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Rapid, In-Situ Detection of Chemical Warfare Agent Simulants and 
Hydrolysis Products in Bulk Soils by Low-Cost 3D-Printed Cone 
Spray Ionization Mass Spectrometry  

Hilary M. Brown,a Trevor J. McDaniel,b Karan R. Doppalapudi,a Christopher C. Mulligan,b* Patrick W. 
Fedicka* 

Chemical warfare agents (CWAs) are toxic chemicals that have been used as disabling or lethal weapons in war, terrorist 

attacks, and assasinations. The Chemical Weapons Convention (CWC) has prohibited the use, development, production, and 

stockpiling of CWAs since its initiation in 1997, however, the threat of deployment still looms.  Detection of trace CWAs post-

deployment or post-remediation, in bulk matrices such as soil, often requires lengthy sample preparation steps or extensive 

chromatographic separation times. 3D-printed cone spray ionization (3D-PCSI), an ambient ionization mass spectrometric 

(MS) technique, provides a rapid, simple, and low-cost method for trace CWA analysis in soil matrices for both in-laboratory 

and in-field detection. Described here is the utilization of conductive 3D-printed cones to perform both rapid sampling and 

ionization for CWA simulants and hydrolysis products in eight solid matrices. The analysis of trace quantities of CWA 

simulants and hydrolysis products by 3D-PCSI-MS coupled to both a commercial benchtop system and a field-portable MS 

system is detailed. Empirical limits of detection (LOD) for CWA simulants on the benchtop MS ranged from 100 ppt to 750 

ppb and were highly dependant on solid matrix composition, with the portable system yielding similar spectral data from 

alike matrices, albeit with lower sensitivity. 

Introduction 

Chemical warfare agents (CWAs) are toxic chemicals that can be 

disabling or fatal to humans. CWAs can be dispersed in a variety 

of forms including gases, liquids, aerosols, or powders made of 

agents adsorbed onto particles.1-2 Modern CWAs, first used in 

World War I, have been prohibited by the Chemical Weapons 

Convention (CWC), but the threat of these agents being 

weaponized by terrorist groups still exists.1, 3-4 North Atlantic 

Treaty Organization (NATO) has classified CWAs into 5 classes 

including blister agents (i.e. sulfur mustard), nerve agents (G 

series and V series, i.e. sarin), choking agents (i.e. chlorine gas), 

asphyxiants, and incapacitating/behaviour altering agents.4 

Since its initiation in 1997, the CWC and participating 

countries have agreed to eliminate CWAs through destruction 

of any chemical stockpiles, removal of any production facilities, 

and banning their development or production.5 Current 

methods for destruction of CWA stockpiles include incineration 

or neutralization by base hydrolysis.4, 6-7 However, if an attack 

or exposure occurs, detection and analysis of the plume, the 

bulk supply, any human exposure, and environmental 

contamination are required. This necessitates the detection of 

CWAs and their degradation products in diverse matrices and at 

variable concentrations, ranging from bulk agent to traces at 

the part per billion (ppb) level.8 The fate of CWAs in the 

environment can depend on sorption, volatilization, hydrolysis, 

microbial degradation, and photolysis. Hydrolysis is the primary 

degradation pathway for many CWAs in aqueous environments, 

and the process depends on environmental factors such as 

temperature, pH, and water quality.9  

Onsite testing is typically performed using colorimetric 

devices, portable sensors, or field laboratories.10 The selection 

of the detection system is dependent on many factors, including 

the time needed to get an identification, false positive rates, 

required sensitivity and selectivity, cost, and the nature of the 

samples collected; cognizant samples of interest are highly 

diverse, including bulk materials (e.g., clothing, paper, etc.), 

contaminated soil or water, vapors, and even bodily fluids from 

exposed victims.2 Colorimetric kits are an inexpensive way to 

detect CWAs, rapidly producing a color change if threats are 

present; however, they are marked by low specificity and high 

false-positive results.1, 10 Portable and handheld instruments for 

point detection include ion mobility spectrometers (IMS), gas 

chromatography-mass spectrometers (GC-MS), and surface 

acoustic wave sensors.11  Laboratory-based instruments, with 

superior sensitivity and specificity, include GC-MS and liquid 

chromatography-tandem mass spectrometry (LC-MS/MS);12 

these are typically employed when confirmation is needed.  

