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Abstract
      Azoarene photoswitches are versatile molecules that interconvert from their E-isomer to their 
Z-isomer with light. Azobenzene is a prototypical photoswitch but its derivatives can be poorly 
suited for in vivo applications such as photopharmacology due to undesired photochemical 
reactions promoted by ultraviolet light and its relatively short half-life (t1/2) of the Z-isomer (2 
days). Experimental and computational studies suggest that these properties (λmax of the E isomer 
and t1/2 of the Z-isomer) are inversely related. We identified isomeric azobisthiophenes and 
azobisfurans from a high-throughput screening study of 1700 azoarenes as photoswitch 
candidates with improved λmax

 and t1/2 values relative to azobenzene. We used density functional 
theory to predict the activation free energies, reaction free energies, and vertical excitation 
energies of the E- and Z-isomers of 2,2- and 3,3-substituted azobisthiophenes and azobisfurans. 
The half-lives depend on whether the heterocycles are 𝜋-conjugated or cross-conjugated with the 
diazo 𝜋-bond. The 2,2-substituted azoarenes both have t1/2 values on the scale of 1 hour, while 
the 3,3-analogues have computed half-lives of 40 and 230 years (thiophene and furan, 
respectively). The 2,2-substituted heteroazoarenes have significantly higher λmax

 absorptions than 
their 3,3-substituted analogues: 76 nm for azofuran and 77 nm for azothiophene. 

Introduction
      Photoswitches are molecules that are reversibly and chemically interconverted between two 
states with light. Azobenzene is the most widely studied photoswitch and has a well-documented 
synthesis via diazonium coupling reactions Azobenzene is the most widely studied photoswitch 
and has been synthesized using cross-coupling reactions1-3, nucleophilic aromatic substitution4, 
Bayer-Mills reactions5-6, and diazonium coupling.7 The relatively small size of azobenzene, 
along with the significant chemical and structural changes resulting from isomerization, has 
enabled its use for the spatiotemporal control of proteins, lipids, neurotransmitters, neurons, and 
carbohydrates.8-20 Phenyl functionalization can improve photophysical properties for applications 
in chemical biology21-22 and materials science.23-27 Scheme 1 shows the photochemical E  Z 
conversion of azobenzene and the subsequent Z  E reversion, which can occur thermally or 
photochemically. Azobenzene requires ultraviolet light (320 nm) to promote the E → Z 
isomerization, limiting its utility in vivo due to undesired light-promoted dimerizations, 
destruction of living tissue from UV-light, and low light penetrability in living tissue.17, 28-29 
Further, the meta-stable Z-isomer thermally reverts to the E isomer and has a half-life (t1/2) of 2 
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days at room temperature in acetonitrile. This relatively short half-life results in an unstable 
photostationary state (PSS), thus limiting photoswitch efficacy where bistability is needed.14 As 
such, an ideal photoswitch features a long-lived t1/2 (e.g., weeks to months), an E-isomer λmax

 in 
the visible range, and well-separated λmax

 values for the E and Z isomers to prevent bimodal 
isomerization. 

Scheme 1. The azobenzene photoswitch reaction. The E  Z isomerization (top) occurs 
photochemically under UV light. The Z  E reversion (bottom) occurs thermally or 
photochemically under visible light.

      Woolley has shown how to tune the properties of azobenzenes through functionalizing the 
phenyl rings.17 They have shown how the λmax can be redshifted such that the azoarene will 
undergo photoswitching under visible light and in physiological conditions.24, 30-31 Since the early 
2000’s, there has been an effort to design an ideal azoarene photoswitch substituted with aryl 
groups other than phenyl rings. Reports have shown that λmax absorptions can be redshifted into 
the visible range by replacing phenyl groups with heteroaryl rings (benzodioxanes32, 
diazinines31, pyrroles33, pyrazoles34-35 and imidazoles36-39) and by functionalizing the aryl 
groups.32, 40-54  These heteroazoarenes have relatively high E  Z photochemical reaction yields, 
ranging between 46-98%, and Z-isomer half-lives ranging from 1 second up to 46 years. The 
range in E-isomer λmax for these heteroazoarenes is 310-720 nm, pushing them deep into the 
visible light range. There is an inverse relationship between λmax and t1/2 for these 
heteroazoarenes, those with the highest t1/2 have the smallest λmax. Scheme 2 shows 
heteroazoarenes with heteroaryl rings, and the heteroazoarenes of each type with the longest t1/2 
values are shown in Figure 1. Thermal Z → E reactions can proceed through inversion or rotation 
mechanistic pathways.55-58 Past computational studies have found that the inversion mechanism 
is preferred for azoarene thermal Z → E isomerization reactions.46, 56-61

