−1) j sin(2φ0) tan
(

θ0
2

)
c3, (20)

for i = 1..4 indexing bond directions again and j = 1,2 indexing
sites displaced in opposite directions on the same monomer face.
From these coordinates, the displacement of these attractors from

the binding face center is thoriz/2 = σ

√
1+ sin2(2φ0) tan2(θ0/2).

While our elastic theory treats each monomer as perfectly rigid,
the shape of monomers is enforced via harmonic potentials of the
form 1

2 kspring(r − r0)
2 where kspring is the spring constant and r0

is the rest length to maintain site separations according to the
geometry above. Springs are applied between nearby repulsive
sites, for all pairs with indices i1, i2, i3 such that each index differ
by at most one (i.e. springs between nearest, next-nearest, and
next-next nearest neighbors). Each attractive site has springs en-
forcing its distance to the six nearest repulsive sites. All springs
are kept at the same spring constant, which is incremented during
energy minimization as detailed in Sec. 2.2.

The attractive site positioning described above determines the
relative cost of different elastic deformations of the assembly. In
Fig. A10, the potential energy of a bound pair of monomers
is plotted for deformations away from the optimal (target) pair
configuration with energy −u0, corresponding to all four attrac-
tive sites in contact with respective sites on the other monomer.
Compression or stretching deformations, due to center-of-mass
displacement by a distance ∆r that equally affects all four at-
tractive sites, change the potential energy to leading order by
1
2 kstretch∆r2 with kstretch = 4∂ 2

r u(r) = π2u0/2r2
a. Bending rotation,

of an angle ∆θ away from the preferred bend angle θ∥ and about
an axis through the horizontal attractive sites, displaces verti-
cal attractive sites by a distance ∆θ tvert/2 and changes the po-
tential energy of the configuration to leading order by 1

2 k∥∆θ 2

with k∥ = π2t2
vertu0/16r2

a. Twisting rotation of an angle ∆θ away
from the preferred twist changes the potential energy by 1

2 k⊥∆θ 2

with k⊥ = π2(t2
vert + t2

horiz)u0/16r2
a due to displacement of vertical

and horizontal attractive sites. These three pairwise elastic con-

stants determine the continuum model elastic constants relevant
to stress accumulation in the assembly, discussed in the next sec-
tion on the continuum theory. These constants depend weakly
with θ0 and φ0 via tvert and thoriz, which range from tvert, thoriz = 2σ

up to tvert, thoriz ≈ 2.008σ for θ0 = 10◦, so that it approximately
holds that tvert ≈ thoriz ≈ 2σ . We therefore use a single elastic
thickness parameter t ≡ 2σ independent of monomer shape pa-
rameters.

B Continuum elastic model for anisotropic mem-
branes

In this section, continuum theory predictions of wedge assem-
bly energetics are derived, namely the harmonic elastic flattening
energy E∞(φ0), the harmonic elastic energy of ribbons and rings
E(w,φ0), characteristic shape-flattening size w∗(φ0) and numerical
solutions for zero-temperature escape size wmax(φ0). These show
the role of anisotropy of the assembly, as presented along with
the discrete-monomer numerical results in the main text: the in-
plane stretching cost depends only on a single elastic modulus Y
whereas the out-of-plane bending and the range of size control
are dependent on the anisotropic bending costs B∥,B⊥ and pre-
ferred direction of curvature φ0.

The continuum model presented here follows previous the-
ory that captured flattening of frustrated membranes16,43,46 and
the equivalent description of shape selection in frustrated elas-
tic sheets.45 The model predictions relevant to this study, includ-
ing stress accumulation in the self-limiting regime (narrow limit),
flattening transition and flattening cost are captured in an approx-
imate description of the assembly geometry described by a single
curvature tensor with components Cxx,Cyy,Cxy. This is an approx-
imation to the shape of either slender ribbon or ring assembly,
both with translational symmetry along the midline, and it is ex-
act for the tubule-shaped membrane which is achieved in the limit
of flattening w → ∞ without yielding. A correction to the theory
that accounts for varying curvature throughout the assembly, in
the closed-ring case φ0 = 0, is detailed at the end of this appendix.
To map the discrete wedge model to the continuum model, we ad-
ditionally assume wedge monomer orientations stay aligned with
the surface, so the monomer frame direction c3 is aligned every-
where with the local surface normal of the assembly.

