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How charges separate: correlating disorder, free en-
ergy, and open-circuit voltage in organic photovoltaics

Débora P. Mroczek,a Vladimir Lankevich,b and Eric R. Bittnerc

In order for a photovoltaic cell to function, charge carriers produced by photoexcitation must fully
dissociate and overcome their mutual Coulomb attraction to form free polarons. This becomes
problematic in organic systems in which the low dielectric constant of the material portends a
long separation distance between independent polaron pairs. In this paper, we discuss our recent
efforts to correlate the role of density of states, entropy, configurational and energetic disorder
to the open-circuit voltage, Voc of model type-II organic polymer photovoltaics. By comparing the
results of a fully interacting lattice model to those predicted by a Wigner-Weisskopf type model we
find that energetic disorder does play a significant role in determining the Voc; however, mobility
perpendicular to the interface plays the deciding role in the eventual fate of a charge-separated
pair.

1 Introduction

The performance of an organic photovoltaic devices depends on
successful charge-separation following photoexcitation, which in
turn hinges upon whether or not the initial excitonic state has
sufficient electronic or vibronic energy to overcome the Coulomb
attraction between an electron and hole.1–4 Whether this hap-
pens rapidly through "hot" excitonic states or through thermalized
"cold" states has been a matter of considerable recent debate and
the answer to this question contains information crucial for the
design of highly efficient organic solar cells. "Hot excitons" are
attributed to the prompt formation of mobile polarons observed
in fullerene/polymer blends. While many groups argue that "hot
excitons" are the main source of photocurrent, experiments con-
ducted by Vandewal et al indicate that it is "cold excitons" i.e.
thermalized excited states are the ones that give the predominant
contribution to the photocurrent.

The dissociation of electron-hole pairs into free charge carriers
is especially puzzling since it requires an electron and a hole to
overcome the strong electrostatic attractions under seemingly un-
favorable conditions. Heuristically, charge carriers are free when
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of Physics, Houston, TX.; E-mail: ebittner@central.uh.edu.

thermal energy is comparable to the Coulombic attraction,

e2

4πε0εr
≤ kBT, (1)

where e is the electron charge, ε0 is the vacuum permitivity, ε is
a dielectric constant of the material and r is the distance of sep-
aration between a charges. Due to the low dielectric constant
(ε = 2− 4) of organic materials typically used in OPVs, an elec-
tron finds itself with a 0.5 eV barrier to surmount, corresponding
to the Coulomb capture radius of 15 to 28 nm. It is highly im-
probable that charges would be able move this distance before
recombining; however, it has been observed that free charge car-
riers can be formed at separations of 4 nm on the femtosecond
timescales.5,6 Thus, a goal of our recent work has been to rectify
both “hot” and “cold” exciton dissociation mechanisms within the
context of a common theoretical model.

From thermodynamics, we can consider the dissociation in
terms of the reversible work (i.e. Helmholtz energy) required
to separate an electron from a hole to a given radius.

F(r) =U(r)−T S(r) =U(r)− kBT lnΩ(r) (2)

where Ω(r) is the the number of equivalent electron/hole states
with separation r, T is the absolute temperature, kB is the Boltz-
mann constant, U(r) is the electron-hole interaction potential,
and S is the entropy of the electronic degrees of freedom.7 For
a single polymer chain, a π−electron that is confined to move
along a single quasi-one-dimensional polymer chain has only one
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Figure 2: Schematic representation of the lattice model and conduction and va-
lence band energies associated with each site. Donor and acceptor phases are distin-
guished by lowering acceptor site energies by �E. t is the hopping parameter controlling
electron and hole’s movement between neighboring sites. Disorder is introduced into the
model by modifying energy of each site by some value randomly drawn from a Gaussian
distribution with variance �E. |h17e23i, |h22e16i and |h10e11i are examples of CT, "flipped"
CT and an intraphase CT configurations respectively.

p
(xi � xj)2 + (yi � yj)2, where (xi, yi) and (xj, yj) are site-wise coordinates of a hole and an

electron respectively. We also define an operator R̂ such that R̂|ni = R̂|hieji = Rij|hieji to

compute the expected e-h separation hRi for k-th eigenstate | ki of Ĥel + Ĥel�ph and match

it to the corresponding eigenvalue.

hRki = h k|R̂| ki =
X

ij

|⇢k
ij|Rij (6)

where |⇢k
ij| represents contribution of configuration |hieji to the k-th eigenstate | ki =

P
ij ck

ij|hieji.

