ChemComm Accepted Manuscript This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication. Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available. You can find more information about *Accepted Manuscripts* in the **Information for Authors**. Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains. Cite this: DOI: 10.1039/c0xx00000x www.rsc.org/xxxxxx Page 1 of 4 Journal Name ## **ARTICLE TYPE** ## Isoxazole to oxazole: a mild and unexpected transformation Raymond C F Jones,*a Alexander Chatterley, Romain Marty, W Martin Owton, and Mark R J Elsegood^a Received (in XXX, XXX) Xth XXXXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX 5 DOI: 10.1039/b000000x 3-Aryltetrahydrobenzisoxazoles prepared en route to the coleophomone natural products and analogues, were found to undergo a remarkable base-mediated rearrangement to 2aryltetrahydrobenzoxazoles. The scope of this unprecedented, 10 facile transformation was probed: a range of analogues was produced, a mechanism proposed, and an application demonstrated by synthesis of a known herbicidal compound. As an extension of our interest in natural products containing the cyclic trione unit 1, 1,2 we were attracted to the coleophomone 15 natural products, exemplified by coleophomones A (2) and B (3), reported as being in equilibrium via an aldol process.^{3,4} This group of metabolites have enzyme inhibitory properties towards bacterial cell wall transglycosylase and human heart chymase.^{4,5} Applying our previously reported isoxazole masking strategy for the cyclic trione unit^{1,2} led us to propose the disconnection of Scheme 1, requiring 3-aryltetrahydrobenzisoxazole building blocks to access the natural products and (masked) analogues. Whilst manipulating one such arylbenzisoxazole, we observed a 25 remarkable rearrangement to a 2-arylbenzoxazole. We report here our exploration of this unprecedented, facile transformation. Scheme 1. Strategic disconnection of coleophomones A suitable set of 3-aryltetrahydrobenzisoxazoles 4 was 30 prepared by 1,3-dipolar cycloaddition of aryl nitrile oxides [available from benzaldehyde oximes via C-chlorination (NCS, CHCl₃ reflux) and 1,3-elimination] with cyclohexane-1,3-diones under basic conditions (Scheme 2).6 $$R^{1}$$ R^{2} R^{3} R^{3} R^{4} R^{2} R^{3} R^{4} R^{2} R^{3} R^{4} R^{2} R^{3} R^{4} R^{2} R^{3} R^{4} R^{4} R^{2} R^{3} R^{4} R^{4} R^{5} R^{4} R^{6} Scheme 2. Synthesis and rearrangement of 3aryltetrahydrobenzisoxazoles 4. Reagents: i, NaOi-Pr, i-PrOH; ii, Cs2CO3, THF reflux; iii, H₂C=CHCH₂Br, Cs₂CO₃, THF reflux During attempts to complete O-allylation of 3-(2hydroxyphenyl)benzisoxazole 4a (R = R¹ = H) under standard 40 basic conditions (Cs₂CO₃, THF reflux), we did not observe the instead product but allyloxy)tetrahydrobenzoxazole 5. This rearrangement also took place in the absence of alkylating agent (Scheme 2); the phenolic product 6a (R = R¹⁻⁴ = H) was stable to the basic conditions, and 45 was successfully O-allylated to give ether 5 on addition of allyl bromide. We have verified the structures of both isoxazole 4a and dimethyl product oxazole **6b** (R = Me, R^1 = H; vide infra) through X-ray crystal structure determinations, Fig. 1a and 1b.