GC-MS is the most reliable analytical technique used for the 

detection of CWAs, however, aqueous samples and polar CWAs 

need to be derivatized for analysis, which is an additional time 

consuming step.13-14 GC-MS has been used to detect CWAs and 

their degradation products in environmental samples 

(contaminated water and soil) and biological samples (blood 

and urine).14-19 LC-MS/MS can be used to detect CWAs without 

performing a derivatization step.20 Previous reports have used 

LC-MS/MS to detect CWAs and their hydrolysis products in 

contaminated soil,8, 21-22 dried blood spot samples,23 urine, 

saliva,24 and water.20-21 
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While hyphenated techniques are currently the 

predominant methodology to analyze for CWAs post-exposure, 

as well as for oversight of recalcitrant governments and terrorist 

organizations, ambient ionization mass spectrometry has 

emerged in the last fifteen years and can provide results in a 

fraction of the time.25 Ambient ionization, which began with the 

development of desorption electrospray ionization (DESI)26 and 

direct analysis in real time (DART)27, ushered in a field of mass 

spectrometry where samples are analyzed in their native state 

with little to no sample preparation.28 Additionally, the sample 

is directly evaluated by the mass spectrometer, therefore 

chromatographic separations are not required.29 When 

sampling in the field for environmental and forensic studies, 

ambient ionization methods can speed up analyses that are 

usually rate-limited by sample transport, necessary preparation 

and chromatographic separation to near realtime.30-31 

Previously, DESI,32-35 DART,36-38 and later stage ambient 

ionization sources like low temperature plasma (LTP)39-40 and 

atmospheric solids analysis probe (ASAP)41-42 have been 

demonstrated on a myriad of sample and substrate types for 

rapid, in-situ detection of CWAs. 

A subsection of ambient ionization techniques combines 

both sampling and ionization, where the substrate used for 

ionization also acts as the sampling device. An example is swab 

touch spray ionization (STSI), where a rayon tipped swab 

connected to a conductive handle is used as the sampling 

device, and then when solvent and a potential are applied to 

the handle, spray-based ionization occurs.43-44 STSI has been 

utilized to swab surfaces for the direct detection of CWA 

simulants in seconds.45 Paper spray ionization (PSI), which 

employs paper substrates for collection and ionization, has also 

been demonstrated for CWA analysis.46-51 PSI utilizes paper 

substrates cut into a triangular shape as the ionization source. 
52-53 The sample is deposited onto the paper substrate via 

swabbing, dipping, liquid deposition, or through wafting 

gaseous samples over the paper. Once high voltage and an 

appropriate spray solvent are applied, the solvent wicks 

through the paper, extracting analytes and creating an 

electrospray-like process at the tip.53 

The Glaros and Manicke research groups have developed a 

PSI-MS method to detect CWA simulants in biological samples48 

and from aerosols.47 Follow-up PSI-MS experiments were then 

applied to authentic CWAs but proved troublesome with 

traditional PSI substrates. Glaros et. al. incorporated metal-

organic frameworks (MOFs) on fiberglass substrates to increase 

adsorption during sampling and desorption of CWAs during PSI 

analysis.50 Another strategy to help with CWA detection using 

PSI is to perform online derivatization.49 The derivatization 

product has a decreased volatility, allowing CWAs to be 

captured and retained more readily. This process does not 

require any additional sample preparation due to the dopant 

being directly applied to the paper and dried prior to analysis, 

and the derivatization process occurs in near real-time. Manicke 

et. al. have also developed a method for soil analysis using PSI-

MS.51 This study analyzed four simulants and five hydrolysis 

products for G-series nerve agents in two different soil types. 

Using 25 mg of soil, their LOD for CWA simulants in soil was 50 

ng/g and between 1-5 ng/g for the hydrolysis products. 

Paper cone spray ionization (PCSI) is a 3D variant on PSI that 

has been demonstrated in applications requiring bulk sample 

analysis.54-57 PCSI uses filter paper crafted into a pyramidal 

shape to easily allow the analysis of bulk samples. A recent 

variant of PCSI that features on-board filtration, filter cone 

spray ionization (FCSI),58 alleviates carryover events stemming 

from complex matrices. Spray solvent is added to the conical 

reservoir holding the sample of interest, and when high voltage 

is applied, extracted analytes flow to the tip where they 

undergo ESI-like ionization. This method removes rigorous 

preparative steps, as the bulk solid can be simply added into the 

cavity of the cone, and after solvent is added, spectra are rapidly 

obtained and can last up to 8 minutes, as reported.58 

Recently, a 3D-printing method utilizing conductive plastics 

to perform an adaptive PCSI method known as 3D-printed cone 

spray ionization (3D-PCSI) has been developed.59 Per- and 

polyfluoroalkyl substances were detected and identified in a 

variety of soil types by 3D-PCSI-MS with LODs as low as 100 ppt. 