8
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Fig. 1 (a) Sketch of model. Our analytical model assumes that the
hole remains pinned to the interface and that the donated charge tun-
nels some distance r into the acceptor phase. While the sketch is in
a two-dimensional plane, the full physical system and our calculations
is in three-dimensions. (b) Atomistic representation of the interface and
its mapping onto a site model that is represented as a set of two-level
systems with energy gaps modulated about their average HOMO-LUMO
gap.

defined path and consequently the electronic entropy contribu-
tion. For thin-films (2-D) and fullerene-based acceptors (3-D) the
number of electron/hole configurations available to the system
with a given electron/hole separation radius scales with the sur-
face area

Ω ∝ (r/ro)
d−1. (3)

where ro is the unit length and d = 1,2,3 is the dimensionality of
the system. Consequently the entropy

S = (d−1) ln(r/ro) (4)

can become energetically comparable to the Coulombic energy of
the electron-hole pair in two and three dimensions.7,8 This has
the desired result of providing a zero-work pathway for the dis-
sociation of an exciton to a free electron/hole pair. This estimate,
however, is only valid for the scenarios with an immobile hole.

Allowing the hole to move adds additional degrees of freedom
and increases the number of available electronic states further
emphasizing the importance of the entropic contribution. The re-
versible work theorem also implies an equality between chemical
potential and the open-circuit voltage, qVOC, of the photo-voltaic
device9 and establishes a crucial connection between theoretical
and laboratory investigations of the current generation in OPVs.
From such considerations, Burke et al. arrive at the following
expression for the VOC from the canonical ensemble:

qVOC = ECT −
σ2

CT
2kBT

− kBT ln
(

q f N0L
τCT Jsc

)
(5)

where f is the volume fraction of the device that is mixed or in-
terfacial, L is the thickness of the solar cell, JSC is the short-circuit
current of the cell, q is the electronic charge, and N0 is the den-
sity of the electronic states in the device. Equation 5 includes the
necessary dependence of qVOC, and therefore of F , on the average
energy of the CT state, ECT , disorder in the CT energies, expressed
through standard deviation σCT , and the life-time of the CT-state,
τCT .9 Nonetheless, this expression is composed of variables that
refer to the entire device making Equation 5 difficult to connect
to a microscopic model.

More recently, Hood and Kassal have shown that the free en-
ergy better reflects the energy landscape that an electron and a
hole traverse, since the entropic term effectively lowers the en-
ergy barrier needed for the transferred charge to become a free
charge carrier. Additional dissociation paths and energetic disor-
der make the Coulombic interaction comparable to the thermal
fluctuations. Consequently, the Coulomb attraction no longer de-
fines how far an electron and a hole can separate as suggested by
Eq.1. Within the Hood and Kassal model, a bulk-heterojunction
is an ensemble of energetically disordered hexagonal lattice sites.
Under an assumption of electronic equilibrium, they then com-
pute the free energy as8

F =−〈kBT lnZ〉 (6)

where Z is the partition function that describes specific energy
states and the bracket 〈· · · 〉 denotes a statistical average over re-
alizations of the disordered lattice. Both Equations 5 and 6 are
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derived in the canonical ensemble and carry the same informa-
tion. However, the latter approach is far more suitable for con-
necting to microscopic details such as energetic and structural dis-
order. There are, however, a few drawbacks of the Hood-Kassal
model. The electrons and holes are not permitted to cross from
one domain to the other, and a hole is restricted to move only
perpendicular to the interface under the assumption of transla-
tional symmetry. The model includes the electrostatic potential,
but does not take into account important quantum effects such
as delocalization, mixing between excitonic and charge-transfer
configurations, and electronic exchange effects.

We recently examined this approach using a fully interact-
ing 2D electron/hole lattice model that our group developed for
studying exciton and charge transfer dynamics at organic hetero-
junction interfaces10–16 and compared it to experimental values
for the open-circuit voltage by including site-energy disorder and
thermal fluctuations within the lattice itself. We show that this
generally facilitates charge separation; however, due to the ex-
cess energy supplied by the initial photoexcitation, highly ener-
getic electron-hole pairs can dissociate in unfavorable directions,
potentially never contributing to the photocurrent while “cold”
thermalized states follow the free energy curve defined at the op-
erating temperature of the device.17 In this discussion, we pursue
an heuristic/thermodynamical model that that can be solved an-
alytically for computing the reversible work to separate charges
at a given temperature. We find that the analytical model repro-
duces many of the features of a more detailed model in the limit
of very low mobility of the transferred charge. We also explore
the use of singular value decomposition of the electron/hole wave
functions as a means to quantify when the separated carriers are
truely independent.