The elastic energy of the assembly is partitioned into two terms,
applicable for the wedge assembly in the case of small deforma-
tions when the harmonic approximation to the attractive poten-
tial results in separate terms for stretching, bending and twist de-
formations of wedge bonds derived in the previous section. The
continuum elastic energy is

Eelastic = Estrain +Ebend (21)

describing respective elastic costs due to monomer spacing de-
viating from d and gradients in monomer orientations deviating
from the preferred angles θ∥ and θ⊥.

The stretching cost is derived from the in-plane response to
given curvatures Cxx,Cyy,Cxy and the monomer preferred config-
uration, i.e. a square lattice with preferred spacing ≈ d. For a
2D material with square symmetry, the full elastic energy has the
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form

Estrain =
∫

dA
{

λ

2
(uxx +uyy)

2 +µ(u2
xx +2u2

xy +u2
yy)+λ⊥uxxuyy

}
, (22)

where ui j is the strain tensor and λ ,µ,λ⊥ elastic constants.70

The corresponding stress tensor σi j satisfying that Estrain =
1
2
∫

dAσi jui j, is related to the strain by uxx = (1/Y )
(

σxx −
σyy(λ +λ⊥)/(λ +2µ)

)
,uyy = (1/Y )

(
σyy −σxx(λ +λ⊥)/(λ + 2µ)

)
,

and σxy = uxy/(2µ) where

Y ≡ (2µ −λ⊥)(2λ +2µ +λ⊥)
λ +2µ

(23)

is the Young’s modulus measured upon loading parallel to either
of the square lattice close-packed directions. The strain depends
on out-of-plane deflections, via ui j =

1
2 (∂iu j +∂ jui+∂i f ∂ j f ) where

ui is the in-plane displacement field and f (x,y) is the deflection
out-of-plane.51 A condition for a single-valued displacement field,
the compatibility condition, is derived from applying εikε jl∂k∂lui j

to the relations of strain to both the stress and the displacements.
The special case of translational symmetry in the y direction, so
that gradients in y vanish, implies σxx,σxy are constants by me-
chanical equilibrium ∂iσi j = 0, and compatibility becomes

εikε jl∂k∂lui j =
1
Y

∂
2
x σyy =−KG, (24)

where KG = CxxCyy −C2
xy ≃ det∂i∂ j f is the Gaussian curvature,

with the relation to f (x,y) under the small-slope approximation.
One finds the constants of integration that fully determine σi j by
minimizing over Estrain. Thus, the continuum model expression
for stretching cost of slender ribbons or rings of length L and nar-
row width w is

Estrain

wL
=

Y
1440

(CxxCyy −C2
xy)

2Lw5. (25)

We note that different prefactors appear in the same “narrow-
ribbon" constant curvature calculations in other Refs.9,18,43,71,
with specific Poisson ratio dependence, while our result in eq.
(25) is in agreement with the (Poisson ratio-independent) results
of Refs.8,16. We believe this discrepancy to derive from the ne-
glect of vanishing longitudinal net stress along the ribbon (i.e.∫+W/2
−W/2 dx σyy(x) = 0) in the former group of references. The fit-

free agreement of numerical results presented in Fig. 5 with the
eq. (25) is consistent with this conclusion.

The Young’s modulus Y is the response to uniaxial stress ap-
plied in x or y coordinate directions, which are the bonding direc-
tions for the wedge model. The stretching response of the assem-
bly then derives from the pairwise stretching of bonds described
in the previous section, so that taking the continuum limit of a
square lattice of springs with spacing d, and extension along the
bond direction, we have the form of the Young’s modulus given
in eq. (10), Y = kstretch.

The harmonic bending energy is also anisotropic. The most
general form for the harmonic bending energy of membranes with

anisotropy arising from distinct in-plane directions is given

Ebend =
∫

dA
{1

2
Bxx(Cxx −C0

xx)
2 +

1
2

Byy(Cyy −C0
yy)

2

+Bxy(Cxy −C0
xy)

2 +
1
2

B̄(CxxCyy −C2
xy)
}
, (26)

equivalent to the most general form given in Helfrich and Prost41,
where it was emphasized that C0

xy ̸= 0 arises from molecular chi-
ral asymmetry despite the achiral symmetry of the curvature
quadratic form. The case of C0

xx = C0
yy, with zero Gaussian cur-

vature modulus K̄ = 0 was considered in Ref. 16 to explain chi-
ral amphiphile assemblies. The more general case with varying
C0

xx,C
0
yy was connected to internally stressed elastic solids in Ref.