3D-printing increases the rigidity of the cone and prevents 

damaging the tip, while providing utility for scooping. 3D-

printing has seen an increase in analytical chemistry60-61 as 

printing enables rapid prototyping,62 increases open-source 

sharing,61 and increases reproducibility63. Additionally, 3D-

printing in chemical education laboratory curricula is increasing, 

lowering the knowledge barrier to its utilization.64-65 The larger 

sample sizes that 3D-PCSI-MS can provide, as well as the 

aforementioned benefits of rigidity, stability, and 

reproducibility, makes 3D-PCSI-MS a prime method for the 

analysis of CWAs in soil and solid matrices. 

More importantly, 3D-PCSI-MS does not require pneumatic 

gas assistance, making it easier to couple with portable mass 

spectrometers. Portable MS systems have seen advances over 

the last few decades with improvements to size, weight, and 

power consumption.31, 66-68 Recent studies have demonstrated 

the robustness and analytical validation of ambient ionization 

sources coupled with portable MS,69-70 as well as the legality of 

utilizing these instruments from a forensic point of view.71-72 

With the need of on-site detection for monitoring the safe 

disposal of CWAs, the swift detection of CWA-based terrorism, 

and the oversite of government bodies to ensure compliance 

with the CWC, rapid analysis by fieldable MS systems is of 

increased interest.73-74 Presented here is the in-situ analysis of 

CWA simulants and their hydrolysis products by 3D-PCSI-MS on 

both benchtop and portable systems, tested over a wide range 

of soil matrices to demonstrate the universality of the method.  

Experimental 

Supplies and Materials 

All CWA simulants and hydrolysis products (Table 1) (with the 

exception of diisopropyl methylphosphonate and cyclohexyl 

methyl methylphosphonate), HPLC-grade methanol, carbon 

tetrachloride, ammonium hydroxide, clean loam soil, clean clay 

#5, clean sand #4, clean sediment #2, and clean sandy soil were 
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purchased from Millipore Sigma (St. Louis, MO). Diisopropyl 

methylphosphonate and cyclohexyl methyl 

methylphosphonate were purchased from Fisher Scientific 

(Pittsburgh, PA). Gravel, Topsoil, and Silt were purchased from 

Ward’s Science (Rochester, NY). All CWA simulants and CWA 

hydrolysis products were prepared via serial dilution in 

methanol, and 100 µL was dispensed onto ~1 g of solid matrix 

(except gravel which ~5 g was used to fill the cone), mixed, and 

allowed to dry. Upon analysis, no sample preparation was 

performed other than depositing the contaminated solid matrix 

into the 3D-printed cone for analysis. Table S1 includes the 

structure of each CWA simulant and hydrolysis product and also 

gives a brief description of which CWA class each compound is 

a simulant for.75-77 

3D-Printing Parameters 

All 3D-printed cones were constructed on a MakerGear M2 3D-

printer (Beachwood, OH). The cone geometry was designed 

using Autodesk Inventor (San Rafael, CA) and converted to an 

STL file and sliced using Simplify3D (Cincinnati, OH). Previous 

work has provided the STL file for the cone design.59 The glass 

print platform was covered with Kapton tape and maintained at 

95°C for the duration of the print. The 3D-printer’s stainless-

steel extruder nozzle (0.35mm) was heated to 250°C. ESD-Safe 

PETG 3D-printing filament (3DXSTAT, Grand Rapids, MI) was 

utilized to construct the cones. The plastic is constructed with 

multi-wall carbon nanotubes embedded into the plastic to 

permit conductivity. PETG is a chemically-resistant material that 

does not react with methanol, therefore, the cone will not 

degrade or deform after the extraction and spray solvent is 

added. The dimensions of each cone printed was 30 mm x 30 

mm x 29.3 mm and had an opening at the apex of the cone 

roughly 0.2 mm. 

