2.2.2-Cryptand as a Bidentate Ligand in Rare-Earth Metal Chemistry | Journal: | Inorganic Chemistry Frontiers | | | |-------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--| | Manuscript ID | QI-RES-06-2020-000746.R1 | | | | Article Type: | Research Article | | | | Date Submitted by the Author: | 21-Aug-2020 | | | | Complete List of Authors: | Chung, Amanda; University of California, Irvine, Department of Chemistry Huh, Daniel; University of California, Irvine, Department of Chemistry Ziller, Joseph; University of California, Irvine, Department of Chemistry Evans, William; University of California- Irvine, Department of Chemistry | | | SCHOLARONE™ Manuscripts # 2.2.2-Cryptand as a Bidentate Ligand in Rare-Earth Metal Chemistry Amanda B. Chung, Daniel N. Huh, Joseph W. Ziller, and William J. Evans* Department of Chemistry, University of California, Irvine, California 92697-2025, United States Email: wevans@uci.edu *To whom correspondence should be addressed. # **Dedication:** Dedicated to Professor Xu Guangxian for his extensive efforts in research as "the father of Chinese rare-earth chemistry" and for his excellent teaching which has generated an ongoing legacy of outstanding students. #### **Abstract** The 2.2.2-cryptand ligand (crypt) that is heavily used in reductions of rare-earth metal complexes to encapsulate alkali metals has been found to function as a bidentate ligand to rare-earth metal ions in some cases. The X-ray crystal structures of the reduced dinitrogen metal complex, $[\{(R_2N)_2Ce(\text{crypt-}\kappa^2\text{-O},O')\}_2(\mu-\eta^2:\eta^2\text{-N}_2)]$ (R = SiMe₃), and the ytterbium metallocene, $(C_5Me_5)_2Yb(\text{crypt-}\kappa^2\text{-O},O')$, are presented to demonstrate this binding mode. The implications of this available binding mode in rare-earth metal cryptand chemistry are discussed. #### Introduction One of the recent advances in rare-earth metal chemistry has been the discovery of crystallographically-characterizable molecular complexes of La(II), Ce(II), Pr(II), Gd(II), Tb(II), Ho(II), Er(II), Lu(II), and Y(II) according to syntheses such as those shown in eq 1.^{1–9} R = SiMe₃; Ln = La, Ce, Pr, Nd R = H; Ln = Y, La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, Lu Prior to those discoveries, molecular complexes of +2 lanthanide ions were known only for Eu(II), Yb(II), Sm(II), Tm(II), Dy(II), and Nd(II).^{6,7,10–13} The reduction reactions that generated the new Ln(II) ions utilized the 2.2.2-cryptand ligand (crypt) extensively to encapsulate the alkali metal ion formed in the reaction. The crypt-chelated alkali metal units constituted good counter-cations for the $(Cp'_3Ln^{II})^{1-}$ and $(Cp''_3Ln^{II})^{1-}$ anions $(Cp' = C_5H_4SiMe_3; Cp'' = C_5H_3(SiMe_3)_2)$, shown in eq 1. which facilitated crystallographic characterization of the reaction products. Ln(II) metal complexes are now known with $[M(crypt)]^{1+}$ counter-cations for M = Li, Na, K, Rb, and Cs in [Li(crypt)][Cp'₃Ln], ¹⁴ [Na(crypt)][Cp'₃Ln], ¹⁵ [K(crypt)][Cp"₃Ln], ^{1,9} structures such $[K(crypt)][Cp^{tet}_3Ln]$ (Ln = La, Ce, Pr, Nd, Sm, Gd, Tb, Dy); $Cp^{tet} = C_5Me_4H)$, ¹⁶ $[K(crypt)][Cp_3Dy]_2$ $(Cp^t = C_5H_4CMe_3)^{17}$ $[K(crypt)][Cp_3Dy]$ $(Cp_4Me)^{18}$ $[K(crypt)][Sc(OAr')_3(OAr' = OC_6H_2tBu_2-2,6-Me-4),^{19}[K(crypt)][((Ad,MeArO)_3mes)Ln](Ln = Nd,$ Gd, Dy, Er; $(^{Ad,Me}ArO)_3mes = (2-Ad-4-Me-C_6H_2O)_3(2,4,6-Me_3C_6H_2)$; Ad = 1-adamantyl),⁸ $[K(crypt)][Y(OAr^{Ad,Ad,t-Bu})_3]$ $(OAr^{Ad,Ad,t-Bu} = 2,6-Ad_2-4-t-Bu-C_6H_2O)_3^{20}$ $[Rb(crypt)][Ln(NR_2)_3]$ $(Ln = Nd, Ho, Er)^{21}$ and $[Cs(crypt)][Sc(NR_2)_3]$ $(R = SiMe_3)^{22}$ Additionally, the crypt ligand in $[\text{Li}(\text{crypt})]^{1+}$ counter-cations has also been found as $\text{crypt-}\kappa^6$ in three different binding modes: N_2O_4 , 14,23 NO_5 , 14,23-29 and O_6 . 