46, where C0
xy ̸= 0 could be realized from stretched bilayers with-

out material chirality, instead the assignment of x,y via the bound-
ary breaks symmetry and results in chiral shapes. The interaction
specificity in the wedge model distinguishes bonding in the two
lattice row directions, so wedge monomers are notably chiral for
the case φ0 > 0. If the attractive sites were arranged differently
on the x− and y− oriented faces, the monomers could in prin-
ciple have Bxx ̸= Byy. The saddle-wedge design presented in this
study has Bxx = Byy = B∥ ̸= Bxy = B⊥, with consequences for size
control derived below. The role of Poisson’s ratio in the elastic
sheet description of Refs. 43,46 can be mapped to the Helfrich-
Prost bending energy functional of the assembly above, effectively
modulating both B∥/B⊥ and C0

xx,C
0
yy. Here, we further develop

the analysis with varying φ0 but constant preferred principal cur-
vatures set by κ0.

The bending elastic cost derives from the monomer attractive
site interactions and the target pairwise configuration derived in
the previous appendix. Assuming monomers have their frame
direction c3 aligned with the assembly surface normal, the devi-
ation from preferred bend angle in the x direction is taken to be
dCxx −θ

∥
0 , in the y direction dCyy +θ

∥
0 and the deviation of twist

angle in either direction is dCxy −θ⊥
0 . The cost of bend deforma-

tions for a single monomer with these local curvature values, is
then the sum of potential energy from displacements of the two
vertical attractive sites in either direction and of the four horizon-
tal attractive sites

E(wedge)
bend = 2u

(1
2

tvert

√
(d Cxx −θ

∥
0 )

2 +(d Cxy −θ⊥
0 )2

)
+2u

(1
2

tvert

√
(d Cyy +θ

∥
0 )

2 +(d Cxy −θ⊥
0 )2

)
+4u

(1
2

thoriz(d Cxy −θ
⊥
0 )
)
+2u0, (27)

where the attractive potential is, again, u(r) = − 1
8 u0

[
1 +

cos
(

πr/ra

)]
when r < ra. Summing over all wedges (per unit

area d2), assuming small deformations so that u(r) ≈ − 1
4 u0 +

π2u0r2/(16r2
a), the bending energy takes the (harmonic) form of

Eq. (2) with the moduli given in Eq. (10). Thus, the monomer
design has anisotropic bending constants, with B⊥ = 2B∥ arising
from the configuration with two attractive sites displaced under
bending and all four attractive sites displaced under twisting de-
formation.20 | 1–24Journal Name, [year], [vol.],
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The NR theory elastic cost of the flattened state E∞ is found by
optimizing E under the constraint that the curvatures describe a
cylindrical surface with zero Gaussian curvature, CxxCyy−C2

xy = 0.
Thus, monomers arrange with preferred spacing d and there is
zero stretching energy so E = Ebend (minimized over subject KG =

0). Minimization Ebend subject to KG = 0 leads to two degenerate
solutions, shown Fig. 11 for φ0 = 22.5◦ and 45◦. In the harmonic
approximation described by equation 2, one finds that both the
optimal shape and energy depend on both φ0 and the twist-bend
anisotropy. When B∥ = B⊥ (as studied in the case of Ref. 17),
one of two equal-energy shape solutions is Cxy/κ0 = 1

2 sin(2φ0),
Cxx/κ0 = 1

2 (cos(2φ0)− 1), and Cyy/κ0 = − 1
2 (cos(2φ0)+ 1), giving

an energy E∞/A = 1
2 B∥κ2

0 that is independent of φ0.
For the present case of monomer assembly, where 2B∥ = B⊥,

one of the two shape solutions is

Cxy/κ0 =
2
3

sin(2φ0)

Cxx/κ0 =
1
2

cos(2φ0)−
1
2

√
cos2(2φ0)+4C2

xy

Cyy = −1
2

cos(2φ0)−
1
2

√
cos2(2φ0)+4C2

xy (28)

corresponding to (Hookean elastic) continuum result for flatten-
ing energy,

E∞

A
=

1
2

B∥κ
2
0 (1+

1
3

sin2(2φ0)),(when B⊥ = 2B∥), (29)

and more generally,

E∞

A
=

1
2

B∥κ
2
0

[
1+

B⊥−B∥
B⊥+B∥

sin2(2φ0)
]
. (30)

This is the expression plotted in Fig. 5b for the harmonic limit
θ0/ra → 0. To get the corrected result accounting for non-linear
strain softening of the potential, also plotted in Fig. 5b, eq. (27)
was numerically optimized over Cxy,Cxx with Cyy = C2

xy/Cxx to
produce the curves with nonlinear bending energy and nonzero
θ0/ra.