Scheme 2. (a) Nitrogen-containing azoarene photoswitches studied by Fuchter. (b) Hemi-
azothiophene photoswitches studied by Wegner and Heindl. (c) Azobispyrazole photoswitches 

synthesized and studied by Li.
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      Thiophene-containing heteroazoarenes have well-separated E and Z absorption bands and a 
high yield of Z-isomer for the E → Z photoisomerization reaction (94-98%). 2-hemi-
azothiophene and its derivatives have been studied by Wegner, Dreuw, and Wachtveitl44-45 
(Scheme 2b), and two (3,3) bis-azothiophenes (Figure 1) have been studied by Perry.62 The 
unsubstituted 2-hemi-azothiophene (Scheme 2b, left) has a Z-isomer t1/2 of 7 hours in 
acetonitrile. Wegner and Heindl44 showed that electron-donating groups (EDG) at the phenyl 
para position (Me and OMe groups) of 2-hemi-azothiophenes lower the t1/2 of the Z-isomer to 
0.5 and 1.9 hours (methyl and methoxy substituent, respectively). Electron withdrawing groups 
(EWGs) increase the t1/2 to 14.3 and 17.8 hours (CF3 and CN, respectively). Substitution of the 
thiophene ring with an electron-donating group (OMe) lowered the t1/2 to 2.8 hours. Installing 
push-pull substituents (OMe and CN groups) on an azothiophene lowered the t1/2 to 9 minutes. 
The λmax is 365 nm for the unsubstituted hemi-azothiophene and 405 nm for the push-pull hemi-
azothiophene. All hemi-thiophene E-isomer λmax values are red-shifted towards the visible range, 
an improvement over azobenzene. Figure 1 shows the heteroazoarenes photoswitches of each 
type with the longest measured half-lives.

Figure 1. Three azoarene structures developed by Perry and co-workers (left), Li and co-workers 
(center), and Fuchter and co-workers (right). Experimental half-lives are provided, along with 

experimental conditions.

      Although recent studies have increased the Z-isomer t1/2 or the E isomer λmax, experimental 
and theoretical studies on heteroazoarenes generally show an inverse relationship between t1/2 
and λmax.42, 63-65 The reason for this relationship has not been well defined; there is no clear 
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connection between how the E-isomer λmax relates to the Z-isomer half-life. We have computed 
the thermal and photophysical properties of isomeric bis-heteroazoarenes photoswitches (two 
azobisfurans and two azobisthiophenes) using density functional theory (DFT) and time-
dependent density functional theory (TD-DFT). The Z isomers of 1, 2, 3, and 4 are shown in 
Figure 2. Watchtveitl and co-workers initially reported derivatives of 3-Z.44-45 The (3,3)-
azobisthiophene (4) and one derivative with ester groups substituted at the 2-position were 
synthesized, and UV/Vis spectra and Z-isomer half-lives were measured by Perry and co-
workers.62 These molecules had t1/2 and λmax

 values of 38 days and 316 nm (unsubstituted 
azothiophene) and 14 days and 350 nm (ester-substituted azothiophene).
      The four heteroazoarenes presented in this study (1, 2, 3, and 4) were obtained from the 
results of a high-throughput virtual screening (HVTS) study, which generated 1700 
heteroazoarenes molecules for the VERDE materials database.66 We calculated the λmax and t1/2 