14 However, the crypt ligand can also encapsulate rare-earth metals ions as well as alkali metal ions. A variety of such metal complexes have been crystallographically characterized involving both divalent and trivalent ions usually with one or two additional coordinated ligands that could be anions or neutral species. Examples include $[Ln^{II}(crypt)(THF)_x][Cp'_3Ln]$ (x=1, Ln=Sm, Eu; x=0, Ln=Yb), 30 $[Sm^{II}(crypt)(DippForm)][DippForm]$ (DippForm = N,N'-bis(2,6-diisopropylphenyl)-formamidinate), 31 $[Sm^{II}(crypt)(PCO)_2]$, 31 $[Eu^{II}(crypt)Cl][Cl]$, 32 $[Yb^{II}(crypt)I][I]$, 33 $[Ln^{III}(crypt)(THF)][BPh_4]_2$ (Ln=Sm, Eu), 34 $[Ln^{III}(crypt)(THF)_x][Cp'_3Ln^{II}]_2$ (x=1, Ln=Sm, Eu; x=0, Ln=Yb), 30 $[La^{III}(crypt)Cl_2][Cl]$, 35 $[Ln^{II}(crypt)(DMF)_x][X]_2$ (x=2, Ln=Sm, Eu; x=1, Ln=Yb; X=I, BPh_4), 36 $[Ln^{III}(crypt)(OTf)_2][OTf]$ and $[Ln^{II}(crypt)(OTf)_2]$ (Ln=Nd, Sm), Sm, We report here a new coordination mode for crypt with rare-earth metal ions that is intermediate between the two modes described above, *i.e.* it is in between the 8-coordinate mode with the rare-earth metal ion inside crypt and the situation in which crypt is not coordinating the rare-earth metal ion at all. We describe here two crystal structures that show that crypt can function as a *bidentate* ligand to rare-earth ions. This has interesting implications in the reaction chemistry of rare-earth metal complexes involving crypt. #### **Results and Discussion** The first example of a bidentate crypt metal complex of a rare-earth metal ion was discovered while examining the reduction of dinitrogen with $Ce(NR_2)_3$ ($R = SiMe_3$) and potassium graphite. Numerous LnA_3/M reactions (A = anion; M = alkali metal) of this type have been performed in the past and generated both $(N=N)^{2-}$ and $(N_2)^{3-}$ metal complexes.^{43–48} For example, crystallographically-characterized examples of $[(R_2N)_2(THF)Ln]_2(\mu-\eta^2:\eta^2-N_2)$ have been isolated in this way from reactions in THF for the smaller rare-earths, Ln = Nd, Gd, Tb, Dy, Ho, Y, Er, Tm, and Lu, eq $2.^{44}$ $$2 \operatorname{Ln}^{\text{III}}(\operatorname{NR}_2)_3 + 2 \operatorname{K} \xrightarrow{\operatorname{N}_2} \operatorname{THF} \operatorname{R}_2 \operatorname{N} \xrightarrow{\operatorname{III}} \operatorname{NR}_2 \operatorname{R}_2 \operatorname{N} \operatorname{R}_2 \operatorname{H} \operatorname{R}_2 \operatorname{R}_2 \operatorname{N} \operatorname{H} \operatorname{R}_2 \operatorname{H} \operatorname{R}_2 \operatorname{R$$ Ln = Nd, Gd, Tb, Dy, Ho, Y, Er, Tm, Lu $R = SiMe_3$ Analogous reactions with the larger lanthanides, La, Ce, and Pr, appeared to proceed similarly, but crystallographic confirmation of the products was not obtained. ¹H and ¹⁵N NMR data on the La product were similar to those on the Y and Lu products. ^{44,46} Hence, it was likely that (N=N)²-products of La, Ce, and Pr formed, but the metal complexes were too sterically unsaturated with these larger metals to crystallize well. Further evidence of reaction in eq 2 with the large lanthanides was obtained by isolation and crystallographic characterization of the tetrakis(amide) products, [K(THF)₆][Ln(NR₂)₄] for La and Pr and [Na(THF₄)(Et₂O)][Ce(NR₂)₄] for Ce. These tetrakis(amides) can form by complexation to the Ln(NR₂)₃ starting material of the (NR₂)¹- ligands lost by each metal in a successful dinitrogen reduction. ⁴⁴ When the LnA₃/M reaction was conducted in Et₂O using Ce(NR₂)₃ and KC₈ in the presence of crypt, the (N=N)²⁻ metal complex, [{(R₂N)₂Ce(crypt- κ^2 -O,O')}₂(μ - η^2 : η^2 -N₂)], **1**, was isolated and identified by X-ray diffraction, eq 3, Fig. 1. This was the first cerium amide (N=N)²⁻ metal complex that could be crystallized. $$Ce^{III}(NR_2)_3 + 2.2.2 - cryptand + xs KC_8$$ $$R = SiMe_3$$ $$R_2N NR_2$$ $$Ce^{III}(NR_2)_3 + 2.2.2 - cryptand + xs KC_8$$ $$R_2N NR_2$$ $$R_2N NR_2$$ $$NR_2$$ $$NR_2$$ $$NR_2$$ $$NR_2$$ **Fig. 1.