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A novel method for the analysis of clinical biomarkers

to investigate the effect of diet on health in a rat model

K. Hopes1, *M. Cauchi1, C. Walton1, H. MacQueen2, W. Wassif3; C. Turner2

Experiments into the relationship between diet and health have been an area of high interest

for a long time. In this study, we investigate the application of multivariate data analysis to

differentiate between rat populations fed on two different diets: normal rat diet (control) and

Western affluent diet (WAD). Two sets of data were acquired and analysed: one from a

biochemical clinical analyser, taking measurements of blood-based biochemical markers; the

other from the analysis of the volatile organic compounds (VOCs) emitted from faecal

samples from the same animals using selected ion flow tube mass spectrometry (SIFT-MS).

Five classes were considered: weanlings, 12 month controls, 12 month WADs, 18 month

controls, and 18 month WADs. Data from the biochemical analyser, weanlings and 18 month

WAD fed rats showed significant differences from the other measurement classes. This was

shown in both the exploratory analysis and through multivariate classification. Classification

of control diet versus WAD diets suggested there are differences between classes with 92%

accuracy for the 12 month classes and 91% for the 18 month classes. Cholesterol markers,

especially as low density lipoprotein-cholesterol (LDL), were the main factor in influencing

WAD samples. The data from the SIFT-MS analysis also produced very good classification

accuracies. Classification of control diet versus WAD diets using the H3O
+ precursor ion data

suggested there are differences between classes with 71% accuracy for the 12 month classes

and 100% for the 18 month classes. These findings confirm that total cholesterol and LDL-

cholesterol are elevated in the 18 month WAD-fed rats. We therefore suggest that the analysis

of VOCs from faecal samples in conjunction with multivariate data analysis may be a useful

alternative to blood analysis for the detection of parameters of health.

Introduction

There are recommended daily amounts of nutrients for the human

body to ensure maintenance and repair of key systems and functions.
1,2 For optimum performance, macronutrients (in the form of

carbohydrates, proteins and fats) should contribute to the diet in an

appropriate balance, and micronutrients should be present in

sufficient - but not excessive - quantities. The quantities of certain

nutrients taken in by an individual significantly affect what happens

internally and can vary the probability of developing certain

illnesses/diseases.

Many nutritional imbalances have been linked specifically to disease

in human and rat models.3 High plasma sodium and low plasma

potassium are linked to hypertension,4 and there is a wealth of

information linking diet with cardiovascular function.5 Liver and

kidney function are compromised by a high fat, high carbohydrate

diet,6 and the immune system is significantly affected by sub-

optimal diets.7

A study concluded that a reduction in salt intake lowers blood

pressure in individuals of any gender or ethnicity.8 Deficiencies in

glucose uptake and amino acids have a deleterious effect on the

immune system by negatively affecting T-cell function and reducing

immune-cell activation, respectively.9 These factors therefore

potentially compromise health. Other studies have shown that

cardiovascular disease can be caused by an excessive increase in

serum cholesterol levels and sugar consumption. 10

Evidence of dietary effects on health can be seen on a large scale.

Whole countries or regions are known to have diets that are more

beneficial to an individual’s health than others. The Okinawan diet

generally consists of low levels of saturated fat, high antioxidant

intake, and low glycaemic load. These features are likely to

contribute to the decreased risk of cardiovascular disease, some

cancers, and other chronic diseases seen in the people of south

Japan.11 Another study stated that in general, the Okinawan diet

resulted in longer lives.12

A recent study investigated using a clinical analyser reports the

normal serum concentrations and activities of biochemical markers
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related to nutrition, inflammation and disease.13 Such analysers can

be programmed to sequentially analyse many biochemical markers

of health and disease from small volumes of clinical samples such as

whole blood or serum. The authors also investigated how these

parameters change with age and diet in the rat. Their findings

showed that in rats fed a normal nutritionally balanced rat diet (the

'control' rats), ageing resulted in a general decrease in potassium,

iron, and serum albumin concentrations. There was also a decrease

in the activities of aspartate aminotransferase and alanine

aminotransferase. The control rats showed an increase in total and

high density lipoprotein (HDL) cholesterol with age.

Further changes were seen in rats of another group which were fed a

high carbohydrate, high fat and low protein diet - a Western affluent

diet.6 These changes were in serum concentrations of sodium, urea,

creatinine and triacylglycerols (TAG), and a change in activity of

alkaline phosphatase markers which can be linked to kidney, liver

and cardiovascular health.