values for all molecules, which highlighted the 77 and 76 nm difference in λmax between the (2,2) 
and (3,3) substituted structures and a 106 range in half-lives. We also highlight the cross-
conjugated π-systems in 2 and 4. Cross-conjugated molecules have incomplete π-delocalization, 
causing there to be two isolated π-systems in a molecule instead of one fully delocalized system. 
Cross-conjugation impacts photophysical properties by increasing the HOMO-LUMO gap, thus 
lowering λmax. Schmidt and co-workers showed that cross-conjugated diynes have lower λmax 
values than fully conjugated diynes by up to 39 nm because the frontier molecular orbitals are 
not fully delocalized.67 Krenske and co-workers showed that thiol nucleophilic additions were 
accelerated when the enones were cross-conjugated.68 Sherburn accessed dendralenes with cross-
coupling chemistry and found enhanced reactivity towards dienophiles in Diels-Alder reactions. 
Cross-trienamines were used in asymmetric organocatalysis by Jorgensen and co-workers; 
experiments and computations demonstrate that relatively high-lying HOMOs increase the 
cycloaddition reactivity towards oxindoles and azlactones.69-70 Cross-conjugated trienamines 
have been used to enantioselectively access polycyclic natural products such as Lycopladine71, 
bisorbicillinoids72, and sesquiterpenes.73

Figure 2. Four heteroazoarenes considered for this study and their calculated t1/2 and λmax
 values.

Results and discussion
      High-Throughput Screening Process. The initial screening of azoarenes was carried out 
using the high-throughput screening workflow highlighted in an earlier paper from our group.66 
An initial set of azoarenes used included an unsubstituted azobenzene molecule, along with 
azothiophene, azofuran, and azopyrrole. These molecules are presented in Scheme 3.
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Scheme 3. Molecules used for the initial high-throughput screening.

      Using the substitution patterns from the workflow, we generated 1,540 molecules for initial 
screening, and measured their λmax. From this initial screening, we observed a large difference in 
the λmax of positional isomers 1 and 2, and 3 and 4. Next, we calculated the thermal free energy 
barriers for the Z  E thermal isomerization reaction for the two sets of positional isomers. 
These results highlighted the differences in t1/2 between the (2,2) (1 and 3) and (3,3) (2 and 4) 
azoarenes. 

      We performed IRC calculations and geometry optimizations to obtain the reactive 
conformers for the lowest energy transition states of azofurans 1-TS and 2-TS, and 
azothiophenes 3-TS and 4-TS. Figure 3 shows the optimized reactants 1-Z and 2-Z, along with 
their optimized transition structures 1-TS and 2-TS, and Figure 4 shows the energies and 
geometries of transition structures of (3-4)-Z, (3-4)-TS. 2-Z has an isomerization barrier that is 
8.5 kcal mol–1 higher than the corresponding azofuran 1-Z. We sought to understand how the 
electronic structures of (1-4)-Z affect the 106-fold range in half-lives. The transition states feature 
coplanar aryl groups; we quantify this coplanarity with an out-of-plane angle (θ). θ is the angle 
between two normal vectors to the planes of the aryl rings. We will first discuss the structures of 
the azofuran reactants 1-Z and 2-Z, and inversion Z  E transition structures, 1-TS and 2-TS. 
We quantify the differences in geometry between the reactants and transition states by measuring 
the ring co-planarity (θ) and key bond lengths that describe the changes in 𝜋-conjugation. We 
then compare these structures to 3 and 4 to understand how bisazothiophenes differ from 
bisazofurans.  The frontier molecular orbitals were computed; we demonstrate how their energies 
and overlap are affected by cross-conjugation.
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Figure 3. Top: Optimized azofuran reactive conformers 1-Z (left) and 2-Z (right). Bond lengths 
are given in Angstroms (Å). The dihedral angle (θ) measures the CNNC angle. Bottom: 

Computed azofuran transition states 1-TS (left) and 2-TS (right). Bond lengths are shown in 
angstroms (Å). The out-of-plane angle, θ, measures the relative planarity of the furan rings. 