** ORTEP representation of $[\{(R_2N)_2Ce(crypt-\kappa^2-O_1O')\}_2(\mu-\eta^2:\eta^2-N_2)]$, **1**, with thermal ellipsoids drawn at the 50% probability level. Hydrogen atoms and an Et₂O in the lattice are excluded for clarity. The crystal structure of **1**, shows that it is a neutral metal complex with a side-on bound $(N=N)^{2-}$ and two amide ligands bound to each cerium. This is similar to the known series of THF adducts in eq 2, $[\{(THF)(R_2N)_2Ln\}_2(\mu-\eta^2:\eta^2-N_2)]$, ⁴⁴ except instead of one THF molecule per metal, a crypt ligand coordinates to each metal through two oxygen atoms. In this case, crypt is acting as a κ^2 -O,O' "exo-crypt" with binding similar to that of a dimethoxyethane (DME) ligand. Presumably, with the extra steric bulk of crypt versus THF, the Ce $(N=N)^{2-}$ product is sterically saturated enough to allow isolation and crystallization. Compound 1 is sparingly soluble in both toluene and benzene. A ^{1}H NMR spectrum was taken in both toluene- d_{8} and $C_{6}D_{6}$ (see SI). The crypt resonances align with free cryptand in solution and only one resonance is seen for the methyl group of the silyl amides, which is shifted upfield. The 1.233(4) Å N–N distance in **1** is similar to those in the metal complexes in eq 2, 1.258(3)-1.305(6) Å, and is consistent with a double bond, i.e. $(N=N)^{2-.49,50}$ The exo-crypt in **1** does not bind symmetrically and has Ce–O distances in **1** of 2.545(2) Å for Ce–O1 and 2.796(2) Å for Ce–O2. In comparison, the Ce–O(THF) distances in the cyclopentadienyl cerium dinitrogen complexes, $[(C_5Me_5)_2(THF)Ce]_2[\mu-\eta^2:\eta^2-N_2]$ and $[(C_5Me_4H)_2(THF)Ce]_2[\mu-\eta^2:\eta^2-N_2]$, are 2.607(4) Å and 2.589(3) Å, respectively.⁴⁶ Hence, the crypt coordination could also be described as a monodentate ligand with a long secondary interaction. The 2.545(2) Å Ce–O(crypt) distance is similar to the 2.518(1) Å Nd–O(THF) distance in $[(R_2N)_2(THF)Nd]_2(\mu-\eta^2:\eta^2-N_2)$ when the 0.027 Å ionic radius increase from Nd to Ce is considered.⁵¹ Within the coordinated crypt, the 1.437(3)-1.443(3) Å C–O distances involving the coordinating O1 and O2 are within the error limits of the other 1.399(4)-1.424(4) Å C–O distances, as shown in Table 1. The C–C distances and the angles involving the bound oxygen atoms are similar to those in the rest of the crypt molecule. **Table 1.** Selected distances (Å) and angles (°) for 1. | Ce1–N3(amide) | 2.409(2) | Ce1-N1 | 2.451(2) | | | |--------------------|------------|---------|------------|--|--| | Ce1–N2(amide) | 2.411(2) | Ce1-N1' | 2.468(2) | | | | Ce1-O1 | 2.7957(18) | Ce1-O2 | 2.5453(18) | | | | N1–N1′ | 1.233(4) | | | | | | Crypt O–C Distance | | | | | | | O1–C14 | 1.439(3) | O1–C15 | 1.437(3) | | | |--------------------|----------|---------|----------|--|--| | O2-C16 | 1.438(3) | O2-C17 | 1.443(3) | | | | O3-C20 | 1.422(4) | O3-C21 | 1.418(4) | | | | O4-C22 | 1.413(4) | O4-C23 | 1.418(4) | | | | O5-C26 | 1.424(4) | O5-C27 | 1.417(4) | | | | O6-C28 | 1.413(4) | O6-C29 | 1.399(4) | | | | Crypt C–C Distance | | | | | | | C13-C14 | 1.525(4) | C15-C16 | 1.485(4) | | | | C17-C18 | 1.512(4) | C19-C20 | 1.504(4) | | | | C21-C22 | 1.489(5) | C23-C24 | 1.507(5) | | | | C25–26 | 1.510(4) | C27-C28 | 1.495(5) | | | | C29-C30 | 1.525(5) | | | | | A second example of exo-crypt coordination was found in the reaction of $(C_5Me_5)Yb(BPh_4)$ with crypt in toluene. This reaction was explored to determine if ligand redistribution would occur to form an Yb(II)-in-crypt product.³⁰ However, ligand rearrangement occurred to form a bis(cyclopentadienyl) metallocene which crystallized with crypt bound as a bidentate ligand, $(C_5Me_5)_2Yb(crypt-\kappa^2-O,O')$, **2**, eq 4, Fig. 2. The compound was identified by X-ray crystallography, but the data were not of high enough quality for a detailed structural discussion. In the metal complex **2**, as in **1**, the exo-crypt ligand coordinates like DME. X-ray crystal structures of similar formally eight coordinate $(C_5Me_5)_2YbL_2$ compounds are common with $L = pyridine^{52}$ and with $L_2 = bipyridine$ and substituted bipyridines.