Volatile organic compounds (VOCs) are becoming more useful as

markers of health and many studies have been carried out recently

on the link between VOCs and health.14 For instance, there is known

to be a link between acetone and blood glucose concentration in both

healthy people and those with diabetes 15 and a variety of other links

between VOCs and disease have been noted.14 Breath analysis was

initially used as a non-invasive diagnostic or monitoring tool for

health and disease, but the analysis of the VOCs coming from blood,

urine, faeces and other clinical samples is now becoming more

widely used depending on whether a systemic or localised condition

is being investigated.

There are a number of methods available for the analysis of VOCs,

however mass spectrometry (with or without chromatography for

compound pre-separation) is the most reliable for individual

compound identification and quantification. Rapid and quantitative

analysis of VOCs can be achieved using selected ion flow tube mass

spectrometry (SIFT-MS).16,17 SIFT-MS uses a fast flow tube to

study the reaction of precursor ions with sample molecules in gas or

vapour form. A precursor selection quadrupole and flow tube

technology enables the selected precursor ions (H3O
+, NO+, and O2

+)

to react in turn with the sample molecules to produce product ions

through chemical ionisation (CI). These product ions are separated

in a downstream quadrupole and are then detected and quantified. A

kinetic database is then used to quantify the concentrations of

various molecules present in the sample.

The particular precursor ions are chosen because they have slow

reaction rates with the components of air, but react quickly with

trace gases and vapours that may be used in research. This

technology, unlike most CI techniques, is able to use all three

reagents rapidly in turn on the same instrument, 18 making

compound identification and quantification easier.

Searching for individual biomarkers, either in gas or vapour phase,

or liquid phase has had some success, especially for some individual

conditions.19,20 However, when looking at the majority of health

conditions or other more complex systems, it has become apparent

that a range of biomarkers is needed to encompass the changes that

have occurred. In many cases, the changes in concentrations of

these biomarkers are subtle, and a picture of changes can only really

be clearly seen when a combination of biomarkers is looked at.

Capturing the pattern of these changes in a meaningful way requires

the use of multivariate data analysis to simplify the data by reducing

the number of variables used in investigating the condition to

identify those that are significant. This is because carrying out

statistical analysis of individual markers is in most cases likely to

only show non-significant changes which are inconclusive;

combining datasets to look at overall changes is much more

powerful and more likely to yield statistically significant results.

Multivariate data analysis has been employed in numerous studies

such as the diagnosis of bladder cancer 21 and gastrointestinal

diseases.22

The present study employs multivariate data analysis to determine

the effect that diet has on certain biomarkers over time (as the rat

ages) via two independent laboratory instrumental techniques:

biochemical analysis and SIFT-MS. This will be achieved by

evaluating changes in known biomarkers in rats fed on two different

diets over a period of 18 months. It is envisaged that the proposed

novel methodology may prove to be more useful in the field in

addition to being cheaper, faster, less invasive and more accurate.

This could lead to a better understanding of the effects of diet on the

body over time, and hence to a recognition of an optimal diet for

each stage of life.

Experimental

Ethics

The animal work in this study was approved by the Open University

Animal Welfare and Ethics Review Board as part of a project

originally approved in November 2007, and reviewed annually since

then. All work was carried out in accordance with the UK Animals

(Scientific Procedures) Act 1986.

Sample Collection

The strain of rat employed in the study was the male Sprague-

Dawley. These were bred in-house and maintained in an enriched

environment, on a 14h light: 10h dark cycle. Rats were caged in

Scantainers (Scanbur Technology, Denmark) at ambient temperature

(19-23˚C) and 50±10% humidity. They were given cardboard tubes

and aspen wood blocks (LBS Biotechnology, UK). They were

weaned at three weeks of age directly onto one of two diets: the

experimental Western affluent diet (WAD; Western RD) or the

control standard rat chow diet (RM3). Both diets were supplied by

Special Diet Services, Witham, Essex, UK, and were available ad

libitum. The WAD was high in fat and carbohydrate and low in

protein, and the control diet consisted of nutritionally balanced rat

feed. Constituents of the diets are compared in Table 1.

The rats were kept in pairs and their health checked regularly. In the

event of one member of the pair dying prematurely before the end of

the experiment the other rat was maintained on its own until use. In

the majority of cases where both rats in a cage survived, they were

harvested at the same time, as this is best practice for husbandry.

Faecal samples were collected from cages and were therefore the

product of two rats.
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Table 1. Constituents of the control (RM3) and Western affluent

(WAD) diets, from manufacturer’s data. The diets also contained

vitamins and minerals.

