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Synergistic and visualized toughening of
elastomers through mechanophore crosslinks and
multiple networks
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Elastomers are essential in applications requiring high extensibility, yet their performance can be further
enhanced through innovative design. A molecular design using multiple interpenetrating networks,
where a brittle first network is isotropically prestretched by swelling in a stretchable matrix, dramatically
increases toughness, primarily due to stress delocalization through bond scission in the sacrificial first
network. In this work, we present a synergistic approach to elastomer design by employing anthracene—
maleimide mechanophores as weak crosslinks in the first network of a multiple network elastomer. The
interplay between mechanophores and multiple network structures not only improves the toughness but
also enhances the mechanophore activity, achieving up to 37% activation in the triple network elastomer.
The mechanofluorescence enables real-time visualization of bond scission, providing mechanistic
insights into the toughening mechanism. Fluorescence imaging reveals significant mechanophore
scission near the fracture surfaces of double and triple network elastomers. Mechanical and optical
analyses indicate that the first network bears the majority of the load and that the mechanophore
scission quantitatively correlates with the work of the fracture. This work demonstrates how
mechanophores as weak crosslinks combined with multiple network topology synergistically enhance
toughness and enable stress visualization, paving the way for damage-reporting, self-sensing elastomers
with superior mechanical resilience.
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Introduction

Elastomers are indispensable in a wide range of applications
requiring high stretchability and durability, from automotive
tires and industrial seals to soft robotics and wearable devices.
However, traditional polymer networks often face a stiffness-
toughness conflict, where crosslinks stiffen but embrittle
them."® Innovative toughening strategies have been
developed,*” among which the multiple network (MN) strategy
has emerged as a highly effective approach for reinforcing
elastomers.>® By incorporating a highly crosslinked, brittle first
network that is prestretched within a loosely crosslinked,
stretchable matrix network, MN elastomers achieve increased
stiffness and toughness.>® Toughening is accomplished by
stress delocalization through bond scission in the sacrificial
first network, thereby delaying the onset of crack propagation.®®

Polymer mechanochemistry has emerged as a powerful field
in materials science, offering innovative approaches for
designing smart materials that respond to mechanical
stimuli.’®" Recent advances have introduced the concept of
mechanophores—molecular units that undergo specific chem-
ical transformations when subjected to mechanical force—
which have garnered significant attention.'® While stress is
typically considered destructive, mechanophores offer a unique
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opportunity to turn stress into a productive outcome by
enabling translation of mechanical energy into useful chemical
responses. This capability provides unprecedented opportuni-
ties in self-healing materials,"” damage reporting, stress
sensing,>'*?' material mechanics®*?* and controlled degrad-
ability.>** However, the use of mechanophores in elucidating
toughening mechanisms remains underexplored, with only
a few pioneering studies, such as those by Creton and
coworkers, addressing this gap.

The strategic placement of mechanophores within a polymer
network can profoundly influence fracture toughness. Craig
and co-workers demonstrated that in-chain mechanophores,
which weaken network strands, can embrittle polymer
networks.”® In contrast, embedding non-scissile mechano-
phores within the strands enabled force-induced chain exten-
sion, leading to enhanced network toughness.*® Similarly,
strand lengthening through the dissociation of mechanophore
crosslinks also resulted in significantly toughened elasto-
mers.**** This toughening mechanism, driven by force-trig-
gered chemical reactions that lengthen polymer strands,
highlights the critical role of mechanophore placement and
reactivity in controlling mechanical properties.

