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oils is disposed of annually worldwide. Such low cost feedstocks, could meet a significant portion of current biodiesel 
demands, however chemical changes occurring during cooking which increase their FFA and moisture content must be 
taken into consideration.64 Recent studies suggest that the production cost of biodiesel could be halved through waste 
cooking oils in comparison with virgin oils 65 However because of its high melting point and viscosity, and less 
predictable supply, waste cooking oil has been less extensively investigated than vegetable oils.31 Algal biomass has 
received considerable recent attention, since lipids from algae can be used for biodiesel production via conventional 
transesterification technologies. Microalgae are fast-growing and produce higher oil yields than plant counterparts. The 
high oil content of different microalgae favours their commercialisation as a promising feedstock: one acre of microalgae 
can produce 5,000 gallons of biodiesel annually compared to only 70 gallons from an equivalent area of soybean,52 and 
algae can flourish on land unusable for plant cultivation and without fresh water. Algal oil yields vary with the species, 
nutrient supply and harvest time,66 however the properties of the resulting FAMEs are not superior to those derived from 
plant oils, and further research into algal oils rich in saturated long chain fatty acids is required in order to improve the 
quality of the final biodiesel.67 
 The choice of oil feedstock in turn influences the biodiesel composition and hence fuel properties,43, 68 notably acid 
value, oxidation stability, cloud point, cetane number and cold filter plugging point. Oils from plants usually comprise 
five major fatty acids components: palmitic (16:0); stearic (18:0); oleic (18:1); linoleic (18:2); and linolenic (18:3). Table 
1 illustrates their distribution and associated physicochemical properties for some common feedstocks. High FFA oils not 
only compromise base catalysed transesterification and hence biodiesel yields, but can corrode engines and ancillary 
machinery; the acceptable acid range is between 0.5-3 %.60 The cetane number (CN), a measure of diesel ignition quality, 
is higher for biodiesel (46-52) than that of conventional diesel (40–55), with the international standard specified in 
ASTM D6751 and EN 14214 at 47 and 51 respectively. Cetane number varies with the degree of oil unsaturation and 
chain length. Esters of palmitic and stearic acid possess CNs higher than 80, while that of oleate is 55-58, with CN 
generally decreasing with increasing unsaturation (e.g. CN = 40 for linoleic and 25 for linolenic acid), falling to 48-5 for 
for soybean- and 52-55 for rapeseed-derived biodiesel.69 Fatty acid chain composition also influences NOx emissions, 
with biodiesel containing esters of saturated fatty acids emitting less NOx than petroleum diesel, and emissions increasing 
with the degree of unsaturation but decreasing with fatty acid chain length. NOx emissions of hydrogenated FAMEs 
derived from soybean oil is lower than from conventional diesel.70  
 
Table 1: Common feedstocks for biodiesel production, free fatty acid composition and physicochemical properties. 
Reprinted from reference 59, Copyright (2010), with permission from Elsevier. 
 Feedstock Composition  

/ wt% fatty acid 
Density 
/ g.cm3 

Flash 
point  
/ oC 

Acid value 
mgKOH.g-1 

Heating 
value 
/ MJ.kg-1 

Edible 
Oils 

Soybean C16:0, C18:1, C18:2 0.91 254 0.2 39.6 
Rapeseed C16:0, C18:0, C18:1, C18:2 0.91 246 2.92 39.7 
Sunflower C16:0, C18:0, C18:1, C18:2 0.92 274 - 39.6 
Palm C16:0, C18:0, C18:1, C18:2 0.92 267 0.1 - 
Peanut C16:0, C18:0, C18:1, C18:2, 

C20:0,C22:0 
0.90 271 3 39.8 

Corn C16:0, C18:0, C18:1, C18:2, 
C18:3 

0.91 277 - 39.5 

Camelina C16:0, C18:0, C18:1, C18:2, 
C18:3, C20:0, C20:1, C20:3 

0.91 - 0.76 42.2 

Cotton C16:0, C18:0, C18:1, C18:2, 
C18:3 

0.91 234 - 39.5 

Non-
edible oils 

Jatropha curcas C16:0, C16:1, C18:0, C18:1, 
C18:2 

0.92 225 28 38.5 

Pongamina 
pinnata 

C16:0, C18:0, C18:1, C18:2, 
C18:3 

0.91 205 5.06 34 

Palanga C16:0, C18:0, C18:1, C18:2 0.90 221 44 39.25 
Tallow C14:0, C16:0, C16:1, C17:0, 