The full NR elastic energy for the monomer model is the sum
of the narrow-ribbon limit Estrain and the harmonic approximation
of Ebend evaluated with constant curvatures everywhere:

E
wL

=
Y

1440
(CxxCyy −C2

xy)
2w4

+
1
2

B∥
[
(Cxx −κ0 cos(2φ0))

2 +(Cyy +κ0 cos(2φ0))
2
]

+B⊥(Cxy −κ0 sin(2φ0))
2, (31)

which is then optimized over the curvatures Ci j for varying w.
When B∥ = B⊥, the branches of the equilibrium solution are

characterized by a length w∗ =
[
2880B∥/(Y κ2

0 )
]1/4

associated with

the transition from unflattened shape at small w with zero mean
curvature to one of two flattened branches of degenerate energy
with analytical forms given in Ref. 43 up to a constant arising
from different approximations for stretching energy. One can ver-

ify that the energy in both narrow and wide branches is indepen-
dent of φ0. In general, we find

w∗ =
[ 2880B∥(B⊥+B∥)2

Y κ2
0 ((B⊥+B∥)2 +(B⊥−B∥)(3B⊥+B∥)sin2(2φ0))

]1/4
, (32)

and for the specific present case of the monomer model with
anisotropic curvature moduli,

w∗ =
[ 2880B∥

Y κ2
0 (1+

7
9 sin2(2φ0))

]1/4
, for B⊥ = 2B∥ (33)

so that increasing φ0, i.e. increasing preferred twist curvature,
results in the flattening at a smaller characteristic width. The
energy of the wide branch has the form,

Eelastic(w ≥ w∗)
A

=
E∞

A
−

360B2
∥

Y w4 , for B⊥ = 2B∥. (34)

The wide branch approaches the harmonic approximation to
the flattening energy E∞ that itself depends on φ0. The decay
of the residual energy ∝ w−4 has the consequence that there is
no surface energy γ such that the model energy density U/A =

E(w)/A+ 2γ/w has a minimum in the wide branch. Because of
this, w∗ is strict upper bound for the optimal size w0 that can be
obtained from this theory, and the analytical expression for w∗
decreases with φ0 despite the increasing flattening cost with φ0

for this model.
Local minima exist for any w < w∗ in the narrow branch, with

a discontinuity in the second derivative of E(w) present at w =

w∗. In the narrow branch, the maximum self-limiting size wmax is
taken to be the minimum to U/A = E(w)/A+ 2γ/w at which the
local minimum has equal energy to the bulk tube state. That is,
following the framework in Ref. 7, self-limiting size is achievable
when the accumulant is increasing, ∂wA = ∂w(w(E∞−E(w))/A)>
0. This is found to always occur at a size smaller than w∗ in the
model. The solution wmax satisfying ∂wA = 0 from numerically
solving for the narrow branch is plotted in Fig. 12.

In general, a more accurate description of shape solutions
with varying curvatures is expected to include a boundary layer
that develops as w → ∞, so the residual energy of wide ribbons
Eboundary ∼ 1/w allows for locally optimal sizes at any width. The
calculation at the end of this section, however, shows that the cor-
rection in wmax is small for φ0 = 0. The boundary layer correction
may have an effect on the dependence of wmax with φ0 : even for
the isotropic case B⊥ = B∥, the boundary layer length was shown
to scale depending on the tangential curvature of the flattened

ribbon lboundary ∼
√√

B/Y/Cyy in Ref. 53, and as a consequence
w∗ increases with increasing φ0 supported by finite-element nu-
merical results in Ref. 46. The weak dependence of wmax on φ0 in
the numerics presented in this study may be affected by the effect
captured in this boundary layer scaling : increasing φ0 decreases
tangential curvature Cyy along the boundary of the flattened rib-
bon. Whereas the initial elastic energy growth E ∼ Y κ4