RM3 WAD

Fat (% w/w) 4.25 21.40

Protein (% w/w) 22.39 17.50

Fibre (% w/w) 4.21 3.50

Ash (% w/w) 7.56 4.10

Carbohydrate (% w/w) 51.20 50.00

Energy (kcal/g) 3.32 4.63

A total of 35 rats were used in this study. Seven weanlings were used

as controls. At each time point (12 months and 18 months) 4 animals

eating the control diet and 10 animals eating the experimental diet

were harvested. The reason for the smaller number of control

animals is that we already have substantial data on such animals and

did not wish to repeat this data collection needlessly. Blood and

faecal samples were taken from rats from each experimental group

straight after weaning, at 12 months or at 18 months. All animals

were harvested at the same time of day, 5 hours into the light phase.

The blood samples were taken by cardiac puncture after the rats

were deeply anaesthetised. Coagulation occurred at room

temperature, then the clots were centrifuged and the supernatants

stored at -80°C until analysis.

Biochemical data – Data acquisition and analysis

The study used an automated biochemical clinical analyser – the

Cobas Integra 800 analyser (Roche Diagnostics, Mannheim,

Germany) to measure the concentrations or activities of several key

biochemical markers, as shown in Table 2. Samples are

automatically analysed for all biochemical markers after being

loaded into the instrument’s autosampler. In particular the following

serum electrolytes were measured: urea and creatinine to assess the

renal profile; albumin, bilirubin, alkaline phosphatase (AP), aspartate

aminotransferase (AST), alanine aminotransferase (ALT) and

gamma glutamyl transferase (GGT) to measure liver function; high

and low density lipoproteins (HDL and LDL, making up total

cholesterol), and triacylglycerols (TAGs) to assess the lipid profile.

The raw data were uploaded into MATLAB R2008a (MathWorks

Inc., USA). Before the data could be analysed, it was necessary to

handle missing values within the data. Missing values arise most

often because of the small volumes of blood harvested from the rats;

since the analyser measures parameters sequentially those measured

towards the end of the series are most likely to be missing as the

sample is depleted by the earlier analyses.

There were 9 missing values in the “LDL-cholesterol” variable; 1

missing value in the Creatinine variable; 1 missing value in “HDL”

and 1 missing value in “cholesterol: HDL” (the ratio between total

cholesterol and HDL). Handling missing values is very important.

Inserting zeroes is dangerous and can bias the data; likewise removal

of columns and rows containing missing values within a data set

could result in severe loss of useful information. In some instances,

one can replace the missing values with the minimum of the value in

the column or row with the assumption that the missing values are

due to the levels of biomarker being below detectable levels, but this

can still lead to bias in the data.

Table 2. Biochemical analytes investigated in this study and their

relevance to clinical diagnosis. Letters in brackets are the

abbreviations used below.

Metabolic

profile

Kidney

function

Liver function Lipid profile Other

Sodium

(NA)

Urea

(UREA)

Albumin (ALB) Total

cholesterol

(CHOL)

Glucose

(GLC)

Potassium

(K)

Creati-

nine

(CRT)

Bilirubin HDL-

cholesterol

(HDL)

Insulin (IN)

Iron (FE) Alkaline

phosphatase

(AP)

LDL-

cholesterol

(LDL)

Testosterone

(T)

Transfer-

rin

Aspartate

aminotransferase

(AST; A)

Triacylglycerol

(TAG)

Oestradiol

(OST)

Ferritin Alanine

aminotransferase

(ALT)

Cholesterol:

HDL ratio

(cHDL)

Cortisol

(COR)

Calcium

(CA)

Adjusted

calcium

(ACA)

Gamma-

glutamyl

transferase

(GGT)

Phosphate

(PO4)

Mg (MG)

A more intuitive approach to handling missing data is to impute the

missing values using an algorithm such as the “statistically inspired

modification of partial least squares” (or SIMPLS) which is

commonly employed in multivariate calibration.23 This involves the

creation of a mathematical model which is then used to predict the

missing values in a given data column.24 This is what was employed

in this work.

Data pre-treatment in the form of data scaling was applied. For the

biochemical data, auto-scaling was selected due to the different units

of concentration or activity in each column.25 Within the MATLAB

application software, the PCA (principal components analysis)

function 26 from PLS Toolbox (v3.5, Eigenvector Research Inc.,

USA) was used for exploratory analysis. 24,26 PCA score plots were

generated to determine the proximity of samples to one another, and

thus indicate whether there could be significant differences between

classes. The principal components (PCs) are in effect a new

coordinate system in which the samples are projected, and in which a

proportion of the total variance is captured within each PC. The PCs
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are thus an ordered set meaning that PC1 will contain the most

variance (e.g. containing the most important characteristics which

pertain to the most influential variables) then PC2 the next, and so

on. Redundant data are captured in the higher-order PCs which tend

to contain much lower variances (< 1%).