† 50 Fig. 1a and 1b. X-Ray crystal structures of isoxazole 4a and oxazole 6b (O = red, N = blue, C = grey, H = light gey). We further investigated the scope of the remarkable rearrangement of benzisoxazoles 4 to benzoxazoles 6. Using isoxazole 4a, rearrangement was found to occur in aprotic 55 solvents with reaction time of 4 h under a range of basic conditions (Table 1) including carbonates, alkoxide and amidine, but failed with tertiary amines. In the presence of water or ethanethiol (entries 12, 13) the amide products 7a,b, respectively, of ring opening of the oxazole 6a were isolated; the constitutions of the amides were confirmed by X-ray crystal structures.⁷ 5 Table 1. Rearrangement of isoxazole 4a to oxazole 6a under various reaction conditions^a | Entry | Base | Solvent | Yield (%)b | |-------|--|-----------------------|---------------------| | 1 | Cs_2CO_3 | THF | 87 | | 2 | K_2CO_3 | THF | 84 | | 3 | Na_2CO_3 | THF | 5 | | 4 | Et_3N | THF | 0 | | 5 | DMAP | THF | 0 | | 6 | DBU | THF | 83 | | 7 | LDA | THF | 37 | | 8 | Cs_2CO_3 | toluene | 97 | | 9 | NaOi-Pr | i-PrOH | 85 | | 10 | Cs_2CO_3 | EtOH-H ₂ O | 87 (for 7a) | | 11 | none | H_2O | 8 | | 12 | Cs_2CO_3 | H_2O | 91 (for 7a) | | 13 | Cs ₂ CO ₃ & EtSH | THF | 6 (for 7b) | ^a Isoxazole 1 (2.18 mmol), Base (4.37 mmol), reaction time 4 h, solvent under reflux; ^b Isolated yields refers to 6a unless otherwise stated A range of 3-(2-hydroxyphenyl)tetrahydrobenzisoxazoles 4a-i, differently substituted in the aryl and the cyclohexane ring were shown to undergo rearrangement (Table 2) using the convenient Cs₂CO₃ conditions (THF reflux) to afford oxazoles **6a-i.**‡ We propose the mechanism illustrated in Scheme 3 for the 15 rearrangement. Until the oxazole structure was determined, we had supposed that a Boulton-Katritzky ring transposition⁸ (similar to that reported by Suzuki et al.9) was taking place, so we retain this as the initial step in this remarkable isoxazole-to-oxazole conversion. 10 This can be followed by a Neber rearrangement 11 to 20 give an azirine, thus overall replacing the N-O bond of the isoxazole by an N-C bond. The azirine may be envisaged to be in equilibrium with a nitrile ylide¹² stabilised at the formal negative end by the 1,3-dione system, and at the formal positive end by the electron-rich 2-hydroxyphenyl substituent. The 1,3-dipole finally 25 collapses to the oxazole in a 6π electrocyclic ring closure. Scheme 3. Proposed mechanism for isoxazole-oxazole rearrangement Table 2. Rearrangement of oxazole 4 to isoxazole 6^a | able 2. Realrangement of oxa | izote 4 to isoxazote 0 | | |------------------------------|------------------------|-----------------| | Isoxazole 4 | Oxazole 6
O | Yield (%) | | HO O 4a | OH N 6a | 87 ^b | | HO Me | OH N Me | 59 ^b | | HO Me Me | OH Ne Me | 82 ^b | | HO NeO 4d | MeO OH N 6d | 70° | | HO N O 4e | OH N 6e | 28° | | HO Me Me Me Br O 4f | OH N Me | | | HO CI 4g | CI OH O 6g | 58 ^d | | HO F O 4h | OH N Gh | 75 ^d | | HO O ₂ N | OH NO 6i | 77 ^d | ^a Isoxazole 4 (2.18 mmol), Cs₂CO₃ (4.37 mmol), THF at reflux; ^b reaction 30 time 4 h; c reaction time 12 h; d reaction time 2 h Previous reports indicate that it is possible to form oxazoles from azirines, and also that an azirine can be generated from an isoxazole either thermally or photolytically. 13,14 However, the energies required well exceed those of our reaction conditions 5 and thus an alternative rationale was required. The Neber rearrangement is an alternative way of generating azirines given the appropriate leaving group. 15 This mechanism implies that the base is catalytic, and this was supported by isolation of 6a (66%) from 4a using 0.1 mol equiv of Cs₂CO₃ (THF reflux, 1.5 h). An 10 intermediate with m/z identical to both the isoxazole and oxazole was observed by LC-MS during the rearrangements of 4a and 4c to 6a,c, respectively, and isolated by HPLC. We were not able to unambiguously identify the structure, but NMR studies indicate the cyclohexane portion to be symmetrical, supporting either the 15 azirine or nitrile ylide formulation. 