C18:0, 
C18:1, C18:2 

0.92 - - 40.05 

Poultry C16:0, C16:1, C18:0, C18:1, 
C18:2, 
C18:3 

0.90 - - 39.4 

 Used 
cooking oil 

Depends on fresh cooking 
oil 

0.90 - 2.5 - 
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 Oxidation stability also depends upon the degree of unsaturation of fatty acid chains within the oil feedstock, since 
double bonds are prone to oxidation. Biodiesel produced from feedstocks containing linoleic (C18, two C=C double 
bonds) and linolenic acid (C18, three C=C double bonds), with one or two bis-allylic positions, are highly susceptible to 
oxidation. The relative rates of oxidation for linoleates and linolenates are respectively 41 and 98 times higher than that 
of the monounsaturated oleate.71 The viscosity of biodiesel also increases with chain length and saturation of fatty acids 
within the feedstock,72 influencing the fuel lubricity and flow properties. Low viscosity biodiesel can be obtained from 
low molecular weight triglycerides, however such biodiesel cannot be used directly as a fuel due to its poor cold 
temperature flow properties. The kinematic viscosities of the two most common biodiesels are 4.0-4.1 mm2.s-1 from 
soybean oil and 4.4 mm2.s-1 from rapeseed oil. The lubricity of biodiesel increases with chain length, and the presence of 
double bonds and alcohol groups. Hence, monoglycerides and trace glycerol increase biodiesel lubricity. The high 
lubricity of biodiesel can be utilised through blending with conventional, low-sulfur diesel to improve overall fuel 
lubricity.73 Cold point (CP) and pour point (PP) determine the flow properties of biodiesel, and also depend on the fatty 
acid composition of the feedstock. CP is the temperature at which a fuel begins to solidify, and PP is the temperature at 
which the fuel can no longer flow. For conventional diesel, CP and PP values are -16 oC and -27 oC respectively. 
Biodiesel derived from soybean possesses CP and PP values of around 0 oC to -2 oC, while the CP for rapeseed oil-
derived biodiesel is -3 oC. These values are very high in comparison to conventional diesel, rendering biodiesel ill-suited 
for cold countries.70 Other common feedstocks, such as palm oil, jatropha oil, animal fat and waste cooking oil have even 
higher CP values of around 15 oC. In contrast, biodiesel derived from cuphea oil enriched with saturated, medium-chain 
C8–C14 fatty acids exhibits improved properties including a lower CP of -9 to -10°C,74 comparable to conventional 
diesel. Genetic engineering of the parent plants or microalgae offers a route to optimise the fatty acid composition of 
feedstock oils to deliver fuels with the desired physicochemical properties.75  
 
3. Solid base catalysed biodiesel synthesis 
Base catalysts are generally more active than acids in transesterification, and hence are particularly suitable for high 
purity oils with low FFA content. Biodiesel synthesis using a solid base catalyst in continuous flow, packed bed 
arrangement would facilitate both catalyst separation and co-production of high purity glycerol, thereby reducing 
production costs and enabling catalyst re-use. Diverse solid base catalysts are known, notably alkali or alkaline earth 
oxides, supported alkali metals, basic zeolites and clays such as hydrotalcites, and immobilised organic bases.76  
 
3.1 Alkaline earth oxides 
Basicity in alkaline earth oxides is believed to arise from M2+–O2- ion pairs present in different coordination 
environments.77  The strongest base sites occur at low coordination defect, corner and edge sites, or on high Miller index 
surfaces. Such classic heterogeneous base catalysts have been extensively tested for TAG transesterification78 and there 
are numerous reports on commercial and microcrystalline CaO applied to rapeseed, sunflower or vegetable oil 
transesterification with methanol.79, 80 Promising results have been obtained, with 97 % oil conversion achieved at 75 
°C,80 however concern remains over Ca2+ leaching under reaction conditions and associated homogeneous catalytic 
contributions,81 a common problem encountered in metal catalysed biodiesel production which hampers 
commercialisation.82 While Ca and Mg are the more widely used alkaline earth metals in solid base catalysis, strontium 
oxides have also found application in biodiesel production. Pure strontium oxide possesses the highest base site density 
of the alkali earth oxides as determined by CO2 temperature programmed desorption (TPD),83 and a comparable base 
strength to that of BaO (26.5 < H-). Despite the lower surface area of SrO compared to Mg and Ca oxides (19, 14 and 3 
m2.g-1 respectively), it showed the highest activity for hempseed oil transesterification, although it is questionable 
whether such low area/highly soluble materials could ever be commercially viable. 
 Alkali-doped CaO and MgO have also been investigated for TAG transesterification,84-86 with their enhanced basicity 
attributed to the genesis of O- centres following the replacement of M+ for M2+ and associated charge imbalance and 
concomitant defect generation. In the case of Li-doped CaO, the electronic structure of surface lithium ions (as probed by 
XPS) evolves discontinuously as a function of concentration and phase. Maximal activity was observed upon formation 
of  a saturated Li+ monolayer, with the phase to bulk-like LiNO3 at higher loadings suppressing TAG conversion 
coincident with loss of strong base sites.86 However, leaching of alkali promoters remains problematic.87  
 It is widely accepted that the catalytic activity of alkaline earth oxide catalysts is very sensitive to their preparation, 
and corresponding surface morphology and/or defect density. For example, Parvulescu and Richards demonstrated the 
impact of the different MgO crystal facets upon the transesterification of sunflower oil by comparing nanoparticles88 
versus (111) terminated nanosheets.89 Chemical titration revealed that both morphologies possess two types of base sites, 
with the nanosheets exhibiting well-defined, medium-strong basicity consistent with their uniform exposed facets and 
which confer higher FAME yields during sunflower oil transesterification (albeit scale-up of the nanosheet catalyst 
synthesis may be costly and non-trivial). Subsequent synthesis, screening and spectroscopic characterisation of a family 
of size-/shape-controlled MgO nanoparticles prepared via a hydrothermal synthesis, revealed small (<8 nm) particles 
terminate in high coordination (100) facets, and exhibit both weak polarisability and poor activity in tributyrin 
transesterification with methanol.90 Calcination drives restructuring and sintering to expose lower coordination stepped 
(111) and (110) surface planes, which are more polarisable and exhibit much higher transesterification activities under 
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reaction media. Calcination temperature strongly influences the resulting catalytic activity towards transesterification. 
For example, a Ca/Al composite oxide containing Ca12Al14O33 and CaO thermally processed between 120 °C and 1000 
°C showed maximal activity after a 600 °C treatment due to changes in specific surface area and crystallinity. CaO was 
only observed in samples prepared >600 °C, accompanied by the formation of crystalline Ca12Al14O33. Synergy between 
these two phases greatly improved the transesterification activity, however calcination at temperatures significantly 
above 600 °C induced crystallite sintering and concomitant loss of surface area and activity. Unfortunately the catalyst 
synthesis employed sodium precursors, hence alkali contamination of these catalysts cannot be discounted, and which in 
any event were employed at high loadings (6 wt%) and without recycle tests. 
 Calcium also forms a mixed oxide with MoO3.