To further establish the extent of the differences between groups

within the biochemical data set, multivariate classification with

partial least squares discriminant analysis (PLS-DA) in conjunction

with leave-one-out cross-validation (LOO-CV) in which the number

of latent variables (LVs) was varied from 1 to 10.24,27 LVs are

“hidden” variables that are inferred from observable variables. All

five classes were simultaneously compared then one class was

compared against another: 12 month control versus 12 month

western affluent diet (WAD), and 18 month control versus 18 month

WAD. PLS-DA loadings were found for the lowest-order latent

variables (LV) at the highest classification accuracies. These are

overlaid over a PLS-DA scores plot in order to produce biplots,

which aid in determining which variables (biochemical markers)

influence the distribution of the samples most along the appropriate

LV axes.

Finally, permutation testing was performed in which the class values

were randomised for each permutation (300 times) and the mean

accuracy was attained. If the mean value was found to be

substantially lower than the actual accuracy calculated then the latter

is deemed to be statistically significant, and thus not due to chance.

SIFT-MS VOC analysis – Data acquisition

Each sample consisted of six faecal pellets from the experimental or

control rats. The pellets were placed in a sample bag made from

65mm diameter Nalophan NA tubing (Kalle UK). The bags were

sealed and then filled with hydrocarbon-free air and equilibrated in

an incubator at 40°C. One end of each sample bag was connected

via a Swagelok fitting directly to the SIFT-MS capillary inlet for

analysis of the rat faecal headspace, and headspace analysis was

carried out on each sample after equilibration. The SIFT-MS is a

MkII model manufactured by PDZ Europa, UK.

The sample VOCs react with one of three precursor ions (H3O
+, NO+

or O2
+) to generate product ions, which are then separated via a

quadrupole and detected and counted (in counts per second) by a

channeltron detector. Thus the data obtained are in the form of

counts per second at each mass-to-charge ratio (m/z), representing

product ions, from m/z 10 to m/z 140 for 30 seconds using each

precursor. Data generated via all three precursor ions were thus

collected; data from the H3O
+ ions were analysed whilst data from

the NO+ and O2
+ precursor ions were employed to confirm the

identities of suggested various ions.

SIFT-MS VOC analysis – Multivariate data analysis

There were no missing values within the SIFT-MS data. Data pre-

processing involved normalisation of the m/z values against

precursor ions (e.g. normalised against m/z 19, the H3O
+ precursor),

followed by removal of the precursor and associated ions from the

dataset prior to subsequent analysis. Lastly, any m/z values where

zero abundance was recorded in all samples were removed.

PCA was applied to the SIFT-MS data. Three outlying samples were

identified by visualisation of the distribution of the cases within the

PCA score plot (not shown) in which the outlying sample was very

distant from its respective cohort; these were one weanling, one 12

month WAD and one 18 month WAD.

Multivariate classification was performed using PLS-DA in

conjunction with leave-one-out cross validation (LOO-CV) to all

five classes then by classifying one class against another, namely

control versus WAD for both the 12 month and 18 month classes.

PLS-DA biplots were also produced indicating the m/z of the ions

that influence the distribution of the cases. Finally, permutation

testing was performed as described previously.

Results

Biochemical data – Exploratory data analysis

Figure 1 shows a two-dimensional PCA scores plot of PC2 versus

PC3 after imputation of the missing values using the SIMPLS

algorithm followed by auto-scaling of the data. The circles represent

the weanlings (WEAN); inverse triangles are the 12 month control

diet rats (12M C); the filled triangles are 12 month old WAD (12M

W); the squares are 18 month old control rats (18M C), and the

diamonds are the 18 months WAD rats (18M W). Separation

between the groups is visible.

Figure 1. Data from blood samples analysed by the biochemical

analyser. Two dimensional PCA score plot of PC2 vs PC3 showing

separation achieved by PCA following replacement of missing

values via imputation, and auto-scaling. Variances captured in

parentheses.

The plot shows a distribution of data mostly along PC2 suggesting

increase in age from right to left. There is a lone weanling sample at

the lower left quadrant of the PCA score-plot; its presence was

captured in the PC1 axis to an extent that it dominated the PC2

versus PC1 plot (not shown). There is also a lone 18 month WAD

sample in the lower right quadrant whose presence is captured in the

PC3 axis. These two samples are likely to be outliers. The weanlings

and 18 month WAD samples are in distinctive separate groups. The

12 month WAD values overlap the 12 month and 18 month control

values. The PCA loadings pertaining to PCs 1, 2 and 3 (Figure 2)
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illustrate the contribution of the blood-borne biochemical markers to

the distribution of the PCA scores plot.