^{53,54} **Figure 2.** Structure of $(C_5Me_5)_2Yb(crypt-\kappa^2-O_1O')$, **2**, showing the bidentate binding of crypt. # Conclusion Although 2.2.2-cryptand can stabilize alkali metal ions to generate favorable lattices for crystallization of rare-earth metal complexes and it can encapsulate rare-earth ions as an octadentate ligand, it can also function as a stabilizing bidentate κ^2 -chelating ligand for rare-earth metal ions as shown in $[\{(R_2N)_2Ce(crypt-\kappa^2-O,O')\}_2(\mu-\eta^2:\eta^2-N_2)]$, 1, and $(C_5Me_5)_2Yb(crypt-\kappa^2-O,O')$, 2. The diverse nature of these two metal complexes suggests that crypt could coordinate to rare-earth metal ions in a variety of different coordination environments. Similar to these crypt- κ^2 -O₂O' binding modes, 18-crown-6 (18-c-6) rare-earth metal complexes have shown coordinate to the metal where not all O-donors are coordinated. Two scandium metal complexes containing [ScCl₂(κ^5 -18-c-6)][X] (X = SbCl₆ or FeCl₄)^{55,56} and [Ce(κ^2 -18-c-6)[N(SiMe₃)PhF]₃ (PhF = pentafluorophenyl)⁵⁷ have been reported. To the extent that it binds like dimethoxyethane, it constitutes a sterically bulky variation of this commonly-used ether. The size and 3-dimensional nature of crypt means that it can substantially fill the coordination environment of a sterically unsaturated compound. In the case of the $[\{(R_2N)_2Ln\}_2(\mu-\eta^2:\eta^2-N_2)]$, which crystallizes for smaller metals, Nd-Lu, but not for Ce, it is possible that a single THF ligand was not enough to sterically saturate the coordination environment to yield single crystals for X-ray diffraction. Crypt coordination in 1 led to successful crystallization of this cerium $(N=N)^{2-}$ compound. Attempts to crystallize " $[\{(R_2N)_2Ce\}_2(\mu-\eta^2:\eta^2-N_2)]$ ", with DME have been unsuccessful. The efficacy of crypt in **2** is somewhat different since the $(C_5Me_5)_2Yb$ unit crystallizes in the absence of any ethers *and* with one and two coordinating ligands. 52–54,58–60 Hence, this is not the case of a sterically unsaturated unit that will not crystallize. The κ^2 -crypt just functions as other bidentate coordinating bases. These results raise interesting possibilities in reaction chemistry. It is possible that crypt can coordinate to a rare-earth metal ion before alkali metal reduction occurs and before the alkali metal cation is formed and inserts into the crypt. Similarly, in the reactions that form Ln-in-crypt $[\text{Ln}(\text{crypt})]^{n+}$ cations, $^{30,35-37}$ a preliminary step in the procedure could involve bidentate coordination of the crypt to the rare-earth metal ion before it inserts into the cavity. The importance of κ^2 -crypt coordination in any reaction coordinate will depend heavily on the specific system, the solvent, and any other ligands present in the reaction mixture. However, in non-polar solvents free of any other coordinating ligands, κ^2 -crypt could play an important role as a bidentate ligand that preferentially stabilizes species that are otherwise not isolable. **Experimental** All manipulations and syntheses described below were conducted with the rigorous exclusion of air and water using standard Schlenk line and glovebox techniques under an argon or dinitrogen atmosphere. Solvents were sparged with UHP argon and dried by passage through columns containing Q-5 and molecular sieves prior to use. Deuterated NMR solvents were dried over NaK alloy or Na/benzophenone, degassed by three freeze–pump—thaw cycles, and vacuum-transferred before use. ¹H NMR spectra were recorded on a Bruker AVANCE 600 spectrometer (¹H operating at 600 MHz) at 298 K, unless otherwise stated, and referenced internally to residual protio-solvent resonances. 