94 Supporting both oxides on SBA-15 mesoporous silica afforded a 
transesterification catalyst with improved stability relative to CaO due the presence of acidic MoO3 sites on the SBA-15. 
The impact of Ca:Mo ratio and calcination temperatures was explored, with a Ca:Mo ratio of 6:1 maximising activity for 
soybean oil conversion, boosting FAME yields from 48 to 83 % over extremely long reaction times in excess of 50 h. 
Raising the calcination temperature from 350 °C to 550 °C induced CaO and MoO3 crystallisation, with a corresponding 
rise in activity; higher temperature calcination did not promote further crystallisation and was not beneficial for 
transesterification. 
 Alkaline earth oxides may be used to support acidic or amphoteric materials to form materials with mixed acid/base 
character. Transesterification of soybean oil over CaO supported SnO2 prepared via impregnation was highly dependent 
on calcination temperature and the Ca:Sn ratio.95 The interaction between acidic SnO2 and basic CaO resulted in a highly 
SnO2 phase and associated active sites. Calcination above 350 °C was required to initiate decomposition of the Ca 
precursor, with temperatures >650 °C driving complete conversion to Ca oxides. Optimal performance was obtained for 
high calcination temperatures, which maximised the CaO content. Further heating again led to particle 
sintering/agglomeration and decreased reactivity. Supported CuO can also produce biodiesel from hempseed oil,83 with 
10 wt% CuO/SrO offering 20 % higher FAME yields under optimised conditions than other alkaline earth oxides. The 
CuO could also undergo chemical reduction during transesterification to form an active catalyst for the selective 
hydrogenation of polyunsaturated hydrocarbons for further biodiesel upgrading. It should be noted that the catalyst 
loadings employed in this study of 4-12 wt% would likely prove prohibitive in any commercial process, and that small 
but significant (29 ppm) quantities of leached Ca may have contributed to the observed performance. 
 Composites of Sr and Al were prepared by Farzaneh et al and evaluated for soybean oil transesterification with 
methanol.96 The dominant crystalline phase was Sr3Al2O6, giving rise to medium and high strength base sites with 
corresponding CO2 desorption peak maxima of 388 °C and 747 °C respectively. The Sr-Al oxide also possessed a higher 
density of base sites compared to solid bases such as CaO/Al2O3, reflected in an eight-fold higher CO2 adsorption 
capacity. These superior base properties enhanced the activity of the strontium composite for soybean transesterification 
to FAMEs, resulting in comparable conversions at a lower catalyst loading and shorter reaction time than for a MgAl 
hydrotalcite and CaO/Al2O3. While oil conversions fell noticeably with repeated re-use, there was no evidence of alkaline 
earth dissolution, and the resulting biodiesel fuel met ASTM and EN standards.  
 
3.2 Alkali doped materials 
 As shown in Figure 1, lithium doped CaO can enhance tributyrin transesterification. Li doping has also been 
exploited over SiO2, wherein 800 °C calcination results in a lithium orthosilicate solid base catalyst, Li4SiO4.