      The top portion of Figure 3 shows the optimized reactant geometries 1-Z and 2-Z. The C–C 
bond lengths in the furan rings are 1.37-1.42 Å for 1-Z and 1.35-1.45 Å for 2-Z. These distances 
correspond to aromatic C–C bond lengths. The C–O bonds range from 1.34-1.38 Å for 1-Z and 
1.34-1.37 Å for 2-Z, all consistent with aromatic C–O bond lengths in furan rings. The two 
reactants also have the same CNNC dihedral angle (θ=10°), indicating equivalent relative 
planarities of the aryl rings in both structures. The N=N 𝜋-bonds are 1.27 Å in 1-Z and 1.25 Å in 
2-Z. The C–N bonds in 2-Z (1.40 and 1.41 Å) are significantly longer than those in 1-Z (1.36 and 
1.37 Å). The C–N bond lengths in 1-Z are consistent with aromatic C–N bond distances, while 
the C–N bond distances in 2-Z more closely resemble C–N single bonds. The shorter C–N bonds 
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and the longer N=N bond indicate more electron delocalization between the furan rings in 1-Z 
than 2-Z. We will now turn our attention to the transition structures 1-TS and 2-TS.
      The ΔG‡ for 1-TS is 22.6 kcal mol–1, and the ΔG‡ for 2-TS is 31.1 kcal mol–1 for the thermal 
Z  E isomerization. The difference in activation free energies (ΔΔG‡) is 8.5 kcal mol–1, 
corresponding to half-lives of one hour and 230 years, respectively. 1-TS and 2-TS involve a 
rehybridization of one of the N atoms, which corresponds to a linearization of the NNC2 and 
NNC3 angles (NNC angles of 179° and 178°, respectively). The N=N diazo bond lengths for 1-
TS and 2-TS are 1.27 Å and 1.25 Å, respectively. These bond lengths are shorter than in the Z-
isomers, where they are 1.28 and 1.26 Å for 1-Z and 2-Z, respectively. 
      The C–C bond lengths in the furan rings range from 1.35 to 1.46 Å, consistent with aromatic 
C–C bond lengths in the crystal structure of furan (1.32 to 1.43 Å). The C–O bonds have a small 
range in 1-Z (1.34-1.38 Å) but have a larger range in 1-TS (1.32-1.45 Å). The 1.32 Å C–O bond 
length is consistent with an aromatic C–O bond length, while 1.45 Å corresponds to a C–O 
single bond. The furan on the left side (red) of 1-TS has identical C–O bond lengths (1.36 Å), 
while the furan on the right side (blue) of 1-TS has C–O bond lengths of 1.32 and 1.45 Å. This 
disparity is caused by an asymmetric resonance-donation of a furan lone pair orbital in 1-TS 
relative to 1-Z. The C–N bond lengths flanking the diazo bond are 1.38 Å and 1.26 Å. The C–N 
bond connecting the blue furan to the N=N bond significantly shortens in 1-TS from 1-Z (1.26 Å 
from 1.37 Å), indicating increased π-character, while the other C–N bond is nearly unchanged 
from 1-TS to 1-Z (1.38 Å and 1.36 Å, respectively). The relative planarity between the two rings 
(θ) is significantly different for 1-TS and 2-TS. The two furan rings in 1-TS are fully coplanar 
(θ=0°), maximizing the π-conjugation between them. 2-TS is a cross-conjugated azofuran, which 
implies that π-conjugation is between part of the aromatic π-system of the blue furan with the 
diazo bond throughout the reaction. While 2-TS also involves a rehybridization of one of the N-
atoms, the furans are not coplanar (θ=34°) because the rings are not electronically 
communicating through the diazo bond. The difference in the C–O bond lengths in 2-TS is 0.03 
Å (1.35 and 1.38 Å), which suggests that the delocalization of oxygen lone pairs substantially 
decreases. The C–N bonds flanking the N=N bond are 1.42 and 1.32 Å. As such, azoarenes 
featuring cross-conjugation do not have full π-delocalization across the diazo bond. This 
phenomenon results in the 8.5 kcal mol–1 ΔΔG‡ of these isomeric azofurans. The (2,2)-
diazofurans are 106-fold more reactive than the (3,3)-diazofurans. We now turn our attention to 
the azothiophenes 3 and 4.

Page 7 of 16 Organic & Biomolecular Chemistry



7

Figure 4. Top: Optimized azothiophene reactive conformers 3-Z (left) and 4-Z (right). The bond 
lengths are given in Angstroms (Å). The dihedral angle (θ) measures the CNNC angle. Bottom: 

Computed azothiophene transition states 3-TS (left) and 4-TS (right). Bond lengths are shown in 
angstroms (Å). The out-of-plane angle, θ, measures the relative planarity of the thiophene rings. 