2 Theoretical Models

2.1 Simple lattice model

We begin by considering a model donor/acceptor heterojunction
system as sketched in Fig. 1 whereby the physical system is rep-
resented as a series of lattice points in three physical dimensions.
The system is partitioned such that all points with x < 0 are con-
sidered to be in the Donor-phase while all points x > 0 are in the
acceptor phase. Charge generation occurs when a neutral exci-
ton, denoted as ∗′ in our sketch and created by photoexcitation,
finds itself close to the phase boundary where there is sufficient
driving force to separate the exciton into an electron/hole state.
Within the context of our sketch, we will assume for purposes of
this model that the vacated hole is either located at the origin or at
some point~ro within the donor phase and the transferred electron
is located at some lattice point~r away from this site. This allows
us to describe the resulting electron/hole configuration energy as
ε(r) which we will take to be

ε(r) = ∆E−Eo f f + J(r) (7)

where ε is the dielectric constant and ∆E is the energy gap be-
tween local LUMO and HOMO orbitals and Eo f f is the offset be-
tween the HOMO orbitals in the acceptor phase and the HOMO
orbitals in the Donor phase. For purposes of constructing a model

we can analyze analytically, we assume that the local site energy
for an electron/hole configuration is Coulombic (J = e2/εr ) at
long range and and equal to the U when the electron and hole
are localized on the same site as in an excitonic configuration.
Hence, ε(0) corresponds to the energy of a non-dissociated ex-
citon at the interface in our model. The interpolation between
the local interaction U and the long-range Coulomb interaction is
given by the Mataga-Nishimoto potential

ε(r) =
U

1+Uεrr/ro
. (8)

where εr is the relative permittivity between the donor and accep-
tor materials (and can be set to 1 since we assume the two ma-
terial to be conjugated organics) and ro = 14.397 when distances
are in Åand energies are in eV. Finally, we take the coupling be-
tween the exciton and the charge-separated states to be due to
tunneling and of the form

v(r) =Voe−β r (9)

where β−1 defines a tunnelling length. Within this model, the
idempotent operator is given by

1 = |X〉〈X |+∑
r
|r〉〈r| (10)

where |X〉 denotes a local exciton state and |r〉 denotes a charge-
separated state with electron/hole radius r. The energy eigen-
states can be determined by expanding in this basis

|µ〉= 〈µ|X〉|µ〉+∑
r
|r〉〈r|µ〉 (11)

and then writing out the Hamiltonian matrix elements as

ε(r)〈r|µ〉+ v(r)〈X |µ〉= Eµ 〈r|µ〉 (12)

∑
r

v(r)〈r|µ〉= Eµ 〈X |µ〉. (13)

This leads to a transcendental equation for the energy eigenval-
ues,

Eµ = ∑
r

v2(r)
Eµ − ε(r)

. (14)

Similarly, one finds the projection of the exciton onto the |µ〉
eigenstate as

|〈X |µ〉|2 =
(

1+∑
r

v2(r)
(Eµ − ε(r)2)

)−1

. (15)

In the Wigner-Weiskopf model, one sets ε(r) = r corresponding to
a uniform density of states and assumes the coupling is constant.
This allows both summations to be performed analytically. For
the case at hand, we assume the sums can be transformed into
radial integrations and then use the Laplace method to evaluate.
∗

∗While the model can be solved fully analytically, it is computationally far faster to
simply diagonalize the Hamiltonian matrix given by Eqs. 12 and 13.
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Fig. 2 Normalized DOS for 2D and 3D model lattices.

For comparison, we consider the case of a 2D and a 3D lattice
with similar parameters: {Ex→ 2.5eV,Eo→ 5eV,Vo→−1eV,U →
3eV,β → 0.75−1} where Ex = ED,lumo−ED,homo−U is the local ex-
citon energy taken as the energy difference between the donor’s
LUMO and HOMO orbitals plus the local electron/hole attraction
U , and Eo = EA,lumo−ED,homo is the energy for a non-interacting
electron/hole pair. Finally, we set the local electron/hole site en-
ergy to be

E(~r) = Eo + ε(r)+δE (16)

with 〈δE〉= 0 and
√
〈δE2〉= 0.1eV to account for the fact that the

local electron/hole site energies are distributed about Eo to re-
flect inhomogeneous local environments. While the model is very
simple and ignore interactions between charge-separated config-
urations, the resulting energies and density of states are similar to
what we obtain with our more elaborate, fully interacting model,
supporting that this heuristic model captures the salient physics of
a more sophisticated model. Parametrically, the model presented
here is identical to the more realistic, fully interacting heterojunc-
tion model we have published extensively upon over the past 15
years. We shall comment further on this model later in this report.