97 Although 
the basic strength of Li4SiO4, determined by Hammett indicators, was less than that of CaO, both materials exhibited 
similar initial activity towards soybean transesterification, with the lithium orthosilicate more stable and maintaining 
activity after prolonged exposure to air, in contrast to CaO. The superior stability of the Li4SiO4 catalyst was further 
demonstrated by its water and carbon dioxide tolerance, both of which poison conventional alkaline earth catalysts. 
 Sodium silicate, Na2SiO3, is also active for biodiesel production from rapeseed and jatropha oils under both 
conventional98 and microwave assisted conditions,99 with a 98 % FAME yield after one hour reaction under mild 
conditions. Although this catalyst displayed good recyclability, TAG conversions fell steadily to <60 % after four re-
uses, attributed to water adsorption and Si–O–Si bond cleavage and sodium leaching.98 The same catalyst was evaluated 
using microwave heating for only five minutes at a range of powers between 100-500 W (Figure 3).99 At low power only 
18 % rapeseed oil conversion was obtained. Higher powers heated the reaction mixture (to ~175 C for 400 W) in turn 
boosting FAME yields from both oils to ~90 %, highlighting the use of microwave heating to accelerate biodiesel 
production. Recycle studies again showed slow in-situ deactivation due to particle agglomeration, water adsorption of 
water, and associated loss of basicity due to sodium leaching into methanol during both transesterification and washing 
procedures between recycles. Despite some recent successes in the scale-up of microwave-assisted (homogeneously 
catalysed) biodiesel production (see section 6),28, 100 it remains unlikely that such heating solutions can deliver the high 
throughput demanded for commercial processes. 
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thereby improved catalyst stability, resulting in only a 10 % fall in biodiesel production after multiple recycles attributed 
to physical sample loss during product separation. 
 In an attempt to incorporate acid and base character in a single material, Farooq et al prepared a Mo-Mn/γ-Al2O3-15 
wt% MgO catalysts via wet impregnation of alumina with MgO, followed by impregnation of the γ-Al2O3-MgO with 
[(NH4)6Mo7O24]4H2O and subsequently aqueous Mn(NO3)2.

190 The resulting thermally processed catalyst possessed 
highly dispersed MoO3 and MnO acid sites, affording 75 % biodiesel yield at 95 °C with a MeOH:oil molar ratio of 15. 
This bifunctional material could be repeatedly recycled with the yield falling by 20 % after 10 uses, a modest 
deactivation that was attributed to poisoning by strongly adsorbed organics and leaching of the various active metals 
during transesterification. 
 
5. Hydrophobicity studies 
 The hydrophilic nature of polar silica surfaces hinders their application for reactions involving apolar organic 
molecules. This is problematic for TAG transesterification (or FFA esterification) due to preferential in-pore diffusion 
and adsorption of alcohol versus fatty acid components. The presence of water in bio-oils (and an inevitable by-product 
of esterification) can significantly influence biodiesel production, however a major barrier to commercialisation is the 
development of an efficient, inexpensive and reusable heterogeneous catalyst that can perform at low temperature and 
pressure.191 Solid catalysts with ordered and large pores to minimise diffusion limitations, moderate to strong acid sites to 
overcome the presence of FFAs impurities, and a hydrophobic surface to nullify the effect of water are hence sought.32, 