Figure 2. Data from clinical analyser. PCA loadings for PC1, PC2

and PC3 showing influencing biomarkers ascertained by PCA

following replacement of missing values via imputation, and auto-

scaling. Abbreviations are defined in Table 2. Variances captured in

parentheses.

Figure 2 shows the largest positive and negative loadings for PC1 to

PC3. In PC1, it can be seen that the UREA, alanine aminotransferase

(ALT) and adjusted calcium (ACA) dominate PC1 whilst insulin

(IN), Glucose (GLC), low-density lipoprotein (LDL) cholesterol,

oestradiol (OST) and testosterone (T) dominate PC2. Finally,

potassium (K), calcium (CA), albumin (ALB), glucose (GLC) and

total cholesterol (CHOL) dominate PC3. Insulin is also opposite to

glucose, i.e. there is a negative correlation between these two

variables.

Biochemical data - Multivariate classification

Partial least squares discriminant analysis (PLS-DA) was applied to

the biochemical data. Simultaneous classification of the five age/diet

classes was performed initially producing an overall classification

accuracy of 70% at LV4. The weanlings, 12 month and 18 month

WADs were classified well yet the 12 month and 18 month controls

were not; this conforms to the overlapping samples observed in the

PCA score plot (Figure 1).

Application of PLS-DA to distinguish between the 12 month

controls and 12 month WADs produced an overall accuracy of 92%

with a specificity of 100% and a sensitivity of 89%. PLS-DA also

distinguished between the 18 month controls and 18 month WADs

producing an overall accuracy of 91% with a specificity of 100%

and a sensitivity of 86%. The corresponding PLS-DA biplots are

shown in Figure 3A and 3B respectively.

The controls and WAD samples have separated well on opposite

sides of the graph for both the 12 month and 18 month time

categories. It can be seen that the 12 month control and WAD

samples are, respectively, more tightly grouped compared to the 18

month samples.

This biplot shows how much influence the loadings (individual

biomarkers) have on the scores (samples).

Figure 3. PLS-DA biplots of biochemical data for control versus

WAD for auto-scaled data pre-processed with replacement of

missing values via imputation. (A) 12 month; (B) 18 month

In Figure 3A, high-density lipoprotein (HDL) cholesterol, insulin

(IN), magnesium (MG), oestradiol (OST), potassium (K) and alanine

aminotransferase (ALT) influence the control group, whilst the

LDL-cholesterol (LDL), testosterone (T), alkaline phosphatase (AP),

aspartate aminotransferase (AST (A)), total cholesterol:HDL-

cholesterol (cHDL), triacylglycerol (TAG), sodium (NA), calcium

(CA), total cholesterol (CHOL) and cortisol (COR) influence the

WAD group. It is also interesting to observe that glucose (GLC)

appears to be non-contributory to the distribution of the samples

since it is very close to the origin (Figure 3A).

The OST and AP compounds contribute to LV1 to a greater extent

than to LV2 (Figure 3A); likewise urea (UREA) and testosterone (T)

contribute to LV2 to a greater extent than to LV1. Transferrin,
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gamma-glutamyl transferase (GGT), bilirubin and ferritin

(mentioned in Table 1) do not appear in the biplot (Figure 3) because

they each contained the same respective numerical values for each

sample/case and were thus automatically omitted from the analysis

during the data pre-processing step.

The permutation testing carried out to test for statistical significance

for both the 12 month and 18 month time classes showed that both

were statistically significant (p ≤ 0.05) with mean class-randomised 

accuracies of 64% (Observed accuracy: 92%) and 62% (Observed

accuracy: 91%) respectively.

SIFT-MS data – Exploratory data analysis

Exploratory data analysis via PCA of the SIFT-MS data set was

carried out. The PCA scores plot (Figure 4) suggests that diet may be

captured along PC2, because the controls and weanlings (with the

exception of a 12 month control) are below the PC2 axis, whilst the

WAD rats (with the exception of one 12 month WAD) are above the

PC2 axis. The plot also suggests that age is captured in PC1 but it is

not entirely clear.

Figure 4. PCA score plot (PC2 vs PC1) for SIFT-MS data

(following normalisation against the H3O
+ precursor ions, removal

of the precursor ions and their adducts, and removal of m/z ions

containing only zeroes in all the samples) following removal of the

three outlying samples. Variances captured in parentheses.