It is interesting to note that in the 2D case, there are far more
states below the exciton energy (at E = 0) than above, which sug-
gests that dimensionality plays a central role in the dissociation
of an initially prepared exciton state. This notion is further en-
forced when we do a head-to-head comparison of the normalized
density of states for the 2D and 3D lattices as shown in Figure 2.
First, we note that the DOS in the 3D lattice is skewed towards
higher energies as compared to the 2D lattice. Furthermore, in
3D the number of local charge-transfer states with energy lower
than the exciton’s energy is lower than in the 2D case. From this

simple model, we are drawn to the conclusion that dimensional-
ity and density of states are every bit as important as energetics
when building models for exciton dissociation.

Having determined the eigenstates of the model, we next con-
struct a function describing the free energy required to separate
charges to a given radius, rsep. From statistical mechanics, we
know that

F =−kBT lnZ (17)

where Z is the canonical partition function given in the usual way
via summing over states

Z = ∑
µ

exp(−Eµ/kBT ). (18)

We write this as an integral over r and define Eµ (r) as the energy
of a charge-separated state whose mean radius is equal to r =

|〈µ|~r|µ〉|. Thus

Z =
∫

∞

0
g(r)exp(−Eµ (r)/kBT )dr (19)

where g(r) the density of eigenstates with mean radius r. In Fig-
ure 3 we show that Eµ (r) can be described as a nearly single-
valued function of r except in cases where the exciton is resonant
with the separation energy. Moreover, to a good approximation,
Eµ (r)≈ ε(r) when we shift the spectral range to place the lowest
energy eigenvalue at the origin with r = 1 and shift the interaction
energy ε(1) = 0. This shift in the energy origin is typically done
when constructing the partition function so that all energies are
considered to be excitations from lowest energy state. Thus, we
define the “radial” partition function and free energy as simply

Zct(r) = exp(−(ε(r)− kBT ln(g(r)))/kBT ) (20)

and

Fct(r) = ε(r)− kBT ln(g(r))) (21)

Taking g(r) = 4πr2 as the 3D radial volume element we have an
analytical expression for the free energy of a charge-separated
state with radius r. Finally, the initial exciton state has an entropy
of zero since it is a local state within our initial basis, and we
write the reversible work as

∆F(r) = Fct(r)−Eex. (22)

Finally, we introduce a correction for the relative kinetic energy of
the charge-transfer state as function of the electron/hole separa-
tion radius. This can be justified from simple argument based on
the uncertainty principle ∆x∆p ≥ h̄/2 and 〈K〉 = 〈∆p2〉/2m which
immediately yields that 〈K〉 ≈ h̄2/(2mr2) upon taking r2 = 〈∆x2〉.

In Figure 3 we show compare the distribution of free ener-
gies compared to the electron/hole site energy, ε(r) and the Fct as
computed by Eq. 21, superimposed in white and red respectively.
The dashed red-line includes the short-ranged kinetic energy cor-
rection which does appear to limit the closest point of contact
between the electron and hole, but dies off rapidly at long dis-
tances. Further, to a good approximation, the free energy is well
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Fig. 3 Energetics and approximate free energy from the Statistical Hop-
ping model for exciton dissociation. The contours give the density of
eigenstates with a given average electron/hole separation radius and
eigenvalue energy. The white, red, and red-dashed curves are theoretical
models of for the energy and free energy as described in the text.

approximated by simply the charge-transfer site energy ε(r) and
shows no indication of rolling over at ranges relevant for exciton
dissociation. We conclude from this that models that do not al-
low the electron and hole to move independently and quantum
mechanically or only include intermediate hopping or tunneling
effects are poor representations of a semiconductor interfaces.

2.2 A Fully Interacting Model

Missing from this simple model is the fact that both the electron
and the hole are both mobile and consequently are delocalized
over multiple sites. Also, different electron/hole configurations
interact. With these in mind, we next describe a fully interacting
electron/hole model. Adding the additional degrees of freedom
dramatically increases the complexity of the model, and hence
the model is currently restricted to a 2D lattce. We recently used
this model to assess the free energy of a 2D model heterojunction
system17 and we shall recapitulate some of the results here as
they pertain to the heuristic model we presented above.