192-196 While solid acid catalysts are of great interest in this regard due to their ability to catalyse both FFA esterification 
and TAG transesterification,144, 197 sensitivity to water is a common cause of deactivation,198, 199 and water-tolerant solid 
acids would be highly desirable.31, 37, 200 Surface hydrophobicity, and the relative adsorption/desorption rates of 
reactants/products, are critical parameters influencing (trans)esterification,201 and tuning catalyst polarity thus offers a 
route to control competitive adsorption and promote product desorption. Steric factors associated with long fatty acid 
alkyl chains can also influence reaction rates;202 Alonso and co-workers explored the relationship between fatty acid 
polarity/chain length (C2-C16) and transesterification rates over solid and liquid acid catalysts.203 Activity decreased with 
increasing chain length for a heterogeneous (SAC-13) catalyst, but remained constant when catalysed by H2SO4, 
highlighting the negative impact of hydrophilic surfaces on biodiesel production.203  
 Surface hydroxyl groups favour H2O adsorption, which if formed during FFA esterification can drive the reverse 
hydrolysis reaction and lowering FAME yields. Surface modification via the incorporation of organic functionality into 
polar oxide surfaces, or dehydroxylation, can lower their polarity and thereby increase initial rates of acid catalysed 
transformations of liquid phase organic molecules.204 Surface polarity can also be tuned by incorporating alkyl/aromatic 
groups directly into the silica framework, for example polysilsesquioxanes can be prepared via the co-condensation of 
1,4-bis(triethoxysilyl)benzene (BTSB), or 1,2-bis(trimethoxysilyl)-ethane (BTME), with TEOS and MPTS in the sol–gel 
process205, 206 which enhances small molecule esterification207 and etherification.208 This approach has been adopted for 
the direct synthesis of Lewis acidic, zirconium-containing periodic mesoporous organosilicas (Zr-PMOs), in which 
zirconocene dichloride was employed as the zirconium source and BTEB was progressively substituted for TEOS.209 The 
resulting organosilanes were topologically similar to a purely inorganic Zr-SBA-15 material, but are strongly 
hydrophobic in nature. Although the one-pot metal doping protocol adopted resulted in relatively low densities of Zr 
incorporated into the final solid catalyst, hydrophobisation significantly enhanced the per acid site activity in the 
simultaneous esterification of FFAs and transesterification of TAGs in crude palm oil with methanol at 200 °C, with 
conversions approaching 90 % after only 6 h (Figure 15). As significant, the catalytic performance of the high organic 
content Zr-PMO materials was barely influenced by the addition of up to 20 wt% water to the feedstock, in contrast to 
the inorganic Zr-SBA-15 analogue which was completely poisoned by such water addition. The high water and fatty acid 
tolerance of these Zr-PMO catalysts renders them especially promising for biodiesel production from waste oil sources. 
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active sites with methyl groups and changing the textural properties, whereas methyl groups introduced via a one-pot 
synthesis did not affect activity towards the microwave-assisted transesterification of soybean oil with 1-butanol.214 Ethyl 
groups may also be introduced onto the surface of sulfonic acid modified SBA-15 to impart hydrophobicity. While such 
ethyl groups has no impact on overall conversions,they improved the initial rate of octanoic acid esterification by 
displacing reactively-formed water during the start of reaction.215  
 As discussed earlier in this review, hydrophobic solid acid catalysts with large pores are desirable to enhance in-pore 
mass transport of bulky bio-oils and fatty acids, and to minimise the impact of reactively-formed water during FFA 
esterification.37, 216 Although many solid catalysts exist with potential in biodiesel production,154, 217 research is 
increasingly focused on modifying surface hydrophobicity to achieve these goals. Hydrophobicity can be imparted to 
zeolites by incorporating organic species within their micropores; however, for transesterification involving long chain 
TAGs, large pore zeolites are preferable, with activity increasing with Si:Al ratio and surface hydrophobicity.195, 218 Fe-
Zn double metal cyanides (DMC), possessing only Lewis acid sites, were reported active for sunflower oil 
transesterification with methanol at 98 % conversion. These catalysts exhibited good water tolerance, even in the 
presence of 20 wt% water in oil, possibly reflecting their surface hydrophobicity and higher coverage of adsorbed 
reactants.194 The hydrophobic nature of these catalysts was demonstrated by them in oil-water, water-toluene and water-
CCl4 mixtures, wherein the catalyst remained suspended in the hydrophobic layer (Figure 17).201, 219 Fe-Zn DMC was 
compared against SZ and Al- MCM-41 for the esterification of long chain (C8-C18) FFAs, and the transesterification of 
soybean oil. SZ and Al- MCM-41 showed better conversion than DMC towards the fatty acids, but reverse was observed 
for the more hydrophobic soybean oil.201 Fe-Zn DMC possessed a hybrid structure containing both crystalline and 
amorphous phases; hydrophobicity ascribed to the presence of the latter phase.220 
 

 
 
Figure 17. Preferential dispersion of DMC in the nonpolar, organic phase, and SZ and Al-MCM-41 in the polar aqueous 
phase of (a) water-CCl4 and (b) water-toluene solvent mixtures. Reprinted with permission from reference 202. 
Copyright 2010 American Chemical Society. 
  