SIFT-MS data - Multivariate classification

Multivariate classification using PLS-DA with leave-one-out cross-

validation was carried out on the 12 month and 18 month time

points. An overall classification accuracy of 71% was attained with a

specificity of 67% and a sensitivity of 75% for the 12 month time

points at LV3. However, the overall accuracy attained for the 18

month time points was 100% at LV5 (100% specificity and

sensitivity) which suggests that as the time progresses the distinction

between the two diets increases. Figures 5 and 6 show the PLS-DA

biplots which indicate the m/z ions that contribute to the distinction

between the two classes (Control versus WAD) for the 12-month and

18-month age groups, respectively.

The biplots in Figures 5 and 6 indicated two main groups of

loadings: one surrounding the control samples; the other surrounding

the WAD samples. The m/z ions that appear to be highly influential

are 83 and 18.

Figure 5. PLS-DA biplots of SIFT-MS data (following

normalisation against the H3O
+ precursor ions, removal of the

precursor ions and their adducts, and removal of m/z ions containing

only zeroes in all the samples) for control versus WAD: (A) 12

month; (B) 12 month (Zoomed). Data labels refer to m/z values, so

for example, 18h is m/z 18 using the H3O
+ precursor.

Figure 5 shows that the m/z ions that influence the 12 month control

samples are 43, 63, 79, 81, and 97; the m/z ions that influence the 12

month WAD samples are 18, 30, 47, 65, and 83. Figure 6 shows that

the m/z ions that influence the 18 month control samples are 17, 45,

59, and 77; the m/z ions that influence the 18 month WAD samples

are 30, 36, 43, 47, 64, 65, 79 and 97. Some of these ions may be

tentatively identified as acetaldehyde (m/z 45, 63, 81), acetone (m/z

59, 77), 1- or 2-propanol (m/z 43, 79, 97), acetic acid (m/z 79, 97);

ammonia (m/z 18, 36), and ethanol (m/z 47, 65, 83), although others

will need confirmation through the use of another technique such as

gas chromatography mass spectrometry (GC-MS).
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Figure 6. PLS-DA biplots of SIFT-MS data (following

normalisation against the H3O
+ precursor ions, removal of the

precursor ions and their adducts, and removal of m/z ions containing

only zeroes in all the samples) for control versus WAD: (A) 18

month; (B) 18 month (Zoomed). Data labels refer to m/z values, so

for example, 18h is m/z 18 using the H3O
+ precursor.

Finally, the results from the permutation testing for both the 12

month and 18 month time points were both found to be statistically

significant (p ≤ 0.05) with mean class-randomised accuracies of 64% 

(Observed accuracy: 71%) and 69% (Observed accuracy: 100%)

respectively.

Discussion

The combination of the results from the biochemical assays of serum

and the volatile organic compound data set from faecal headspace

analysis using SIFT-MS shows clear differences between the blood

and faecal samples from the rats fed the WAD diet and those fed the

control diet, particularly at 18 months. The weanlings also showed

very different results, and were well separated from the others, as

seen in the PCA scores plots (Figures 1 and 4).

Biochemical data

Examining the biochemical data, the PCA scores plots show that the

weanlings are clearly grouped together using auto-scaled data. This

naturally would be expected as the data comes from rats that should

all physically be in the same state and have had the same feed (milk)

until they were weaned onto a solid food diet. These results give us

confidence that the rats in this study were all starting from a very

similar physiological point, which is important for the rest of the

experiment. There was, however, one weanling that was a significant

distance from the others, and thus deemed an outlier. This particular

sample came from rat 2, which on decoding the data was discovered

to be a different strain of rat (Wistar), and added to the experiment to

determine whether there were physiological differences between

strains. It is clear that this does indeed give different results from the

others.

Looking at the other PCA data, the 18 month WAD rats appear to

mostly be grouped together at the opposite side of the graph to the

weanlings (Figure 1). This could be expected as at 18 months there

has been time for many differences to have arisen compared to the

physiological state of the weanlings. An 18 month WAD sample was

suggested to be another outlying sample. It was subsequently

confirmed that this particular rat had an obvious pathology.

Exploratory data analysis with PCA was able to place the five rat

cohorts in distinctive groups. The most important biomarkers

suggested by the loadings were urea (UREA), adjusted calcium

(ACA) and alanine aminotransferase (ALT). The intake of protein

can affect the rate and amount of urea output.28 As the WAD diet

contained a low level of protein, this could have been a factor

resulting in substantial differences between the amount in the control

rats and the WAD rats. Furthermore, low phosphate excretion has

been associated with high calcium excretion,29 which may explain

why the two are anti-correlated in PC3 (Figure 2).