The model is described by the following electron/hole-+-

phonon Hamiltonian,10,15

Ĥ = Ĥel + Ĥel−ph + Ĥph

= ∑
mn

(Fmn +Vmn)|m〉〈n|

+ ∑
mn,a,µ

(
∂Fmn

∂qa,µ

)
qa,µ |m〉〈n|

+
1
2 ∑

µ,a
ω

2
a (q

2
a,µ +λqa,µ,µ+1)+ p2

a,µ ,

(23)

where electron-hole configurations |n〉= |hie j〉 whereby a hole in
a valence orbital on site i and an electron in a conduction orbital
on site j form the basis for the Hamiltonian. We have published
the details and parameterization of the model previously and, we
briefly review its salient features. The term Fmn describes the
single-particle motion for a non-interacting electron/hole pair. In
its simplest form for configurations |n〉 = |hie j〉 and |m〉 = |hkel〉
it is given by

Fmn = f e
jl δik + f h

ik δ jl (24)

where f e and f h have the meaning of localized energy levels and
transfer integrals for conduction band electrons and valence band
holes. In the absence of disorder, these quantities obey charge-
conjugation symmetry with f h

mn =− f e
mn and we assume that only

nearest neighbors on the 2D lattice are coupled by these terms
(t = fi,i+1). The donor and acceptor domains are differentiated
by imposing an energetic off-set, ∆E, in the site-energies at the
domain boundary as sketched in Fig. 1b. Vmn describes spin-
dependent two-particle Coulombic and exchange interactions for
each configuration, as well as interactions between different sin-
glet geminate electron-hole pairs. For the case of singlet excita-
tions,

Vmn =−〈hie j|V |hie j〉+2〈h jei|V |hie j〉. (25)

We assume that the inter-unit overlap of the primitive site-basis
functions is small and that three types of integrals contribute to
this interaction, each with well known meaning and long-range
behavior.10 First, an electron and hole on sites separated by a
distance r will experience a long-range Coulomb attraction of the
Mataga-type as used above

〈hie j|v|hie j〉=
Jo

1+ ri j/ro
, (26)

a short range exchange term which decays exponentially with
electron/hole separation

〈h jei|v|hie j〉= Ko exp(−ri j/ro). (27)

Secondly, because differential overlap between an electron and
hole sitting on the same site is substantial, we include the tran-
sition dipole-dipole coupling between singlet geminate electron
hole pairs,

〈hiei|v|h je j〉=
Do

(ri j/ro)3 . (28)
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where J0 and K0 indicate Coulombic and exchange interactions
between an electron and a hole on the same site. D0 is a dipole
moment of an electron-hole pair located on site i. It is impor-
tant to note that these terms carry information pertaining to the
spatial disorder in our model. While the model can treat singlet
or triplet states, we are analyzing post-photoexcitation charge-
transfer states and will only focus on singlets in this study.

The phonon term, Ĥph, assigns to each lattice site a high and
a low frequency vibrational mode described by a local harmonic
oscillator with weak nearest-neighbor coupling. These terms are
determined from spectroscopic Huang-Rhys parameters typifying
organic conjugated polymer systems. Such contributions modu-
late both the on-site band-gap as well as the site-to-site hopping
integrals.

For a given lattice configuration, the eigenstates of the Hamil-
tonian in Eq. 23 are linear combinations of all configurations al-
lowed on a particular lattice

(Ĥel + Ĥel−ph({q}))|ψk〉= Ek({q})|ψk〉 (29)

with the k-th eigenstate defined as |ψk〉 = ∑i j ck
i j|hie j〉. We con-

struct a 10 site × 10 site lattice with a donor-acceptor energy
offset of ∆E = 0.5 eV, the transfer energy between nearest sites
set to t = 0.536 eV and lattice constant a = 1 nm in all directions.
We deliberately choose a higher value for the hopping parameter
(previously calculated to represent polymer intra-chain transfer
energy15) to allow an electron and a hole easy passage through-
out the lattice and to insure that nothing but the presence of dis-
order inhibits or facilitates electron/hole dissociation.

Since the fully interacting model allows valance holes in the ac-
ceptor region and conduction electrons in the donor domain, we
need to be careful when defining the free energy as a function of
electron/hole separation distance since we only want to include
states in which the conduction electron is in the acceptor domain
and the hole is in the donor domain. With this in mind, we define
this as

〈Rk
D〉= ∑

i j
|ρk

i j|~ri j ·~n (30)

where ρk
i j is the eigenstate amplitude at electron/hole configu-

ration and ~n is a unit vector normal to the donor/acceptor in-
terface. The dotted curves in Figure 4 show the distribution of
charge-transfer energies vs. mean electron/hoie separation ra-
dius RD as averaged over 1000 realizations of the site energies
with a δE = 0.01eV − 0.20eV fluctuation in the local site energy.
The solid curves are the free energies which include the density
of states contribution at 300K. Lastly, the shaded region indi-
cates a range of literature values for qVoc for a variety of poly-
mer/fullerene based heterojunction systems. This figure provides
a connection between the “hot” and “cold” dissociation mecha-
nisms for exciton dissociation.