       The C–C bond lengths in the thiophene rings range from 1.37 to 1.42 Å for 3-Z and 1.36 to 
1.44 Å for 4-Z. These distances correspond to aromatic C–C bond lengths. (1.35 to 1.44 Å in the 
crystal structure of thiophene). The C–S bond lengths range from 1.71-1.76 Å for 3-Z and 1.71-
1.73 Å for 4-Z. 3-Z has a CNNC dihedral of 7°; 4-Z has a CNNC dihedral of 10°. The structural 
differences between the two reactants are present in the bond distances of the CNNC bonds. The 
N=N bonds are 1.26 Å in 3-Z and 1.25 Å in 4-Z. The C–N bonds in 4-Z (1.41 and 1.42 Å) are 
longer than the analogous bonds in 3-Z (1.38 and 1.41 Å). The shorter C–N bond length in 3-Z is 
consistent with an aromatic C–N bond, and the longer C–N bond lengths in 4-Z are consistent 
with single bonds. The shorter C–N bonds and the longer N=N bond indicate that 3-Z has more 
electron delocalization between the two thiophene rings than 4-Z. 
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      The ΔG‡ for 3-TS is 22.6 kcal mol–1, and the ΔG‡ for 4-TS is 30.1 kcal mol–1. The difference 
in activation free energies (ΔΔG‡) is 7.5 kcal mol–1, corresponding to half-lives of one hour and 
40 years, respectively. Transition structures 3-TS and 4-TS involve rehybridization about one of 
the N atoms and have nearly linear NNC2 and NNC3 angles (179° and 178°, respectively). The 
N=N bonds are shorter in 3-TS (1.25 Å) and 4-TS (1.24 Å) relative to their corresponding 
reactants (1.26 Å and 1.25 Å, respectively). These bond lengths shorten as the azothiophenes 
reach their respective transition structure geometries, resulting from the rehybridization of one of 
the N atoms. 
      The C–C bond lengths in the thiophene rings range from 1.36 to 1.45 Å, which is consistent 
with aromatic C–C bond lengths in thiophene rings. The C–S bonds are 1.71-1.76 Å in 3-Z but 
diverge in 3-TS (1.70-1.84 Å) because one of the sulfur lone pairs is delocalized through the 
transition structure. This phenomenon results in the zwitterionic electronic structure shown in 
Figure 7. The shorter bond length resembles a C–S double bond,74 while the longer bond 
corresponds to a broken C–S π-bond (the aromatic C–S bonds in the crystal structure of 
thiophene are 1.74 Å).74  The red thiophene ring has two nearly identical C–S bond lengths (with 
lengths of 1.72 and 1.75 Å), indicating aromatic C–S bond lengths. The C–N bonds flanking the 
diazo bond differ substantially (1.39 and 1.28 Å) in 3-TS. The C–N bond connecting the blue 
thiophene to the N=N bond significantly shortens in 3-TS from 3-Z (1.28 Å from 1.38 Å), 
indicating increased π-conjugation, while the other C–N bond is relatively unchanged from 3-Z 
to 3-TS (1.41 and 1.39 Å, respectively). The thiophene rings of 4-TS deviate significantly from 
coplanarity (θ=46°) due to the decreased conjugation across the diazo bond. The difference in the 
C–S bond lengths in 4-TS is 0.02 Å (1.71-1.73 Å), suggesting that the sulfur delocalization 
effect significantly decreased relative to 3-TS. The C–N bonds flanking the N=N bond are 1.41 
Å and 1.32 Å. These corresponding bond lengths in 3-TS are shorter (1.39 Å and 1.28 Å) due to 
increased π-conjugation. 
      We performed time-dependent density functional theory (TD-DFT) calculations to predict 
the nature of the electronic transitions and vertical excitation energies of the E-isomers. The 
corresponding λmax derived from the vertical excitation energies of 1-E, 2-E, 3-E, and 4-E are 
382, 304, 400, and 317 nm, respectively. All electronic transitions shown below correspond to a 
single excitation from the HOMO to the LUMO (π  π*). The experimental λmax of (3,3) 
azothiophene is 332 nm.62 1-E, and 3-E have λmax which are redshifted by 78 nm and 83 nm 
relative to 2-E and 4-E, respectively. To understand the origin of the 96 nm range in λmax

 along 
this series, we computed the frontier molecular orbitals (FMOs) for 1-E, 2-E, 3-E, and 4-E 
(Figure 5). 
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Figure 5. Computed LUMOs (a) and HOMOs (b) of 1-E, 2-E, 3-E, and 4-E. The orbitals were 
calculated with PBE0-D3(BJ)/6-31+G(d,p) and IEFPCMH2O. 