Reinforcing elastomers without conventional inorganic
nanofillers, such as silica or carbon black, ensures optical
clarity, making it possible to detect and quantify bond scission
via mechanoluminescence. Quantitative analysis of bond scis-
sion under mechanical loading is crucial for understanding the
mechanics of polymer networks and guiding the design of
tough, force-responsive materials. An ideal mechanophore for
dual purposes of toughening and quantitative detection should
be mechanically labile yet thermally stable, yielding a lumines-
cent product upon activation that persists even after unloading.
Anthracene-maleimide cycloadducts (AM) are stable up to 200 ©
C,* and undergo a mechanochemical retro-Diels-Alder reaction
to liberate a fluorescent anthracene moiety.**3*3*

In this work, we developed a synergistic approach to elastomer
design by integrating mechanophore crosslinkers with multiple
network architecture. This strategy aimed to enhance toughness
through preferential scission of mechanophore crosslinks in the
first network, enable real-time visualization of bond scission via
mechanofluorescence, and provide mechanistic insights into the
toughening mechanism. Specifically, an AM mechanophore was
employed as the crosslinker in the first network of an MN struc-
ture. Mechanical and optical analyses were conducted to investi-
gate the correlation between mechanophore scission and
toughness, while fluorescence imaging was used to map the
spatial distribution of bond scission near the fracture surface. By
combining mechanophores and multiple networks, this study
sought to advance the understanding of toughening mechanisms
and pave the way for the design of multifunctional elastomers with
enhanced mechanical and optical properties.

Experimental
Materials

Ethyl acrylate (EA) was run through a plug of basic alumina (10
vol%) to remove the inhibitor and stored in a freezer for future
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use. Irgacure 819 and butanediol diacrylate (BD) were
purchased from Sigma Aldrich and used directly. Chloroform
was purchased from Fisher Scientific. Anthracene-maleimide
Diels-Alder adduct diacrylate (AM) was synthesized according
to the literature.?*

Network synthesis

In a nitrogen-filled glovebox, AM (257.7 mg, 0.563 mmol, 1
equiv.) or BD (111.7 mg, 0.563 mmol, 1 equiv.) and Irgacure 819
(0.9 mg, 0.00225 mmol, 0.004 equiv.) were dissolved in degassed
CHCl; (3 mL) and EA (6 mL, 56.3 mmol, 100 equiv.) in a scin-
tillation vial. The solution was drawn into a syringe and injected
into a customized mold. The mold was made of a silicone sheet
(3788T21, McMaster-Carr) with a window cutout (140 mm X 135
mm x 0.5 mm), sandwiched between two well-cleaned glass
plates (7" x 7" x 3/16", 8476K17, McMaster-Carr). The four
sides of the mold assembly were two-ply taped using 3M Super
88 inside and Temflex outside. Two needles (25G) were inserted
into one side of the mold through the silicone, one for injection
and the other for venting. After injection of the solution, both
needles were taken out and the holes left by the needles were
sealed with 3M Temflex. The mold was taken out of the glovebox
and placed between two 365 nm UV lamps (wavelength = 365
nm, 100 W), separated by ~40 cm. Photopolymerization was
allowed for 1 hour. The crosslinked network was carefully taken
out of the disassembled mold and soaked in methanol at 40 °C
for 10 minutes. It was then air-dried briefly and vacuum-dried at
70 °C for 4 hours to give the single network (SN).

SN was swollen in a monomer bath (100 mL) consisting of EA
(100 equiv.), BD (0.01 equiv.) and Irgacure 819 (0.004 equiv.) in
a wide-mouth glass jar, which was shielded from light in
a cardboard box for 16 hours in a nitrogen-filled glovebox. The
remaining solution was carefully decanted into a Ziploc bag and
photopolymerized before disposal. The swollen gel was wiped
off of excess liquid using Kimwipes and carefully placed
between two glass plates (7" x 7" x 3/16”, 8476K17, McMaster-
Carr), separated by a silicone sheet (inner dimensions: 160 mm
x 160 mm x 1/32”, 3788T22, McMaster-Carr), secured with 3M
Temflex tape and 8 sets of binder clips. The mold was taken out
of the glovebox and placed between two UV lamps (wavelength
= 365 nm, 100 W), separated by ~40 cm. The double network
(DN) was formed by photopolymerization for 3 hours and was
then dried in vacuo at 70 °C for 4 hours.