One can think of a “hot” exciton process as occurring on a po-
tential energy surface described by the average CT energy (i.e.
the dotted curve in Figure 4. In this case, an exciton is injected
into the system at an energy above ≈ 2.0eV . While some ener-
getic relaxation may occur, the system encounters a small barrier

δ� = �����

δ� = �����

δ� = ������

δ� = ������

0 1 2 3 4 5
0.0

0.5

1.0

1.5

2.0

2.5

3.0

〈RD〉/a

E
/e
V

〈U〉

〈F〉

expt'l Voc range

Fig. 4 Average (points) and free energy (solid) curves for the fully-
interacting model at different values of site-energy disorder δE.
Shaded region represents the range of experimental values for open-
circuit voltage with the average indicated by the dashed black line.

and can efficiently dissociate into separate charge-carriers. In this
case, energy fluctuations appear to increase the effective energy
barrier between the initial exciton at RD = 0 and the fully sepa-
rated charge carriers. Conversely, the “cold” exciton pathway can
be understood as following a potential of mean force path along
the free-energy minimum plotted as the solid curves. While the
energy landscape is somewhat bumpy compare to the “hot” disso-
ciation path, free energy fluctuations tend to be smoothen out by
increasing the fluctuations in the site energies. In both cases the
energetics converge to the experimental qVoc range. This leads
to the ecumenical conclusion that both “hot” and “cold” exciton
mechanisms contribute to the final production of charge-carriers.

In Figures 5(a-d) we present what happens when we modify
the lattice model such that the transferred electron is far less mo-
bile in the direction perpendicular to the interface than in the
direction parallel to the interface. In this, we model more closely
the case of π-stacked oligomers in the acceptor phase. The total
energy and free energy curves are superimposed over the density
of eigenstates in which the local site HOMO/LUMO gap included
a random (static) fluctuation about a mean gap. The computed
results reproduce many of the features of the exact model pre-
sented in Sec. 2.1 including the short-range kinetic energy con-
tribution and the long-range tail of the average energy and free
energy. This would imply that lower mobility in one of the phases
has a profound impact on the ability of charges to escape from
the interfacial region. Only in the instances of higher energetic
disorder do we begin to see the free energy contribution begin
to roll-over and plateau suggesting that local trapped states may
facilitate the separation process.
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(a) (b) (c) (d)

Fig. 5 Radial energy distributions for lattice model with decreased mobility perpendicular to interface. The blue curve represents thermodynamic
energy in the high temperature regime as a function of electron-hole separation; the dashed red curve is thermodynamic energy at 298 K; the purple
curve is the free energy at 298 K. Contours and back-ground color indicate the normalized probability to find an eigenstate with a given energy and
with a given electron/hole separation as sampled over fluctuations in the local site energies. In these cases we model the donor phases as a series of
π-stacked oligomers with high electron/hole mobility parallel to the interface and much lower perpendicular to the interface. Both the total energy and
free energies at T = 300K are similar to the model of Sec. 2.1 where the transferred charge is effectively immobile.

2.3 Transition rates between states

In computing the eigenstates of Eq. 23 we took qau = 0 and con-
sidered only the vertical excitations, assuming that fluctuations in
the energy are due to the local electrostatics and not due to fluc-
tuations in the phonons from their equilibrium positions. The re-
maining two terms in Eq. 23 allow for transitions between eigen-
states. For this, we allow for both high and low-frequency phonon
branches and assume that the coupling term (∂Fnm/∂qa,µ ) can be
determined from spectroscopic Huang-Rhys factors. It is then a
simple matter to derive the golden-rule rate constant between
eigenstates of Hel |k〉 = εk|k〉 For this, we first perform a unitary
(polaron/shift) transform on the entire H.18

H̃ = e−SHeS (31)

where S is an anti-hermitian operator

S =−∑
ka
(gkkq/ωq)|k〉〈k|(a†

q−aq) (32)

which gives that

eS = ∑
k
|k〉〈k|exp

[
−∑

q

gkkq

ωq
(a†

q−aq)

]
(33)

where the sum over q is over all normal modes, gkkq is the force
term in Eq. 23 transformed into the normal mode and eigenstate
basis, and the sum over k is over eigenstates of Hel . The polaron
transform renormalizes the electronic energies

ε̃k = εk−∑
q

g2
kkq

ωq
(34)

and shifts the electronic coupling

Ṽkk′ =
(

e−SHel−pheS
)

kk′

= ∑
k 6=k′
|k〉〈k′|Mkk′ (35)

where

Mkk′ = ∑
q

gkk′q

(
a†

q +aq−
2gkkq

ωq

)
e

∑q′
( gkkq′ −gk′k′q′

ω j
(a†

j−a j)
)