Multivariate classification using partial least squares discriminant

analysis (PLS-DA) further confirmed the initial inferences from the

exploratory analysis. Overall classification accuracies were attained

at 92% and 91% for the 12 month and 18 month time periods

respectively. The PLS-DA biplots give more links between the

classes and the various measurements affecting them (Figure 3).

Total cholesterol (CHOL) and triacylglycerol (TAG) are among

those making a strong impact on the 18 month WAD data. This

would be expected from a diet high in fat. It also showed the

cholesterol:HDL (cHDL) ratio - the ratio of total cholesterol to

HDL-cholesterol - to be a big factor in influencing this class. Iron

(FE), alkaline phosphatase (AP), and glucose (GLC) have an impact

on the weanlings. Iron is normally found in large quantities in

suckling rat pups.30 High-density lipoprotein (HDL) cholesterol and

aspartate aminotransferase (A) appear to influence the data for the 12

month control and 18 month control rats.

Low-density lipoprotein (LDL) was also shown to be a substantial

factor with the 18 month WAD and also a little with the 12 month
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WAD. LDL cholesterol, along with other lipoproteins including

HDL, enables transport of fat molecules. Elevated LDL itself is

associated with health problems such as cardiovascular disease.31

This is in contrast to HDL, which has a cardio-protective effect.

Therefore, it is not surprising to find such a significant increase in

LDL measurements for the group of rats on high fat diet compared to

those on the normal rat diet. HDL cholesterol is more abundant in

the 12 and 18 month control rats as they are on a balanced diet likely

to promote increased HDL, and indeed they have more HDL than the

weanlings. Creatinine (CRT) seems to affect both 12 month and 18

month WAD. Creatinine is a good indicator of kidney health. In

humans, creatinine is used alongside measurements such as a

person’s sex, age, weight and race to detect kidney disease.32

Increased levels are associated with renal disease.

An experiment by Nakasa and co-workers had similar findings; their

research found giving rats a high fat diet resulted in an accumulation

of cholesterol that was 1.6 times that of the rats fed the normal rat

diet.33 The plasma lipoproteins of this high fat group also showed an

increase in LDL cholesterol and a decrease in HDL cholesterol

levels. Our raw biochemical data confirm this finding. Isoprene is a

common volatile constituent of many body secretions (particularly

breath) and because it is linked to cholesterol synthesis it might be

expected to show variations in our samples.34 However isoprene is

not conventionally measured by clinical analysers so we have no

data relating to its levels in the blood samples of the rats used here.

Comparing one experimental class against another gave a strong

indication that there was a significant difference between the data for

the two different diets at 18 months.

PLS-DA demonstrated that there may be a more significant

difference between the two 12 month classes than originally

suspected during exploratory analysis. The loadings and biplots for

this comparison suggest that triacylglycerol (TAG) and total

cholesterol (CHOL) differ the most between the two. It also shows

HDL is more of a factor for the 12 month control group, which is

expected as high HDL is beneficial. In fatty diets, such as that taken

in by the WAD rats, HDL amounts are overtaken by LDL. ALT also

influences the 12 month control. The 18 month comparisons showed

similar results to the 12 month comparisons, indicating some

predictive value for the 12 month data; however the biplots (Figure

3) suggest there are more variables affecting the 18 month rats.

Albumin (ALB), ALT, oestradiol (OST) and insulin (IN) all appear

to be factors influencing both the 12 and 18 month controls.

Lower protein intake has been linked with a lower level of serum

albumin.35 The 18 month control group may be influenced by a high

level of albumin compared to the 18 month WAD due to having a

higher level of protein in their diet. High ALT levels have been

linked with high fat diets.36 Hence, it would seem that the 18 month

control group should only be influenced by ALT if it was at a

significantly low level compared to the 18 month WAD. The 18

month WAD group seems to have many factors influencing the

class, including phosphate, creatinine, triacylglycerol, magnesium,

cholesterol, adjusted calcium and urea. Total cholesterol,

triacylglycerol and LDL would all be expected to influence the

WAD rats due to being associated with high fat diets.

SIFT-MS data

Exploratory data analysis using PCA for the SIFT-MS data yielded

poorer grouping of samples by time periods (Figure 4) compared to

the biochemical data (Figure 1).

Comparison of one class against another provided very good

classification accuracies. Comparing the 18 month control against

the 18 month WAD produced an overall accuracy of 100% at LV5.

This is a vast improvement from comparing the 12 month control

against the 12 month WAD which produced an overall classification

accuracy of only 71%. This could imply that 12 months is

insufficient for rats on the two diets to be clearly distinctive from

one another. Although the results are not as significantly strong, this

concurs with the results from the first data set (biochemical data).