2.2.2-cryptand (Sigma-Aldrich) was placed under vacuum (10⁻³ Torr) before use. Ce(NR₂)₃⁶¹ and (C₅Me₅)Yb(BPh₄)⁶² were synthesized according to literature procedures. [{(R_2N)₂Ce(crypt- κ^2 -O,O')}₂(μ - η^2 : η^2 -N₂)], 1. A dinitrogen-saturated Et₂O (3 mL) solution of Ce(NR₂)₃ (R = SiMe₃) (60 mg, 0.1 mmol) and 2.2.2.-cryptand (36 mg, 0.1 mmol), chilled to -35 °C, was added to a vial containing excess KC₈ (20 mg 0.1 mmol), that had been chilled in a cold well with a liquid nitrogen bath. This generated a yellow solution. Bright yellow crystals were isolated by filtering and placing the Et₂O solution in a -35 °C freezer for several days (20 mg, 24%). These were identified as 1 by X-ray diffraction. $(C_5Me_5)_2Yb(crypt-\kappa^2-O,O')$, **2.** In an argon atmosphere, the addition of a green toluene-solution of $(C_5Me_5)Yb(BPh_4)$ (50 mg, 0.08 mmol) to a toluene (2 mL) solution of 2.2.2-cryptand (30 mg, 0.08 mmol) generated a green mixture with white precipitate. The mixture was filtered to remove insoluble material and the green solution was layered into hexanes and placed in a -35 °C freezer. After 1 d, green X-ray quality crystals of **2** were formed. # **Conflicts of interest** There are no conflicts to declare # Acknowledgements We thank the U. S. National Science Foundation for support of this research under CHE-1855328. We also thank Chen Sun for assistance with X-ray crystallography and David H. Woen for sample preparation. #### **ORCID ID** Joseph W. Ziller: 0000-0001-7404-950X William J. Evans: 0000-0002-0651-418X Amanda B. Chung: 0000-0001-8943-0303 Daniel N. Huh: 0000-0001-7887-0856 #### **Notes and references** - (1) Hitchcock, P. B.; Lappert, M. F.; Maron, L.; Protchenko, A. V. Lanthanum Does Form Stable Molecular Compounds in the + 2 Oxidation State. *Angew. Chemie Int. Ed.* **2008**, No. 47, 1488–1491. - (2) MacDonald, M. R.; Ziller, J. W.; Evans, W. J. Synthesis of a Crystalline Molecular Complex of Y2+, [(18-Crown-6)K][(C5H4SiMe3)3Y]. *J. Am. Chem. Soc.* **2011**, *133* (40), 15914–15917. - (3) MacDonald, M. R.; Bates, J. E.; Fieser, M. E.; Ziller, J. W.; Furche, F.; Evans, W. J. Expanding Rare-Earth Oxidation State Chemistry to Molecular Complexes of Holmium(II) and Erbium(II). *J. Am. Chem. Soc.* **2012**, *134* (20), 8420–8423. - Macdonald, M. R.; Bates, E.; Ziller, J. W.; Furche, F.; Evans, W. J. Completing the Series of +2 Ions for the Lanthanide Elements: Synthesis of Molecular Complexes of Pr+2, Gd+2, Tb+2, and Lu+2. J. Am. Chem. Soc. 2013, 135, 9857–9868. - (5) Fieser, M. E.; Macdonald, M. R.; Krull, B. T.; Bates, J. E.; Ziller, J. W.; Furche, F.; Evans, W. J. Structural, Spectroscopic, and Theoretical Comparison of Traditional vs Recently Discovered Ln2+ Ions in the [K(2.2.2-Cryptand)][(C5H4SiMe3)3Ln] Complexes: The Variable Nature of Dy2+ and Nd2+. *J. Am. Chem. Soc.* 2015, *137* (1), 369–382. - (6) Evans, W. J. Tutorial on the Role of Cyclopentadienyl Ligands in the Discovery of Molecular Complexes of the Rare-Earth and Actinide Metals in New Oxidation States. Organometallics 2016, 35, 3088–3100. - (7) Woen, D. H.; Evans, W. J. Expanding the + 2 Oxidation State of the Rare-Earth Metals, Uranium, and Thorium in Molecular Complexes. In *Handbook on the Physics and Chemistry of Rare Earths*; Elsevier B.V., 2016; pp 1–57. - (8) Fieser, M. E.; Palumbo, C. T.; La Pierre, H. S.; Halter, D. P.; Voora, V. K.; Ziller, J. W.; Furche, F.; Meyer, K.; Evans, W. J. Comparisons of Lanthanide/Actinide +2 Ions in a Tris(Aryloxide)Arene Coordination Environment. *Chem. Sci.* **2017**, *8* (11), 7424–7433. - (9) Palumbo, C. T.; Darago, L. E.; Windorff, C. J.; Ziller, J. W.; Evans, W. J. Trimethylsilyl versus Bis(Trimethylsilyl) Substitution in Tris(Cyclopentadienyl) Complexes of La, Ce, and Pr: Comparison of Structure, Magnetic Properties, and Reactivity. *Organometallics* 2018, 37 (6), 900–905. - (10) Morss, L. R. Thermochemical Properties of Yttrium, Lanthanum, and the Lanthanide Elements and Ions. *Chem. Rev.