(36)

is the dressed off-diagonal coupling. Transforming to the Heisen-
berg representation and integrating over the phonon degrees of
freedom leads to an expression for the golden-rule rate in terms
of the autocorrelation of these dressed operators

Wkk′ = 2Re
∫

∞

0
∑
qq′

Tr
[
Mkk′qMk′kq′(t)ρ

ph
eq

]
e−i(ε̃k−ε̃k′ )tdt (37)

In general, the time-correlation function has recurrences (since
it is a sum of periodic functions) and in practice we perform the
time iteration only over a sufficiently long enough interval for the
correlation function to decay and truncate the integration before
the first recurrence.

While this approach is accurate and we have used it extensively
for computing rates, the drawback is that it is time-consuming to
to compute this between each and every possible eigenstate of
Hel and then average over energetic fluctuations. Since we are
primarily interested in transitions from a local exciton to charge-
separated states, we developed a machine-learning approach to
rapidly parse through the Hel eigenstates and select only exci-
tonic and charge-separated eigenstates using a training set of pre-
determined exciton and charge-separated states.

Secondly, we wanted to understand whether or not the charge-
separated/polaron states are entangled electron/hole polarons or
if the state is separable into a product of polaron states. In other
words, can we write a given charge-separated state given as a
linear combination of site-local wavefunctions

ψk(re,rh) = ∑
i j

ck
i jφi(re)φ j(rh) (38)

as a sum over a single index

ψk(re,rh) = ∑
n

λ
k
n f k

n (re)gk
n(rh) (39)

Journal Name, [year], [vol.], 1–9 | 7

Page 7 of 9 Faraday Discussions



Fig. 6 Correlation between state energy, Shannon entropy, and net flux
from a given state for a model Heterojunction system.

where the f k
n (re) and gk

n(rh) are orthogonal polynomials given
by Schmidt decomposition of ψk(re,rh). These are the so-called
“Schmidt modes” from quantum information theory. Using the
normalized Schmidt eigenvalues λ̃ k

n for a given eigenstate, we
can define the Shannon entropy as

Sk =−∑(λ̃ k
n )

2 ln((λ̃ k
n )

2). (40)

When Sk = 0, only one term contributes to the sum (with only one
of the λ̃k = 1). Furthermore S = lnN where N is dimensionality of
the information space needed to describe a given eigenstate. In
essence, N = exp(S) gives the minimum number of single-particle
reducible states needed to describe a given many-body wavefunc-
tion. For an entangled two particle wavefunction as given in
Eq. 38, that decomposition is expressed in Eq. 39. If S = 0, only
one term will contribute to this sum, and the CI eigenstate would
be a simple product of a single valance-band electron orbital times
a single conduction-band hole orbital. Consequently, one antici-
pates that localized polaron states would be states with minimal
entanglement and hence describable as separable electron/hole
states and excitonic states to be highly entangled and generally
non-separable.

In Figure 6 we compare the state energy and its associated
entropy for a given lattice realization. Here we determined
whether a given eigenstate is charge-separated (green dots),
charge-transfer (yellow triangles), or excitonic (blue diamonds)
using a machine learning method that compared computed elec-
tron/hole eigenstates to "idealized" CS, CT, or excitonic states. For
clarity we show the results from only a single lattice realization.
First, we note that excitonic states tend to cluster with high en-
tanglement entropies which one anticipates since the the electron
and hole are occupying the same set of sites on the lattice. Sim-
ilarly, the lowest energy CT state, which is best described as an
electron/hole pair separated across the interface, but pinned to
each other via Coulombic interactions. Interestingly, even though
their center of mass motions are coupled, the state itself is separa-

ble into a product of polaron states. Energetically above the exci-
tons lie another band of charge-transfer states. While these states
are CT in character, the electron and hole remain highly entan-
gled and in general these states contain some excitonic configura-
tions. Finally, energetically above these are true charge-separated
states; however, Schmidt decomposition reveals that these are not
strictly separable into electron and hole single-particle polaron
states.

Figure 6 also shows the net rate that population leaves a given
energy state

ηn = ∑
i
(Win−Wni) (41)

as indicated by a flag whose magnitude indicates the magnitude
of ηn and whose direction indicates the flow on the (E,S) plane.
Not surprisingly, the net “flow” is towards the lowest energy CT
state. However, it is interesting to note that the lowest energy CS
state is a kinetic trap.