16 An attempt to crystallise the dimethyl intermediate formed from 4c led merely to recovery of the oxazole 6c. The oxazole ring opening to form amides 7a,b is consistent with nucleophilic attack at C-5 of the oxazole. To discount the possibility of the oxazoles being formed by 20 retro-cycloaddition from the isoxazoles and recombination via a different connectivity, we have shown that treatment of a mixture of the two tetrahydrobenzisoxazoles 4c and 4i under the Cs₂CO₃-THF reflux conditions led only to the tetrahydrobenzoxazoles 6c and 6i predicted by the mechanism of Scheme 3, with no 25 crossover products observed. The tetrahydrobenzoxazoles prepared herein are closely related to a series of herbicides described in a patent by Ueda et al. 17 Using benzoxazole 6a we have prepared an example 8 of this group by reaction with 2-chloropyrimidine (47%) (Scheme 4). Scheme 4. Reagents: i, 2-chloropyrimidine, Cs₂CO₃, Cu, dry DMF, 1 day In conclusion, we have discovered an unexpected, remarkably facile novel base-mediated rearrangement of tetrahydrobenzisoxazoles to tetrahydrobenzoxazoles, demonstrated the 35 scope and probed the reaction mechanism of this surprising transformation. The synthetic utility of this rearrangement has been demonstrated by synthesis of a known bioactive compound. The authors thank Loughborough University for a studentship (A. C.) and Lilly UK for financial support, and ENSIACET 40 (Toulouse) for support for a work placement (R. M.). ## **Notes and references** ^a Department of Chemistry, Loughborough University, Leics. LE11 3TU, UK. Fax: +44 1509 223926; Tel: +44 1509 222557; E-mail: r.c.f.jones@lboro.ac.uk 45 Lilly UK, Erl Wood Manor, Windlesham, Surrey, GU20 6PH, UK † Crystal data for **4a**: $C_{13}H_{11}NO_3$, M = 229.23, orthorhombic, $Pca2_1$, a =15.024(3), b = 21.464(4), c = 13.309(3) Å, V = 4291.8(15) Å³, Z = 16, μ (Mo-K α) = 0.102 mm⁻¹, 36812 reflections measured, 8811 unique, R_{int} = 0.064, R_1 [for 5081 data with $F^2 > 2\sigma(F^2)$] = 0.056, wR_2 (all data) = 0.168, 50 absolute structure x = -0.4(19). Four molecules in asymmetric unit. For **6b**: $C_{15}H_{15}NO_3$, M = 257.28, orthorhombic, $Pna2_1$, a = 12.930(2), b = 12.930(2)9.3159(15), c = 21.663(4) Å, V = 2609.4(8) Å³, Z = 8, μ (Mo-K α) = 0.09 mm⁻¹, 25390 reflections measured, 6484 unique, $R_{int} = 0.034$, R_1 [for 5459 data with $F^2 > 2\sigma(F^2)$] = 0.035, wR₂ (all data) = 0.088, absolute structure 55 x = 0.2(4). Two molecules in asymmetric unit. CCDC 962972, 962973. † Typical procedure for oxazole formation: 3-(2-Hydroxyphenyl)-6,7dihydrobenzo[d]isoxazol-4(5H)-one 4a (0.500 g, 2.18 mMol) and Cs₂CO₃ (1.42 g, 4.37 mMol) in dry THF (30.0 mL) was heated under reflux for 4 h. Hydrochloric acid (2M; 5 mL) and CH₂Cl₂ (25 mL) were added after 60 the reaction mixture had cooled to 20 °C. The mixture was separated and the combined organic layer washed with water (2 × 25 mL) and brine (25 mL). The organic layer was dried (MgSO₄), filtered and evaporated to dryness under reduced pressure to yield 2-(2-hydroxyphenyl)-6,7dihydrobenzo[d]oxazol-4(5H)-one 6a (0.435 g. 87%) as a beige solid. mp 65 202-204 °C (decomp.); $\nu_{\text{max}}(\text{CH}_2\text{Cl}_2)/\text{cm}^{-1}$ 3804, 1694; δ_{\square} (400MHz; $CDCl_3$) 2.20-2.27 (2H, m, CH_2), 2.57 (2H, t, J = 