* **1975**, *76* (6), 827–841. - (11) Mikheev, N. B., A. N. K. Complex Formation of the Lanthanides and Actinides in Lower Oxidation States. *Coord. Chem. Rev.* 1991, 109, 1–59. - (12) Bochkarev, M. N. Molecular Compounds of "New" Divalent Lanthanides. Coord. Chem. - Rev. 2004, 248 (9–10), 835–851. - (13) Nief, F. Molecular Chemistry of the Rare-Earth Elements in Uncommon Low-Valent States. In *Handbook on the Physics and Chemistry of Rare Earths*; 2010; pp 241–300. - (14) Huh, D. N.; Darago, L. E.; Ziller, J. W.; Evans, W. J. Utility of Lithium in Rare-Earth Metal Reduction Reactions to Form Nontraditional Ln2+ Complexes and Unusual [Li(2.2.2-Cryptand)]1+ Cations. *Inorg. Chem.* **2018**, *57* (4), 2096–2102. - (15) Fieser, M. E. PhD Dissertation, University of California, Irvine, 2015. - (16) Jenkins, T. F.; Woen, D. H.; Mohanam, L. N.; Ziller, J. W.; Furche, F.; Evans, W. J. Tetramethylcyclopentadienyl Ligands Allow Isolation of Ln(II) Ions across the Lanthanide Series in [K(2.2.2-Cryptand)][(C5Me4H)3Ln] Complexes. *Organometallics* 2018, 37 (21), 3863–3873. - (17) Angadol, M. A.; Woen, D. H.; Windorff, C. J.; Ziller, J. W.; Evans, W. J. Tert-Butyl(Cyclopentadienyl) Ligands Will Stabilize Nontraditional +2 Rare-Earth Metal Ions. Organometallics 2019, 38 (5), 1151–1158. - (18) Huh, D. N.; Ziller, J. W.; Evans, W. J. Isolation of Reactive Ln(Ii) Complexes with C5H4Me Ligands (CpMe) Using Inverse Sandwich Countercations: Synthesis and Structure of [(18-Crown-6)K(μ-CpMe)K(18-Crown-6)][CpMe3LnII] (Ln = Tb, Ho). *Dalt. Trans.* 2018, 47 (48), 17285–17290. - Moehring, S. A.; Beltrán-Leiva, M. J.; Páez-Hernández, D.; Arratia-Pérez, R.; Ziller, J. W.; Evans, W. J. Rare-Earth Metal(II) Aryloxides: Structure, Synthesis, and EPR Spectroscopy of [K(2.2.2-Cryptand)][Sc(OC6H2tBu2-2,6-Me-4)3]. *Chem. A Eur. J.*2018, 24 (68), 18059–18067. - (20) Moehring, S. A.; Miehlich, M.; Hoerger, C. J.; Meyer, K.; Ziller, J. W.; Evans, W. J. A - Room-Temperature Stable Y(II) Aryloxide: Using Steric Saturation to Kinetically Stabilize Y(II) Complexes. *Inorg. Chem.* **2020**, *59* (5), 3207–3214. - (21) Ryan, A. J.; Darago, L. E.; Balasubramani, G.; Chen, G. P.; Ziller, J. W.; Furche, F.; Long, J. R.; Evans, W. J. Synthesis, Structure, and Magnetism of Tris (Amide) Lanthanide Ions. *Chem. Eur. J.* **2018**, No. 2, 7702–7709. - (22) Woen, D. H.; Chen, G. P.; Ziller, J. W.; Boyle, T. J.; Furche, F.; Evans, W. J. Solution Synthesis, Structure, and CO2 Reduction Reactivity of a Scandium(II) Complex, [Sc(N(SiMe3)2]3]-. *Angew. Chemie Int. Ed.* 2017, 129, 2082–2085. - (23) Han, S. D.; Allen, J. L.; Jónsson, E.; Johansson, P.; McOwen, D. W.; Boyle, P. D.; Henderson, W. A. Solvate Structures and Computational/Spectroscopic Characterization of Lithium Difluoro(Oxalato)Borate (LiDFOB) Electrolytes. *J. Phys. Chem. C* 2013, 117 (11), 5521–5531. - (24) Tirla, C.; Mézailles, N.; Ricard, L.; Mathey, F.; Le Floch, P. Dianionic Platinadiphospholene Complexes. *Inorg. Chem.* **2002**, *41* (23), 6032–6037. - (25) Moores, A.; Ricard, L.; Le Floch, P.; Mézailles, N. First X-Ray Crystal Study and DFT Calculations of Anionic Λ4-Phosphinines. *Organometallics* 2003, 22 (9), 1960–1966. - (26) Guzei, I. A.; Spencer, L. C.; Su, J. W.; Burnette, R. R. Low-Temperature Enantiotropic K2 Phase Transition in the Ionic 222-Cryptand Complex with LiClO4. *Acta Crystallogr. Sect. B Struct. Sci.* 2007, 63 (1), 93–100. - (27) Alex Rudd, P.; Planas, N.; Bill, E.; Gagliardi, L.; Lu, C. C. Dinitrogen Activation at Iron and Cobalt Metallalumatranes. *Eur. J. Inorg. Chem.* **2013**, *2* (22–23), 3898–3906. - (28) Assefa, M. K.; Wu, G.; Hayton, T. W. Synthesis of a Terminal Ce(IV) Oxo Complex by Photolysis of a Ce(III) Nitrate Complex. *Chem. Sci.* **2017**, *8* (11), 7873–7878. - (29) Lu, E.; Boronski, J. T.; Gregson, M.; Wooles, A. J.; Liddle, S. T. Silyl-Phosphino-Carbene Complexes of Uranium(IV). *Angew. Chemie Int. Ed.