The PLS-DA biplots (Figures 5 and 6) indicated that m/z 17, m/z 45,

m/z 59, m/z 63, and m/z 77 as having an influence on the 18 month

control samples (Figure 6). Acetaldehyde is represented by m/z 45,

m/z 63 and m/z 81, and these ions (63 & 81) are also shown to have

influence in the 12 month control samples. Acetaldehyde is produced

during digestion by the oxidation of ethylene 37 but more commonly

from the oxidation of ethanol using the enzyme alcohol

dehydrogenase. Curiously, ethanol was found to have an influence

on the 12 and 18 month WAD samples. It is interesting that two

related compounds influence either the WAD or control samples,

and this poses some interesting questions. Acetaldehyde is a much

more toxic compound than ethanol,38 so it is not obvious why this

should influence control diets more. However, it cannot be

discerned from this analysis whether the levels of acetaldehyde in

the faecal headspace are higher or lower in the WAD samples and of

ethanol on the control samples, merely that ions from these

compounds are significant in differentiating the groups. Smith and

co-workers reported that ethanol along with acetone, methanol, and

dimethyl sulphide varied across a narrow concentration range when

faecal headspace from six female pigs was measured by SIFT-MS

(H3O
+) but ammonia varied greatly.39

Levels of acetaldehyde could be related to the nature and number of

microbes or their enzymes within the digestive tract of the animal. If

the diet is affecting the composition of the gut microbiota, it may

thereby affect the production of acetaldehyde. In an experiment, a 2-

4 fold difference in acetaldehyde was detected in rats fed on two

different standard commercial diets.40 Although the rats were not fed

the same kind of diets as in this experiment, this shows the

possibility of the different diets having an effect on acetaldehyde

level.

Conclusion

The use of multivariate data analysis methods applied to biochemical

data and headspace VOC data can tease out differences in

physiological markers in rats fed a control diet, a western affluent

diet (WAD), or milk (weanlings); significant changes in such

markers are difficult to identify individually. Although the numbers

of samples in this study are relatively small, results demonstrate that

the approach of combining analysis of a suite of biochemical

markers and multivariate statistics can be used in identifying the

most significant markers and thus those that may best be used in

relating physiological differences, including preclinical disease, to
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diets. These results do show a clear difference between rats fed the

two different diets, and it is likely that some of these changes are

detrimental to the rats fed the WAD. It is possible that similar

differences would be seen in humans fed different diets, however

this study cannot show this, although it does offer a way of

investigating these changes in humans.

The combination of exploratory data analysis and multivariate

classification has revealed differences between the data classes

involved in this study. In both the biochemical data and the SIFT-

MS data, there appear to be substantial differences between the two

diets. The multivariate classification has led to the conclusion that

there are in fact significant differences between the two groups, clear

at both 12 months and 18 months when one class was classified

against another. Additionally, for both datasets, PLS-DA biplots

were able to give a good indication of where differences lie between

the two diet groups. Identification of metabolic disturbances at an

early stage, well before overt clinical signs appear, opens the door to

earlier interventions and better prognosis.

Overall, there is an effect on the levels of the measured variables

within the body of the rat when different diets are given over time.

There are levels of particular analytes that are more abundant in the

WAD rats, especially seen by 18 months, than in the control diet

rats. Some of these analytes have a less positive impact on the body

and its functions, and could indicate a deleterious effect of diet on

the ageing rat. Indeed, in work submitted elsewhere, we report that

the administration of WAD for similar periods of time results in an

increase in tumours and other pathologies and an overall decrease in

survival in Sprague-Dawley rats. This is in line with clinical

evidence from human nutritional studies.41

The results are showing promise for both methods of analysis, in that

there are significant differences in the levels of the measurements for

the control diet rats and the WAD rats. The analysis of VOCs from

faeces by SIFT-MS offers a viable alternative for clinical diagnosis.

Arguably collection of faecal samples is less invasive than taking a

blood sample or applying an endoscopic procedure, and may be

more acceptable to some patients. Indeed, faecal sampling is already

used in mass screening for bowel cancer in the UK, so it is possible

that this form of sampling and analysis might be extended to a wider

range of clinical diagnoses. Faecal samples frozen at -20oC appear to

have a ‘shelf-life’ of several months and this could facilitate the

handling and analysis of large numbers of samples, and it is feasible

that faecal samples could be routinely collected from patients and

sent to a central facility for analysis to enable mass screening of

patients for GI conditions.
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