5.6, $OxCH_2$), 3.00 (2H, t, J = 6.0, CH₂C=O), 6.86-6.90 (1H, m, Ar-CH), 7.10 (1H, dd, J = 0.8, 8.4, Ar-CH), 7.30-7.34 (1H, m, Ar-CH), 7.74 (1H, dd, J = 1.6, 8.0, Ar-CH) 10.58 (1H, br s, OH); $\delta_{\rm C}$ (100MHz; CDCl₃) 22.2, 37.9 (CH₂), 110.0 (C), 70 117.6, 119.5, 126.3, 133.2 (Ar-CH), 133.7, 157.7, 161.2, 163.0 (C), 190.7 (C=O). HRMS: MH⁺ 230.0809; C₁₃H₁₁NO₃ requires MH⁺ 229.0812. - 3-Acyltetramic acids. For leading references, see: R. C. F. Jones and T. A. Pillainayagam, Synlett, 2004, 2815-2817. R. C. F. Jones, C. C. M. Law and M. R. J. Elsegood, ARKIVOC, 2013, (iii), 81-97. - 3-Acyl-4-hydroxypyridones. For leading references, see: R. C. F. Jones, A. K. Choudhury, J. N. Iley, M. E. Light, G. Loizou and T. A. Pillainayagam, Beilstein J. Org. Chem., 2012, 8, 308-312. R. C. F. Jones, A. K. Choudhury, C. E. Dawson, C. Lumley and V. McKee, ARKIVOC, 2012, (vii), 12-24. - For a total synthesis, see: K. C. Nicolaou, T. Montagnon, G. Vassilikogiannakis and C. J. N. Mathison, J. Am. Chem. Soc. 2005, 127 8872-8888 - K. E. Wilson, N. N. Tsou, Z. Guan, C. L. Ruby, F. Pelaez, J. Gorrochategui, F. Vicente and H. R. Onishi, Tetrahedron Lett., 2000, 41, 8705-8709. - T. Kamigakinai, M. Nakashima and H. Tani, Japanese patent JP 10101666 A2, 1998. T. Kamigaichi, M. Nakashima, and H. Tani, Japanese patent JP 11158109 A2, 1999. - J. W. Bode, Y. Hachisu, T. Matsuura and K. Suzuki, Org. Lett., 2003, 5, 391-394. - Crystallographic data for amides 7a and 7b are deposited at the Cambridge Crystallographic Data Centre, CCDC 962974, 962975 respectively. - For leading references, see: A. Palumbo Piccionello, S. Buscemi, N. Vivona and A. Pace, Org. Lett., 2010, 12, 3491-3493. A. J. Boulton, A. R. Katritzky and A. M. Hamid, J. Chem. Soc. C, 1967, 2005-2007. - J. W. Bode, H. Uesuka and K. Suzuki, Org. Lett., 2003, 5, 395-398. - Studies with the 3-phenyltetrahydrobenzisoxazole confirm the requirement for the phenolic substituent: unpublished observations. - P. W. Neber and A. V. Friedolsheim, Justus Liebigs Ann. Chem., 1926, 449, 109-134. For an application in synthesis, see: N. Garg, D. D. Caspi and B. M. Stoltz, J. Am. Chem. Soc., 2004, 126, 9552-9553. - 12 Cf. S. Lopes, C. M. Nunes, A. Gomez-Zavaglia, T. M. V. D. Pinho de Melo, Tetrahedron, 2011, 67, 7794-7804. - See, for example: I. J. Turchi and M. J. S. Dewar, Chem. Rev., 1974, 75, 389-437. K. K. Zhigulev and M. A. Panina, Khim. Geterotsikl. Soedin., 1974, 4, 457-460. M. Maeda and M. Kojima, J. Chem. Soc., Perkin Trans. 1, 1977, 239-247. S. M. Fonseca, H. D. Burrows, C. M. Nunes, T. M. V. D. Pinho e Melo, Chem. Phys, Lett., 2009, 474, 84-87. C. M. Nunes, I. Reva, T. M. V. D. Pinho de Melo, R. Fausto, - T. Solomek and T. Bally, J. Am. Chem. Soc., 2011, 133, 18911-For a base-catalysed isoxazole-oxazole transformation in which the - oxazole ring atoms are not all derived from the isoxazole: G. Doleschall and P. Seres, J. Chem. Soc., Perkin Trans. 1, 1988, 1875- 115 - A. Padwa in Comprehensive Heterocyclic Chemistry III, eds. A. R. Katritzky, C. A. Ramsden, E. F. V. Scriven and R. J. K. Taylor, Elsevier, Oxford, 2008, Vol. 1, p.94-95. - Selected spectral data for the intermediate in rearrangement of 4a to **6a**: $\delta_{\rm H}$ (500MHz; CDCl₃) 2.05-2.15 (m, 2H, CH₂CH₂CH₂), 2.67 (4H, $t, J = 6.4, 2 \times CH_2CO$, 7.30-7.33 (1H, m, Ar-H), 7.52-7.60 (2H, m, 2) \times Ar-H), 8.21 (1H, d, J = 8.2, Ar-H), 11.18 (s, 1H, OH). 17 A. Ueda, Y. Miyazawa, Y. Hara, M. Koguchi, A. Takahashi, T. Kawana, Takashi, U.S. Patent US 6268310 B1 20010731, 2001.