* **2018**, *57* (19), 5506–5511. - (30) Huh, D. N.; Kotyk, C. M.; Gembicky, M.; Rheingold, A. L.; Ziller, J. W.; Evans, W. J. Synthesis of Rare-Earth-Metal-in-Cryptand Dications, [Ln(2.2.2-Cryptand)]2+, from Sm2+, Eu2+, and Yb2+ Silyl Metallocenes (C5H4SiMe3)2Ln(THF)2. *Chem. Commun.* 2017, 53 (62), 8664–8666. - (31) Bestgen, S.; Chen, Q.; Rees, N. H.; Goicoechea, J. M. Synthesis and Reactivity of Rare-Earth Metal Phosphaethynolates. *Dalt. Trans.* **2018**, *47* (37), 13016–13024. - (32) Lenora, C. U.; Carniato, F.; Shen, Y.; Latif, Z.; Haacke, E. M.; Martin, P. D.; Botta, M.; Allen, M. J. Structural Features of Europium(II)-Containing Cryptates That Influence Relaxivity. *Chem. Eur. J.* **2017**, *23* (61), 15404–15414. - (33) Jenks, T. C.; Kuda-Wedagedara, A. N. W.; Bailey, M. D.; Ward, C. L.; Allen, M. J. Spectroscopic and Electrochemical Trends in Divalent Lanthanides through Modulation of Coordination Environment. *Inorg. Chem.* **2020**. - (34) Marsh, M. L.; White, F. D.; Meeker, D. S.; McKinley, C. D.; Dan, D.; Van Alstine, C.; Poe, T. N.; Gray, D. L.; Hobart, D. E.; Albrecht-Schmitt, T. E. Electrochemical Studies of Selected Lanthanide and Californium Cryptates. *Inorg. Chem.* 2019, 58 (15), 9602–9612. - (35) Huh, D. N.; Windorff, C. J.; Ziller, J. W.; Evans, W. J. Synthesis of Uranium-in-Cryptand Complexes. *Chem. Commun.* **2018**, *54* (73), 10272–10275. - (36) Huh, D. N.; Ziller, J. W.; Evans, W. J. Facile Encapsulation of Ln(II) Ions into Cryptate Complexes from LnI2(THF)2 Precursors (Ln = Sm, Eu, Yb). *Inorg. Chem.* **2019**, *58* (15), 9613–9617. - (37) Huh, D. N.; Ciccone, S. R.; Roy, S.; Ziller, J. W.; Furche, F.; Evans, W. J. Synthesis of - Ln(II)-in Cryptand Complexes by Chemical Reduction of Ln(III)-in-Cryptand Precursors. *Angew. Chemie Int. Ed.* **2020**. - (38) Burns, J. H. Crystal and Molecular Structure of a Cryptate Complex of Samarium: C18H36O6N2Sm2(NO3)6-H2O. *Inorg. Chem.* **1979**, *18* (11), 3044–3047. - (39) Ciampolini, B. M.; Dapporto, P.; Nardi, N. Structure and Properties of Some Lanthanoid(III) Perchlorates with the Cryptand 4,7,13,16,21,24-Hexaoxa-I ,I O-Diazabicyclo[8.8.8] Hexacosane. *J. Chem. Soc. Dalt.* **1979**, 974–977. - (40) Benetollo, F.; Bombieri, G.; Cassol, A.; De Paoli, G.; Legendziewicz, J. Coordination Chemistry of Lanthanides with Cryptands. An X-Ray and Spectroscopic Study of the Complex Nd2(NO3)6 [C18H36O6N2]· H2O. *Inorganica Chim. Acta* **1985**, *110* (1), 7–13. - (41) Yang, G.; Liu, S.; Jin, Z. Coordination Chemistry and Structure Characterization of C18H36O6N2Eu2(NO3)6·H2O. *Inorganica Chim. Acta* **1987**, *131* (1), 125–128. - (42) Heinze, U.; Heinze, T.; Klemm, D. Synthesis and Structure Characterization of Lanthanum [2,2,2]Cryptates, [LaCl[2,2,2](H2O)]Cl H2O AND [La(CF3SO3)[2,2,2](DMF)](CF3SO3)2. Macromol. Chem. Phys. 1999, 200 (2), 896–902. - (43) Evans, W. J.; Lee, D. S.; Lie, C.; Ziller, J. W. Expanding the LnZ3/Alkali-Metal Reduction System to Organometallic and Heteroleptic Precursors: Formation of Dinitrogen Derivatives of Lanthanum. *Angew. Chemie Int. Ed.* **2004**, *43* (41), 5517–5519. - (44) Evans, W. J.; Lee, D. S.; Rego, D. B.; Perotti, J. M.; Kozimor, S. A.; Moore, E. K.; Ziller, J. W. Expanding Dinitrogen Reduction Chemistry to Trivalent Lanthanides via the LnZ3/Alkali Metal Reduction System: Evaluation of the Generality of Forming Ln 2 (μ-H2:H2-N2). J. Am. Chem. Soc. 2004, 126 (44), 14574–14582. - Evans, W. J.; Lee, D. S.; Ziller, J. W. Reduction of Dinitrogen to Planar Bimetallic M2(μ H2η2N2) Complexes of Y, Ho, Tm, and Lu Using the KLn[N(SiMe3)2]3 Reduction System. J. Am. Chem. Soc. 2004, 126, 454–455. - (46) Evans, W. J.; Rego, D. B.; Ziller, J. W. Synthesis, Structure, and 15N NMR Studies of Paramagnetic Lanthanide Complexes Obtained by Reduction of Dinitrogen. *Inorg. Chem.* 2006, 45, 10790–10798. - (47) Rinehart, D.; Fang, M.; Evans, W. J.; Long, R. A N2 3- Radical-Bridged Terbium Complex Exhibiting Magnetic Hysteresis at 14 K. *J. Am. Chem. Soc.