 Cesium-doped dodecatungstophosphoric acid (CsPW) has shown promise as a water-tolerant solid acid catalyst for 
the hydrolysis of ethyl acetate,221 and found subsequent employ in the transesterification of Eruca sativa Gars (ESG) oil. 
202. The authors claimed that CsPW exhibited excellent water-tolerance towards ESG transesterification, despite oil 
conversions falling by ~90 % upon the addition of only 1 % water. Zn containing HPAs display more impressive 
credentials for transforming challenging feedstocks, with zinc dodecatungstophosphate nanotubes possessing Lewis and 
Brönsted acid sites effective for the for the simultaneous esterification and transesterification of palmitic acid, and 
transesterification of waste cooking oils with 26 % FFA and 1 % water.  
 The one-pot synthesis of a styrene modified sulfonic acid silica 15 was achieved by adding styrylethyl-
trimethoxysilane during a conventional SBA-15 synthesis.222 Styryl groups polymerised on the silica surface imparted 
hydrophobicity. Subsequent acid functionalisation of these materials resulted in a polystyrene-modified sulfonic acid 
SBA-15, which was active for oleic acid esterification with n-butanol, and proved superior to SAC-13 and Amberlyst-15 
due to the hydrophobic polystyrene coating and high surface area.223  
 Surface acidity has also been imparted to hydrophobic, mesoporous polydivinylbenzene (PDVB) by sulfonic acid 
grafting. Such materials were employed in tripalmitin transesterification with methanol, revealing that mesoporous 
PDVB with electron withdrawing -SO3H-SO2CF3 groups gave good activity with 91 % yield maintained up to 5 re-uses. 
Contact angle measurements confirmed the hydrophobic nature and high oleophilicity of of these materials. PDVB 
grafted with chlorosulfonic acid also generated hydrophobic solid acid catalysts for tripalmitin which were successfully 
transesterification whose performance (80 % methyl palmitate yield) was superior to HPA, SBA-15-SO3H, Amberlyst 
15, and mesoporous SO4-ZrO2. The same activity trend was observed for sunflower oil transesterification wherein all 
C16-C27  fatty acids were converted to FAMEs reflecting the higher adsorption capacity and hence reactivity of these 
PDVB acids.179, 223, 224 Polyaniline functionalised with methanosulfonic (MSA-Pani), camphorosulfonic (CSA-Pani) and 
lignosulfonic (LG-Pani) acids and polyaniline sulfate (S-Pani) also show promise in biodiesel synthesis with the LG-Pani 
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catalyst possessing the greatest acid site density (3.62 mmolH+.g-1) and highest conversion due to the close proximity of 
hydrophobic centres to the active sites. Sulfonic acid containing ionic liquids have also been co-polymerised with divinyl 
benzene, to form a hydrophobic, solid acidic ionic liquid polymer (PIL) for the transesterification of rapeseed and waste 
cooking oils, outperforming homogeneous counterparts.182 
 Partial carbonisation and sulfonation of organic matter offers a route to combine acidity and hydrophobicity into 
carbon based mesoporous materials.225, 226 Such solids are typically partially amorphous, but offer efficient 
transesterification of non-edible seed oils.107 It has proven difficult to introduce organic groups into the surface of 
ordered mesoporous carbons (OMCs) prepared through high temperature carbonisation, however surface pretreatment 
with H2O2 to introduce hydroxyl anchors enables their subsequent sulfonation and a resulting hydrophobic and stable 
acid catalyst for oleic acid esterification.227 Sulfonated single-walled carbon nanotubes (SO3H-SWCH) have also been 
investigated for palmitic acid esterification, exhibiting higher activity than other sulfonated carbons, such as oxidized 
SWCNHs (ox-SWCNHs), activated carbon (AC), and carbon black (CB), attributed to the stronger acidity of SO3H-
SWCH and hydrophobicity of the carbon surface in the vicinity of acid sites,186 enabling it to even outperform liquid 
H2SO4. Another interesting class of porous hydrophobic catalysts are mesoporous titanosilicates which are active for 
biodiesel and biolubricant synthesis. Ti incorporation into the surface of mesoporous SBA-12 and SBA-16 generates 
Lewis acid sites which are active for esterification and transesterification. The high activity of these Lewis acid sites is 
comparable to that observed for Fe-Zn double metal cyanides.194 Solid state 29Si NMR studies show that Ti-SBA-16 is 
more hydrophobic than Ti-SBA-12. In biolubricant synthesis, for which surface hydrophobicity is crucial, Ti-SBA-16 is 
significantly more active than Ti-SBA-12.228 
 Lipase has also been immobilised on hydrophobic supports with a view to transesterifying water containing oils,229 
wherein small amounts of water improved lipase activity.230 The application of lipase enzymes can be made more cost-
effective by heterogenisation over a solid support, with hydrophobic supports both assisting lipase surface attachment 
and promoting FFA esterification and bio-oil transesterification. Burkholderia lipase supported on hydrophobic magnetic 
particles for olive oil transesterification gave 70 % conversion to FAME even in the presence of up to 10 % water and 
was readily recycled.231 FAME production from canola oil was also achieved using lipase immobilised on a hydrophobic, 
microporous styrene-divinylbenzene copolymer, wherein the support hydrophobicity mitigated the inhibitory effect of 
water and glycerol affording  a 97 % yield.232 
 Solid basic hydrotalcites also showed enhanced activity and reusability for soybean oil transesterification when 
dispersed over polyvinylalcohol (PVA) membranes, although increasing the hydrophobicity via polymer cross-linking 
lowered activity, presumably due to poor active site accessibility by the bulky substrate. Hydrophilicity versus 
hydrophobicity may be tuned over such membranes by succinic anhydride and acetic anhydride treatments, with a mix of 
hydrophilic and hydrophobic environments near the active hydrotalcite sites required for optimal transesterification.233An 
interesting contrast to the preceding systems (wherein water poisons FAME formation) was reported for CaO catalysed 
soybean transesterification, for which small amounts of water actually improve activity, attributed to an increase in the 
concentration of surface OH- active base sites.234 Mixed MgO-CaO also exhibited a surprising water tolerance in 
rapeseed oil transesterification, enabling 98 % conversion with 2 % water, with La2O3-CaO active even in the presence of 
10% water.235, 236 
 Periodic Mesoporous Organosilicas (PMOs) are a promising class of materials that can be used as catalyst supports 
for biodiesel production. PMOs are hybrid organic-inorganic materials with mesopore networks akin to SBA-15.236 
Functionalisation of PMOs with catalytically active organic moieties is an emergent field of heterogeneous catalysis, and 
since the organic groups are dispersed throughout the framework (rather than confined to hydroxylated patches of the 
surface212), active sites and hydrophobic centres can be co-located in high concentrations. Methylpropyl sulfonic acid 
functionalised phenylene- and ethyl-bridged PMOs have been synthesised and tested for the transesterification of 
sunflower oil, canola oil, corn oil, refined olive oil and olive sludge.237 These functionalised PMOs gave comparable or 
better activity than SBA-15-PrSO3H under optimised conditions, with the ethyl-bridged PMO showing highest activity 
with a 98 % yield. Water adsorption studies proved that the phenylene-bridged PMO was more hydrophobic than the 
ethyl-bridged variant, but less active, showing that a balance of hydrophobic versus hydrophilic mesostructural properties 
are necessary for optimum transesterification. 
 Heterogeneous catalysts with tunable hydrophobicity, acid/base character, and good thermal stability, whether based 
upon polymeric or inorganic frameworks, are hence promising new solutions to TAG transesterification and FFA 
esterification of high moisture content feedstocks. 
 