3D-Printed Cone Spray Ionization Mass Spectrometry Conditions 

All mass spectra were collected using a benchtop Thermo-Fisher 

LTQ ion trap mass spectrometer (San Jose, CA) or a field 

portable FLIR AI-MS 1.2 cylindrical ion trap mass spectrometer 

(West Lafayette, IN). All CWA simulants were identified in 

positive ionization mode, and CWA hydrolysis products were 

identified in negative ionization mode. Samples were prepared 

by placing approximately 1 g of contaminated solid matrix (with 

the exception of gravel where 5 g was utilized) into the cavity of 

the 3D printed cone. A 1 mL aliquot of 95:5 methanol:CCl4, with 

0.01% ammonium hydroxide solution was deposited atop the 

solid matrix, which acted both as the extraction solvent and the 

spray solvent. This solvent system was selected to help promote 

ionization while maintaining a stable spray, as seen in other 

ambient ionization methods.48, 51  

A potential, +/-5.75 kV on the benchtop system and +4.5 kV on 

the FLIR AI-MS 1.2, was applied to the 3D printed cone via a 

copper clip attached to the instrument’s power supply for 

positive or negative ion mode, respectively. The CWA simulants 

and hydrolysis products were each identified by their 

characteristic MS2 (LTQ and AI-MS 1.2) or MS3 (LTQ) spectra 

(Table 1) The collision energies applied to the CWA simulants 

and hydrolysis products’ precursor ions can be found in Table 1. 

The optimization of cone positioning, instrumental setups, as 

well as detailed photographs and CAD files can be found in 

previous manuscripts.55, 59 A depiction of the 3D-PCSI source 

coupled with the FLIR AI-MS 1.2 for sand analysis can be seen in 

Figure S2.
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Results and Discussion 

Nine CWA simulants and three CWA hydrolysis products were 

selected for characterization by 3D-PCSI-MS. Simulants and 

hydrolysis products were identified based on their MS2 or MS3 

transitions on both a benchtop ion trap and a portable ion trap 

instrument. Table 1 details the parent ion that was isolated, 

corresponding fragments, and fragmentation energies used for each 

CWA simulant and hydrolysis product. Simulants were analyzed in 

positive ion mode where the [M+H]+ ion was isolated, except for 

three standards (DIMP, CMMP, and TiPP), where the sodium adduct 

was isolated [M+Na]+. The hydrolysis products were detected in 

negative ion mode using the [M-H]- peak. For the benchtop 

instrument, MS3 was used to confirm six of the CWA simulants to 

increase confidence in the identification and alleviate interferences 

from isobaric compounds native to the soil. 

 The MS2 and MS3 spectra for the CWA simulants in sandy soil at 

their respective empirical limits of detection (LODs) by 3D-PCSI-MS 

on a benchtop system are shown in Figure 1. As solid matrices can 

alter the LODs drastically, eight soil types were explored in this study 

to demonstrate the applicability of this technique in a variety of 

environments. Table 2 outlines the empirical LODs for each CWA 

simulant in all eight solid soil types. These empirical LODs were 

determined based on triplicate measurements. LODs for CWA 

simulants range from 100 ppt to 750 ppb depending on the analyte 

and matrix type, where sand, sandy soil, and gravel exhibited the 

lowest detection limits. Topsoil and silt consistently had higher LODs 

due to more isobaric compounds interfering with MS2 analysis. Blank 

soil samples were run to ensure that the indicative fragments 

originated from spiking CWAs into the clean soil, rather than the soil 

itself. Interfering compounds at the limits of detection were isobaric 

interferences, and no carry-over was detected. Figure S1 shows a 

representative 3D-PCSI-MS spectra of neat soil without spiked CWA 

targets. 

For hydrolysis products, the LODs range from 100 ppt to 100 ppb. 

For TDG and EMPA, LODs were higher in sand and sandy soil 

compared to the other solid matrix type, which was counter to the 

CWA simulants. PinMP has the highest detection limits, ranging from 

5-100 ppb, mostly affected by interference from isobaric compounds 

from the more complex soil types in MS2. The MS2 spectra for the 

hydrolysis products in sandy soil at their LODs are shown in Figure 2. 

Table 1. Benchtop and portable ion trap MS parameters used for MSn experiments including precursor ion m/z, product ions used for 

identification, and collision energy used for CWA simulants or hydrolysis products. 