3 Conclusions

In this work, we have discussed various approaches we have fol-
lowed to connect the interfacial energetics to the observed open-
circuit voltage for organic polymer-based photovoltaic cells. Such
coarse-grained models provide considerable insight into to the
energetics and kinetics of charge-transfer processes in mesoscale
systems that are currently too large to be considered using more
atomistic/ab initio based models. In particular, this discussion has
focused upon the role of the density of states and entropic contri-
butions to the charge-separation process following photoexcita-
tion. One of the principle results of this analysis is a comparison
between an analytical model based upon the Wigner-Weisskopf
model for the decay of a quantum state into a broad continuum to
a more detailed lattice model our group has developed. Surpris-
ingly, the two models give remarkably similar results in the limit
that the mobility of the transferred charge is sharply reduced in
the direction perpendicular to the interface.

Secondly, we test the hypothesis that the charge-separated state
is a simple product of a electron and a hole state of the form

ψcs(re,rh) = φe(re)φh(rh).

In other words, that the singular value decomposition of the full
electron/hole wave function of Eq. 38 should contain exactly one
and only one non-trivial term in Eq. 39 resulting in a a Shannon
entropy (Eq. 40) of exactly 0. Rather, we find that only the lowest
energy CT state is the least entangled electron/hole state. We
shall continue to explore the connection between dissociated CS
states and their Shannon entropy since it pertains as to the range
at which electrons and holes are truely separable species.

Acknowledgements

This work was funded in part by the National Science Foundation
(CHE-1664971, MRI-1531814) and the Robert A. Welch Founda-
tion (E-1337). DPM acknowledges the support from a UH Sum-
mer Undergraduate Research Fellowship (SURF).

8 | 1–9Journal Name, [year], [vol.],

Page 8 of 9Faraday Discussions



References
1 M. D. Chatzisideris, A. Laurent, G. C. Christoforidis and F. C.

Krebs, Appl. Energy, 2017, 208, 471 – 479.
2 S. H. Park, A. Roy, S. Beaupre, S. Cho, N. Coates, J. S. Moon,

D. Moses, M. Leclerc, K. Lee and A. J. Heeger, Nat. Photonics,
2009, 3, 297–302.

3 M. Scharber and N. Sariciftci, Prog. Polym. Sci., 2013, 38,
1929 – 1940.

4 Z. He, B. Xiao, F. Liu, H. Wu, Y. Yang, S. Xiao, C. Wang, T. P.
Russell and Y. Cao, Nat. Photonics, 2015, 9, year.

5 S. Gélinas, A. Rao, A. Kumar, S. L. Smith, A. W. Chin, J. Clark,
T. S. van der Poll, G. C. Bazan and R. H. Friend, Science, 2014,
343, 512–516.

6 A. C. Jakowetz, M. L. Böhm, J. Zhang, A. Sadhanala, S. Huet-
tner, A. A. Bakulin, A. Rao and R. H. Friend, J. Am. Chem.
Soc., 2016, 138, 11672–11679.

7 B. A. Gregg, J. Phys. Chem. Lett., 2011, 2, 3013–3015.
8 S. N. Hood and I. Kassal, J. Phys. Chem. Lett., 2016, 7, 4495–

4500.

9 T. M. Burke, S. Sweetnam, K. Vandewal and M. D. McGehee,
Adv. Energy Mater., 2015, 5, 1500123.

10 S. Karabunarliev and E. R. Bittner, The Journal of Chemical
Physics, 2003, 119, 3988–3995.

11 S. Karabunarliev and E. R. Bittner, The Journal of Physical
Chemistry B, 2004, 108, 10219–10225.

12 E. R. Bittner, J. G. S. Ramon and S. Karabunarliev, Journal of
Chemical Physics, 2005, 122, 214719–214719.

13 E. R. Bittner, J. G. S. Ramon and S. Karabunarliev, The Journal
of Chemical Physics, 2005, 122, 214719.

14 E. R. Bittner, S. Karabunarliev and A. Ye, The Journal of Chem-
ical Physics, 2005, 122, 034707.

15 S. Karabunarliev and E. R. Bittner, The Journal of Chemical
Physics, 2003, 118, 4291–4296.

16 S. Karabunarliev and E. R. Bittner, Phys. Rev. Lett., 2003, 90,
057402.

17 V. Lankevich and E. R. Bittner, Journal of Chemical Physics,
2018, 149, 244123.

18 A. Pereverzev and E. R. Bittner, The Journal of Chemical
Physics, 2006, 125, 104906.

Journal Name, [year], [vol.], 1–9 | 9

Page 9 of 9 Faraday Discussions