6. Influence of reactor design and operating conditions 
 One other development likely to impact on the commercial exploitation of heterogeneous catalysts for biodiesel 
production is the design of innovative chemical reactors to facilitate continuous processing of viscous bio-oils. Although 
many industrial biodiesel production plants operate in batch mode at a significant scale (~7,000 tons.y-1),238-240 there is a 
need to move towards heterogeneously catalysed, continuous flow reactors in order to avoid the separation issues of 
homogeneous catalysts and drawbacks of batch mode (notably increased capital investment required to run at large 
volumes and increased labour costs of a start/stop process)241 and increase the scale of operation (8,000 -125,000 tons.y-

1).239, 240 A range of process engineering solutions have been considered for the continuous esterification of FFAs, 
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MCM-41 supported p-toluenesulfonic acid catalyst to pack a ceramic membrane tube for the transesterification of a 
recirculating soybean oil and methanol feed (Figure 19a). A higher biodiesel yield was obtained with the membrane 
reactor than with a homogeneous p-toluenesulfonic acid catalyst under comparable conditions in batch mode (84  versus 
66 %). Catalyst re-used evidenced only a minor loss of activity (92% of original after the third cycle).254 Biodiesel yield 
was a strong function of circulation velocity; low velocities improved permeation efficiency, while high velocities 
enhanced reactant mixing intensity. Although membrane reactors offer efficient transesterification and separation, they 
require high catalyst volumes, for example a 202 cm3 continuous reactor employed 157 g of a microporous TiO2/Al2O3 
membrane packed with potassium hydroxide supported on palm shell activated carbon to produce high quality methyl 
esters from palm oil (Figure 19b).252 
 

 
Figure 19. Schematic of recirculating packed membrane reactors for continuous biodiesel production via (a) solid acid 
and (b) base catalysts. Reprinted from reference 252 and 254. Copyright (2011 and 2014), with permission from Elsevier. 
 
 Enzymatic catalysed biodiesel production has been reported in both continuous257, 258 and batch modes259. Nature has 
developed a range of lipase biocatalysts for the selective synthesis of FAME at low reaction temperature, which are 
tolerate to high FFA levels.260, 261 Immobilisation on solid supports enables such biocatalysts to be used in continuous 
mode with low methanol:oil ratios.262 However, there are numerous shortcomings of biocatalysts including high enzyme 
costs, long residence times, and low biodiesel yields. Some enzymes can also be deactivated by short chain alcohols and 
the glycerol by-product;263 this problem can be overcome through the use of organic solvents to extract the alcohols and 
glycerol, but this adds further complexity and cost, and weakens the green credentials of biodiesel production. Enzymes 
must also operate in the presence of water in order to avoid denaturation, however this additional water must be 
subsequently removed from the resulting fuel to meet biodiesel standards (<0.05 vol% H2O), these drying steps 
introducing further costs. An alternative approach is the use of near-critical264 or supercritical CO2