      1-E and 3-E have fully delocalized π-systems across the diazo bond, while 2-E and 4-E show 
interrupted π-electron density due to their cross-conjugated nature. The cross-conjugated π-
systems in 2-E and 4-E affect the energies and energy gaps of the frontier molecular orbitals 
(HOMO and LUMO). The delocalization effect in 1-E and 3-E leads to higher-lying HOMOs 
and lower-lying LUMOs relative to 2-E and 4-E, leading to increased HOMO-LUMO gaps. The 
HOMO for 1-E is –6.18 eV, 0.41 eV higher than the HOMO for 2-E (–6.59 eV), and the HOMO 
for 3-E is –6.32 eV, 0.25 eV higher than the HOMO for 4-E (–6.58 eV). The LUMO for 1-E is –
2.64 eV, which is 0.47 eV lower than the LUMO for 2-E (–2.17 eV), and the LUMO for 3-E is –
2.81 eV, 0.53 eV lower than the LUMO for 4-E (–2.27 eV). The HOMO-LUMO gaps of 1-E and 
2-E are 3.54 eV and 4.42 eV (a 0.88 eV difference), and the same gaps are 3.51 eV and 4.31 eV 
for 3-E and 4-E, a difference of 0.80 eV. These results suggest that the cross-conjugated п-
systems lead to lower energy HOMO and higher energy LUMO orbitals for azoarene 
photoswitches, which is consistent with the effects that cross-conjugation has on other molecule 
systems. The large frontier molecular orbital gaps cause higher vertical excitation energies and 
smaller λmax.

Conclusion
      We have used DFT to determine the photophysical properties and thermal stabilities of four 
bis-diazoarene photoswitches. We predict that the thermal half-lives of the isomeric Z-isomers 
range from hours to years. The (3,3)-substituted isomers (2 and 4) have cross-conjugated π-
systems, significantly affecting the photophysical and thermal properties. This truncated π-
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conjugation leads to large optical gaps, thus requiring UV light for photoswitching (300 nm for 
2-E and 314 nm for 4-E). Those with fully π-conjugated systems (1-E and 3-E) contain 
relatively small optical gaps, which enable visible light photoswitching (376 nm and 391 nm, 
respectively). The extent of π-conjugation strongly influences the transition structures and 
thermal half-lives of the Z-isomers. 1-Z and 3-Z have a small ΔG‡, which translates to a t1/2 of 
one hour. 2-TS and 4-TS are higher in energy due to the limited π-delocalization, and the t1/2 is 
in the range of 40-230 years. Towards photoswitches with long half-lives and visible-light 
absorption, we recommend functionalizing diazo functional groups with two aryl groups, one 
cross-conjugated and one fully conjugated. For example, an azoarene with a 3-thiophene ring 
and a para-nitrophenyl ring. The strongly withdrawing nature of the nitro group redshifts the 
λmax, while the cross-conjugation contributes to higher activation free energies and long t1/2. We 
are currently exploring non-symmetric azoarenes with one phenyl ring and one cross-conjugated 
aryl ring (thiophene or furan) flanking the diazo bond.

Computational methods      
      We performed DFT calculations to predict the activation free energies (ΔG‡) of (1–4-Z). We 
computed the structures and energies of the Z-isomer, E-isomer, and transition structure for each 
reaction. First, the transition structures were optimized using the EZ-TS code recently reported 
by our group.75 After locating the lowest energy transition states, we ran intrinsic reaction 
coordinate (IRC) calculations and optimized the reactive conformers corresponding to the 
reactant (Z-isomer) and product (E-isomer) for each thermal Z → E isomerization. All 
calculations were performed using the Gaussian 16 software.76 The PBE0-D3BJ77/6-31+G(d,p)78 
model chemistry was used for all geometry optimizations and frequency calculations. Vertical 
excitation energies were calculated using TD-DFT79 with the ωB97X-D80/6-311+G(d,p) model 
chemistry in IEFPCMwater.81 The first 10 singlet excited states were calculated for all TD-DFT 
calculations.
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