Chemical Warfare Agent Simulants 

Name 
MW 

(g/mol) 

[M+H]+ or 

[M+Na]+ * (m/z) 

LTQ 

CE• 

CID 

Fragments 

(m/z) 

AI-MS 

CE† 

(eV) 

CID 

Fragments 

(m/z) 

Dimethyl methyl phosphonate (DMMP) 124.08 125 20 111, 93 0.173 111 

Trimethyl phosphate (TMP) 140.07 141 30 127, 109, 95 0.190 127 

Diethyl methyl phosphate (DEMP) 152.13 153 
30 (MS2) 

20 (MS3) 

125 

97 
0.204 125, 97 

Diisopropyl methyl phosphonate (DIMP) 180.18 203 * 
35 (MS2) 

20 (MS3) 

161 

119 
0.259 161, 119 

Triethyl phosphate (TEP) 182.07 183 
30 (MS2) 

30 (MS3) 

155 

127, 99 
0.237 155, 127, 99 

Cyclohexyl methyl methylphosphonate 

(CMMP) 
192.19 215 * 30 133 0.272 133 

Tripropyl phosphate (TPP) 224.23 225 
30 (MS2) 

30 (MS3) 

183 

141, 99 
0.283 183, 141, 99 

Triisoptopyl phosphate (TiPP) 224.23 247 * 
20 (MS2) 

20 (MS3) 

205 

163, 121 
0.307 205, 163, 121 

Profenofos 373.63 373 
35 (MS2) 

10 (MS3) 

345 

303 
0.446 345 

Chemical Warfare Agent Hydrolysis Product 

Name 
MW 

(g/mol) 

[M-H]- 

(m/z) 

LTQ 

CE* 

CID 

Fragments 

(m/z) 

AI-MS 

CE* 

CID 

Fragments 

(m/z) 

Thiodiglycol (TDG) 122.04 121 20 77 - - 

Ethyl methyl phosphonic acid (EMPA) 124.08 123 20 95 - - 

Pinacolyl methylphosphonate (PinMP) 180.18 179 20 
165, 149, 135, 

121, 95 
- - 

*Sodiated adduct, [M+H]+ observed as base peak 
•Normalized Collision Energies 
†Energy setting for excitation waveform during CID MS2 
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For EMPA and PinMP, the main fragment is m/z 95, corresponding to 

the methyl phosphonate backbone after losing the ethyl or pinacoyl 

group, respectively. Peaks can also be seen for the fragmentation of 

the pinacoyl group in PinMP but depending on the fragmentation 

energy applied, this may change across different instrument types. 

The LOD for PinMP was therefore based on the m/z 95 fragment. 
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Figure 1. MSn spectra of CWA simulants at their respective empirical LODs on the benchtop ion trap instrument. The [M+H]+ peak was isolated for all CWA 
simulants except DIMP, CMMP, and TiPP which the sodium adduct [M+Na]+ was isolated and fragmented. The use of the sodium adduct is indicated by ** 

next to the compound name. 

Figure 2. MS/MS spectra for CWA hydrolysis products at their respective empirical LODs on the benchtop ion trap instrument. The [M-H]- peak was 
isolated and fragmented in MS2 for all CWA hydrolysis products. 
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Soil-Borne Mixture Analysis via 3D-PCSI-MS on a Portable MS 

System 

3D-PCSI-MS was easily coupled to the FLIR AI-MS portable 

system, which features a direct, atmospheric pressure inlet, 

allowing the screening of target CWA simulants in the test set 

of soil matrices.  As seen in Figure S2, all that is needed for 

coupling is application of the on-board high voltage via a 

clamping, “alligator”-style electrode. Both MS and MS2 data 

collected on the AI-MS 1.2 were analogous to the commercial 

system, as seen in Table 1, with the exception of known in-

source fragments seen in base MS spectra; these signatures 

predominately match those collected via MS2 of the target 

analyte.78  

 The utility of 3D-PCSI-MS coupled to portable MS units 

towards multi-target CWA screening from complex, soil-borne 

matrices was demonstrated. Figure 3 depicts results collected 

from sand containing 5 ppm each of DMMP, TMP, DEMP, DIMP, 

TEP, CMMP, TPP, and TiPP.  After addition of spray solvent and 

initial establishment of spray-based ionization, base MS spectra 

(seen in Figure 3A) are marked by the appearance of protonated 

molecules and sodiated adducts; for some CWA simulant 

targets (e.g., DIMP, TiPP), both ion signatures are seen.  Of note, 

3D-PCSI-MS on the AI-MS 1.2 demonstrated extended signal 

durations, with some sample aliquots yielding spectra for 

durations approaching 25 minutes, allowing ample time for 

unknown identification via MS2 fragmentation spectra.  For 

longer analysis times, it was observed that sodiated ions 

diminished over time, as the repeated application of solvent 

extracts and removes alkali earth metals innate to soil matrices.  