255, 256 as a reaction 
medium to minimise enzyme inhibition by methanol, enhance oil solubility and diffusion, and assist catalyst/biodiesel 
separation via simple depressurisation. The associated strengths and weaknesses of supercritical biodiesel production are 
reviewed elsewhere.265 
 Ultrasound266, 267 and microwaves268, 269 have been explored as a means of eliminating heat and mass transfer 
limitations, and shortening residence times to achieve high biodiesel conversions. Ultrasound was used by Gude et al. in 
place of thermal heating for the transesterification of waste cooking oil,266 allowing efficient heating to a temperature of 
60-65 oC and lowering reaction times to 1-2 min. Chand et al. observed similar improvements in heat transfer and 
reaction time applying ultrasonication to soybean oil transesterification.270 However, both groups employed a 
homogeneous NaOH catalyst, hindering product purification. Ultrasound was used with a heterogeneous catalyst for 
continuous biodiesel production from palm oil by Salamatinia et al.271 BaO and SrO catalysts were tested, and ultrasound 
again found to reduce the reaction times and catalyst loadings needed to achieve >95 % FAME yields. Cost analysis of 
an ultrasonic process suggests it would be at least three times more expensive to run than a conventionally heated 
continuous biodiesel reactor.270 The origin of ultrasonic enhancements in respect of reaction mixing via e.g. cavitation or 
micro-streaming, remains a matter of debate.272 Microwaves have been coupled with continuous flow reactors for the 
transesterification of waste cooking oil, accelerating biodiesel production compared to conventional thermal heating, and 
hence higher throughput.269 The majority of microwave studies to date have focused on homogeneously catalysed 
processes, although some innovative combinations of waste derived (eggshell) solid catalysts and microwaves are 
emerging.273 Such microwave systems also require less solvent and catalyst. However, microwave penetration depth is a 
limiting factor268 which may restrict scale-up from laboratory reactor designs, and uncontrolled and irregular heat 
distribution can result in ‘hot spots’ and ‘cold spots’.267, 268 
 
7. Future directions 
 If sourced and produced in a sustainable fashion, biodiesel has the potential to play an important role in meeting 
renewable fuel targets. However, developments in materials design and construction are critical to achieve significant 
improvements in heterogeneously catalysed biodiesel production. Designer solid acid and base catalysts with tailored 
surface properties and pore networks offer process improvements over existing, commercial homogeneous catalysed 
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production employing liquid bases, facilitating simple catalyst separation and fuel purification, coupled with continuous 
biodiesel synthesis. Tuning the surface hydrophobicity of heterogeneous catalysts can strongly influence oil 
transesterification and FFA esterification through the expulsion of water away from active catalytic centres, thus limiting 
undesired reverse hydrolysis processes, notably in high water content waste oils. Solid materials capable of simultaneous 
FFA esterification and TAG transesterification under mild conditions present a major challenge for catalytic scientists, 
although (insoluble) high area superacids represent a step in this direction. We predict that in the future, hierarchical solid 
acids may be employed to first hydrolyse non-edible oil feedstocks, and subsequently esterify the resulting FFAs to 
FAME. Synthesis of nanostructured (e.g. nanocrystalline) catalysts and the application of surface-initiated, controlled 
polymerisation to functionalise oxide surfaces with polymeric organic species to create hybrid organic-inorganic 
acrhitectures with high active site loadings, will prove valuable in the quest for enhanced catalyst performance. 
 Despite concerns over long term biodiesel use in high performance engines, the implementation of FAME containing 
longer chain (>C18) esters in heavy-duty diesel engines should prove less problematic to on short timecales. However, the 
widespread uptake and development of next-generation biodiesel fuels requires progressive government policies and 
incentive schemes to place biodiesel on a comparative footing with (heavily subsidised) fossil-fuels. Blending of 
biodiesel with pyrolysis oil derived from lignocellulosic waste is an attractive route to power low-medium scale 
Combined Heat and Power (CHP) engines. Increasing use of waste or low grade oil sources remains a challenge for 
existing heterogeneous catalysts, since the high concentration of impurities (acid, moisture, heavy metals) induce rapid 
on-stream deactivation, and necessitate improved upstream oil purification, or more robust catalyst formulations tolerant 
to such components. Feedstock selection is dominated by regional availability, however the drive to use non-edible oil 
sources in areas where they cannot be readily sourced will require close attention to the entire supply chain and 
emissions/costs associated with new transportation networks, and may favour genetic modification of plant and algal 
strains to adapt to non-native climates. 
 The viscosity and attendant poor miscibility of many oil feedstocks with light alcohols continues to hamper the use of 
new heterogeneous catalysts for continuous biodiesel production, from both a materials and engineering perspective. 
Future process optimisation and growth in biodiesel supply and demand needs a concerted effort between catalyst 
chemists, chemical engineers and experts in molecular simulation in order to take advantage of innovative reactor 
designs and develop catalysts and reactors in tandem. Alternative reactor technologies and process intensification via e.g. 
reactive distillation and oscillatory flow reactors will facilitate distributed biodiesel production. It is essential that 
technical advances in both materials chemistry and reactor engineering are pursued if biodiesel is to remain a key player 
in the renewable energy sector during the 21st century. 
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