0 w4 de-
pends only on the intrinsic geometry, the extrinsic geometry, φ0,
can affect the energetics, and range of equilibrium size control,
via the mechanics at the boundary.
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Fig. 11 Two flattened shape minima are predicted in the wide branch of ribbon minima. Theory prediction and numerical results are shown for the
case θ0 = 5◦ for centerline helical pitch P and radius R in (a) and (d), and centerline curvatures Cxx,Cyy in (b) and (e) both pre- and post-flattening
extracted from simulated monomer ground states. Dashed curves denote secondary branches that are of equal energy in the approximate theory. For
the case φ0 = 22.5◦ shown in (a-c), corrections to the theory predict in Ref. 53 predict that the dashed, smaller-pitch branch will be of lower energy.
Numerical results (points) consistently land in the higher-pitch shape solution. For the case φ0 = 45◦, shown in (d-f), the two flattened shapes are of
equal energy, pitch and handedness but related by rotation about the helical axis R →−R.

For the case of the φ0 = 0 ring assembly we derive the bound-
ary layer corrected solution starting from harmonic elastic energy
described by equations 22 and 2, limited to axisymmetric shapes,
i.e. translation along the y coordinate. Here, the optimal shape
is allowed to adopt in-plane displacement ux(x) transverse to the
ring and out-of-plane displacement h(x) in the radial direction,
expanding around a cylindrical shape with principal curvature

Cyy =−κ0 with linearized solution for h(x)κ0 ≪ 1. One finds that

Cyy ≃−κ0 +κ
2
0 h (35)

Cxx ≃ ∂
2
x h (36)

Cxy = 0 (37)

uxx = ∂xux +
1
2

(
(∂xh)2 +(∂xux)

2
)

(38)

uxy = 0 (39)

uyy = κ0h+
1
2

κ
2
0 h2 (40)
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Fig. 12 (a) Theory predictions (curves) are compared to numerical results (points) on the apparent critical width of the shape transition w∗, which
is measured from the apparent discontinuity in ribbon curvature vs. w as in Fig. 11. (b) Sequences of numerically minimized structures are shown,
where numerical estimates of w∗ (vertical dashed line) are determined from the apparent change in structure based on these visualizations. (c) The
solid grey curve is the maximum size predicted by the continuum theory with shapes restricted to uniform curvature, rescaled by material parameters,
wmax(B∥/Y κ2

0 )
1/4. The dashed black line is the correction for φ0 = 0 from allowing curvature to vary along the ring width. The characteristic flattening

size w∗ is an upper bound to the maximum size, plotted as a dashed red curve. Open circles are w∗ results from finite element numerics taken from
Ref. 17. (d) The corresponding curves for the theory when B∥ = B⊥ have no dependence on φ0 as a consequence of the isotropic flattening cost.
Numerical results from Ref. 17 are plotted as open circles to show the magnitude of the effect that the authors attribute to the role of the boundary
layer, supported by scaling arguments in Ref. 53. (e) Curves of constant φ are plotted for the equilibrium size w0 as a function of line tension γ.
The curves are plotted as solid up until wmax, when the minimum at finite w becomes unstable to the bulk tube energy E∞. The dashed curves track
metastable w0 up until w∗.
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and defining characteristic length λ :

λ ≡
( 4B∥

Y κ2
0

)1/4
(41)

E∞ =
1
2

B∥κ
2
0 wL (42)

Eelastic = E∞

(
1+2(λ/w)

cos(w/λ )− cosh(w/λ )

sin(w/λ )+ sinh(w/λ )

)
(43)

E
wL

≃ 1
1440

Y κ
4
0 w4,(when w ≪ λ ). (44)

Where the w → 0 limit on the last line is in agreement with the
result of the uniform curvature approximation. Following the ac-
cumulant analysis of Ref. 7, the maximum possible self-limited
size becomes

wmax = πλ . (45)

For φ0 = 0, w∗ = (720)1/4λ ≈ 5.18λ , and approximately 1.3%
greater than wmax from the uniform curvature result, as shown by
the comparison in Fig. 12. In this way, corrections to the model
results with the uniform curvature approximation are expected to
be small for the energetics up to wmax. A similar result for the
case of φ0 = 45◦ was included in Ref. 54.
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