As seen in Figure 3B, 3D-PCSI-MS spectra collected after ~7 min. 

of analysis are dominated by protonated molecular signatures.  

Corresponding MS/MS spectra utilized to confirm the target 

CWA simulants from this study can be seen in Figure S3. 

 Detection limits for soil-borne, CWA simulants collected on 

the AI-MS 1.2 ranged from high ppb to low ppm, as seen in 

Table S2 for sand.  While LODs were appreciably higher than 

those collected on a benchtop system, this is typical for MS 

instruments featuring miniaturized vacuum systems,35 and still 

supports the capability of trace screening of CWA targets in soil.  

Figure 3. 3D-PCSI-MS collected on the portable AI-MS from a mixture of DMMP, TMP, DEMP, DIMP, TEP, CMMP, TPP, and TiPP (all at 5 ppm each) 

in sand.  Spectra (A) collected at 1 min of analysis time yield both protonated and sodiated adducts for some target CWA simulants, where spectra 

(B) from ~7 min predominately show only the protonated forms, as salt leaves the sand matrix. 
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Table 2. The empirical limits of detection based on triplicate measurements, for the nine CWA simulants and the three CWA 

hydrolysis products in eight different solid matrix types on the benchtop ion trap mass spectrometer. LOD concentrations reported 

in parts per billion (ppb). 

 Chemical Warfare Agent Simulant 

Name Clay Gravel Loam Sand 
Sandy 

Soil 
Sediment Silt Topsoil 

DMMP 1 0.5 1 0.5 0.5 1 1 1 

TMP 50 10 50 10 10 50 50 50 

DEMP 5 1 5 1 1 5 100 5 

DIMP 5 0.5 5 0.5 0.5 5 5 5 

TEP 10 0.5 50 1 1 50 50 50 

CMMP 10 5 5 1 5 5 750 500 

TPP 50 5 50 10 10 50 100 50 

TiPP 1 0.1 0.1 0.1 0.1 5 50 50 

Profenofos 1 5 1 0.5 1 50 5 1 

 Chemical Warfare Agent Hydrolysis Product 

Name Clay Gravel Loam Sand 
Sandy 

Soil 
Sediment Silt Top Soil 

TDG 0.1 0.1 0.1 1 1 0.1 0.1 0.1 

EMPA 0.1 5 1 5 5 0.5 5 0.5 

PinMP 100 5 10 5 5 100 100 100 

Conclusions 

3D-PCSI-MS is a new ambient ionization technique that has 

been developed for the analysis of contaminants in bulk 

matrices. 3D-printing has allowed for disposable ionization 

sources to be quickly and reproducibly generated using 

conductive plastics to create a rigid cone for in-field analysis. 

Nine CWA simulants and three CWA hydrolysis products were 

detected in various soil types, producing characteristic MS and 

MSn spectra useful for rapid screening and identification.  The 

reported method was marked by high sensitivity, yielding 

detection limits as low as 100 ppt (depending on the soil type), 

with sand, sandy soil, and gravel exhibiting some of the lowest 

LOD across analytes when utilizing a benchtop MS.   

 3D-PCSI-MS was easily adapted to a portable MS system, 

producing analogous spectra, albeit in a fieldable form factor.  

Screening of soil-borne CWA simulants was demonstrated, with 

signal duration routinely over 10 min., which in turn allows 

thorough investigation of unknown targets via MS2 

fragmentation spectra.  Rapid, trace-level screening of CWA 

simulants afforded by 3D-PCSI-MS employed on fieldable MS 

systems naturally applies to both the identification and 

remediation of CWA events alike, eliminating the bottleneck of 

off-site sample analysis. By pre-screening samples at the site of 

contamination, future application of 3D-PCSI-MS, coupled to a 

portable MS, will reduce the number of samples transported to 

the laboratory for confirmatory analysis.  The simplicity in 

analysis and, especially, solid sample collection afforded by 3D-

PCSI-MS could naturally adapt to the rigors of hot zone 

screening, where operators require the use of Level A 

encapsulating suits and gloves.  Here, a “scoop and screen” 

procedure applied to portable MS systems could prove valuable 

to robust and rapid assessment of CWA-related events. 
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