* **2011**, *133*, 14236–14239. - (48) Fang, M.; Lee, D. S.; Ziller, J. W.; Doedens, R. J.; Bates, J. E.; Furche, F.; Evans, W. J. Synthesis of the (N2)3- Radical from Y2+ and Its Protonolysis Reactivity to Form (N2H2) 2- via the Y[N(SiMe3)2]3/KC8 Reduction System. *J. Am. Chem. Soc.* **2011**, *133* (11), 3784–3787. - (49) Allen, F. H.; Kennard, O.; Watson, D. G.; Brammer, L.; Orpen, A. G.; Taylor, R. Tables of Bond Lengths Determined by X-Ray and Neutron Diffraction. Part 1. Bond Lengths in Organic Compounds. *J. Chem. Soc. Perkin Trans.* 2 **1987**, No. 12, 1–19. - (50) Fieser, M. E.; Woen, D. H.; Corbey, J. F.; Mueller, T. J.; Ziller, J. W.; Evans, W. J. Raman Spectroscopy of the N-N Bond in Rare Earth Dinitrogen Complexes. *Dalt. Trans.*2016, 45 (37), 14634–14644. - (51) Shannon, R. D. Revised Effective Ionic Radii and Systematic Studies of Interatomie Distances in Halides and Chaleogenides. *Acta Crystallogr., Sect. A Cryst. Phys., Diffr., Theor. Gen. Crystallogr.* **1976**, *32*, 751–767. - (52) Tilley, T. D.; Andersen, R. A.; Spencer, B.; Zalkin, A. - Bis(Pentamethylcyclopentadienyl)Bis(Pyridine)Ytterbium(II). *Inorg. Chem.* **1982**, *21* (7), 2647–2649. - (53) Schultz, M.; Boncella, J. M.; Berg, D. J.; Tilley, T. D.; Andersen, R. A. Coordination of 2,2'-Bipyridyl and 1,10-Phenanthroline to Substituted Ytterbocenes: An Experimental Investigation of Spin Coupling in Lanthanide Complexes. *Organometallics* 2002, 21 (5), 460–472. - (54) Nocton, G.; Booth, C. H.; Maron, L.; Anderson, R. A. Influence of the Torsion Angle in 3,3'-Dimethyl-2,2'-Bipyridine on the Intermediate Valence of Yb in (C5Me5)2Yb(3,3'-Me2-bipy). *Organometallics* **2013**, *32* (19), 5305–5312. - (55) Willey, G. R.; Lakin, M. T.; Alcock, N. W. Unusual Crown Ether Encapsulation of a Chloroscandium(Iii) Cation. Structure of Threaded [ScCI2(18-Crown-6)1[SbC16]. *J. Chem. Soc., Chem. Commun.* **1992**, No. I, 1619–1620. - (56) Brown, M. D.; Levason, W.; Murray, D. C.; Popham, M. C.; Reid, G.; Webster, M. Primary and Secondary Coordination of Crown Ethers to Scandium(III). Synthesis, Properties and Structures of the Reaction Products of ScCl 3(Thf)3, ScCl3·6H2O and Sc(NO3)3·5H2O with Crown Ethers. *Dalt. Trans.* **2003**, *3* (5), 857–865. - (57) Yin, H.; Robinson, J. R.; Carroll, P. J.; Walsh, P. J.; Schelter, E. J. K2-Coordination of 18-Crown-6 to Ce(III) Cations: Solution Dynamics and Reactivity. *Chem. Commun.* 2014, 50 (26), 3470–3472. - (58) Tilley, D. T.; Andersen, R. A.; Spencer, B.; Ruben, H.; Templeton, D. H. Divalent Lanthanide Chemistry. Bis(Pentamethylcyclopentadienyl)Europium(II) and -Ytterbium(II) Derivatives: Crystal Structure of Bis(Pentamethylcyclopentadienyl)(Tetrahydrofuran)Ytterbium(II)-Hemitoluene at 176 K. - Inorg. Chem. 1980, 19, 2999-3003. - (59) Tilley, T. D.; Boncella, J. M.; Berg, D. J.; Burns, C. J.; Andersen, R. A.; Lawless, G. A.; Edelman, M. A.; Lappert, M. F. Bis[Bis(Trimethylsilyl)Amido]Bis(Diethyl Ether)Ytterbium and (Diethyl Ether)Bis(H5-Pentamethylcyclopentadienyl)Ytterbium. *Inorg. Synth.* 1990, 27, 146. - (60) Schultz, M.; Burns, C. J.; Schwartz, D. J.; Andersen, R. A. Solid-State Structures of Base-Free Ytterbocenes and Inclusion Compounds of Bis (Pentamethylcyclopentadienyl) Ytterbium with Neutral Carboranes and Toluene: The Role of Intermolecular Contacts. Organometallics 2000, 19 (9), 781–789. - (61) Bradley, D. C.; Ghotra, J. S.; Hart, F. A. Three-Co-Ordination in Lanthanide Chemistry: Tris[Bis(Trimethylsilyl)Amido]Lanthanide(III) Compounds. *J. Chem. Soc. Ser. Chem. Commun.* **1972**, 349–350. - (62) Evans, W. J.; Champagne, T. M.; Ziller, J. W. Synthesis and Reactivity of Mono (Pentamethylcyclopentadienyl) Tetraphenylborate Lanthanide Complexes of Ytterbium and Samarium: Tris (Ring) Precursors to (C5Me5) Ln Moieties. *Organometallics* 2007, 26 (24), 1204–1211.