The triple network (TN) was synthesized following the same
steps of DN synthesis except that two silicone sheets with
different thicknesses (1/32”, 8602K51 and 0.5 mm, 3788T21,
McMaster-Carr) were used together as the spacer.

The volume changes after each swelling—polymerization step
were recorded and the prestretch ratio was calculated using the
following equation:

Jo = (Vand Vi)'
where Vyn and Viey are the volume of the MN sample and the

first network (FN), that is, the SN, respectively.

This journal is © The Royal Society of Chemistry 2025
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Fracture tests

Fracture tests were performed using the pure shear geometry on
an Instron 5567. Each tested sample had a width of 20 mm and
length of 15 mm, and the thickness varied from 0.73 to 1.53
mm. A 5 mm notch was made on an edge of the sample using
a sharp razor blade. Tests were performed at a stretch rate of
0.05 s~ ". The critical stretch, A, at the onset of crack propaga-
tion was recorded and used to calculate the strain energy
density w(A.) by integrating the stress-stretch curves of
unnotched samples up to A.. The fracture energy, I', is equal to
the energy release rate when the critical stretch is reached, i.e., A
= A, using the following equation:

T'e=w(d) X hg

where %, is the original height of the sample between grips,
usually around 5 mm.

Tensile tests

Tensile tests were performed on an Instron 5543 fitted with
a 100 N load cell and pneumatic grips. Dogbone samples were
cut out using a specimen die (ASTM D638 Type V). The gauge
length of the central part was about 20 mm and the thickness of
samples varied from 0.73 to 1.53 mm. Tests were performed at
a strain rate of 0.05 s~ '. The strain rate is defined as (dL/L,)/dt.
Each set of samples was tested three times.

Real-time fluorescence tracking

To capture the bond scission of mechanophores during
stretching, a camera (Mokose C100) with 4K resolution was
used along with two different magnification-adjustable micro-
lenses (Edmund Industrial Optics (EIO) and Hayear model
HY180XA). While being stretched, the specimen was irradiated
with a UV lamp (wavelength = 365 nm, 100 W). The specimen
sat between the lamp and the camera. Two crossed polarizers
were placed between the sample and the lamp and in front of
the camera, respectively, to filter the background irradiation.
Videos were recorded at manual mode with exposure parame-
ters set to 1/30 s, ISO 100. After recording, the uncompressed
raw video files were exported as images at one-second intervals.
Blue channels of the images were analyzed using Image]. The
intensity was measured by drawing a rectangle in the center of
the specimen and the average values were used.

Characterization

Fluorescence spectroscopy was performed on an Agilent Cary
Eclipse fluorescence spectrometer with a solid-state sample
mounter. The excitation wavelength was set at 365 nm and the
scanned emission wavelength ranged from 380 to 500 nm. The
excitation and emission slits were both set as 2.5 nm.
Fluorescence imaging was done on an Olympus BX63
Microscope equipped with a fluorescence filter cube (U-FUNA)
and observed using the DAPI observation method, with
a magnification of 5x and a manual exposure time of 10 ms.

This journal is © The Royal Society of Chemistry 2025
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The fluorescence intensity profile was plotted using Image]
from the blue channel.

Glass transition temperatures were determined on a TA
Instruments DSC250 under nitrogen (Fig. S1). Each sample (~5
mg) was equilibrated at 60 °C, cooled to —60 °C and then heated
to 60 °C at a rate of 10 °C min~'. The T, was determined by the
half-height method.

Results and discussion
Preparation of multiple network elastomers

MN elastomers were prepared in a similar manner as previously
described® and detailed in the Experimental section. SN elas-
tomers were synthesized by photopolymerization of EA in the
presence of 1 mol% crosslinker and 0.004 mol% Irgacure 819 in
chloroform (33 vol%). DN elastomers were subsequently
prepared by swelling the said SN elastomers to equilibrium in
a bath of EA monomer, BD crosslinker (0.01 mol%), and Irga-
cure 819 (0.004 mol%), followed by photopolymerization to
form the second network (Fig. 1). This process of swelling and
photopolymerization was carried out again for the DN elasto-
mers to form a third network, yielding TN elastomers. When BD
was used as the crosslinker for SN elastomers, the corre-
sponding materials are termed SN-BD, DN-BD, and TN-BD; and
when AM diacrylate was used as the crosslinker, the corre-
sponding networks are termed SN-AM, DN-AM, and TN-AM. The
most important factor governing the properties of a multiple
network elastomer is the prestretch ratio Ay, which is defined by
the volume fraction of the first network in the multiple network
(Ao = (VI\,H\]/VFN)”3 = 1/47FN1/3). More steps of swelling and
polymerization led to higher degrees of prestretch on the first
network (Table 1). The effect of the type of the first network
crosslinker on the prestretch ratio was negligible, with A, being
~1.7 for DN and 2.6-2.7 for TN.

Toughness of multiple network elastomers

The mechanical properties of the SN, DN, and TN elastomers,
including stiffness and toughness, were systematically evalu-
ated to understand the role of the prestretch and crosslinker
strength (Fig. 2). Stress-stretch curves for notched samples in
pure shear geometry revealed clear differences in the mechan-
ical performance with different degrees of prestretch (from SN,

1+ Swelling

| _Polymerization

S T — 1%t network
om — 231 network
o™~ Or N—/_
o

BD AM

Fig. 1 Schematic illustration of the synthesis of multiple network
elastomers via sequence(s) of swelling and polymerization. Black lines,
green dots, and green lines represent the first network, ethyl acrylate
monomer, and matrix network, respectively. The purple dots represent
the butanediol diacrylate or anthracene—maleimide diacrylate
crosslinkers.
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Table 1 List of elastomer samples and their properties: prestretch
ratio, Ag; Young's modulus, E; fracture energy, I'c; and glass transition
temperature, Ty

Sample Ao E (MPa) I.(m™) T, (°C)
SN-BD 1 0.52 % 0.09 0.27 + 0.04 -13.1
DN-BD 1.74 0.89 & 0.02 1.01 £ 0.13 —14.4
TN-BD 2.69 1.71 + 0.05 2.89 + 0.08 ~14.6
SN-AM 1 0.62 + 0.18 0.96 + 0.17 -9.2
DN-AM 1.73 0.88 % 0.01 1.65 £ 0.18 -13.3
TN-AM 2.64 1.79 & 0.04 5.43 £ 0.74 —-13.4

DN, to TN) and crosslinkers (AM and BD) in the first network
(Fig. 2A). Quantitatively, the modulus increased from 0.5-0.6
MPa for SN to ~0.9 MPa for DN, and to 1.7-1.8 MPa in TN,
showing that the prestretched first network effectively increased
the stiffness of the overall network (Fig. 2B). The type of cross-
linker, AM or BD, had a negligible effect on the modulus (Table
1), indicating similar network structures.

Crosslink density analyses provide additional insights into
the network properties. For the SN-BD and SN-AM elastomers,
swelling in toluene gave polymer volume fraction ¢ = 0.15,
yielding crosslink density » = 54 mol m™? from the Flory-
Rehner equation, in good agreement with modulus-based esti-
mates from the affine model (35 and 42 mol m ™, respectively)
and the phantom model (70 and 84 mol m ™, respectively). The
crosslink density of the single networks is stoichiometrically
determined from the molar ratio of the diacrylate crosslinker to
ethyl acrylate, giving a theoretical value of » = 120 mol m>.
Detailed calculations are provided in the SI. The discrepancy
between the experimental values and the theoretical one is
attributed to network defects such as loops, which can account
for more than 60% of strands even in model networks.* For DN
and TN systems, » is complicated by the prestretched, swollen
nature of the first network that is interpenetrated by the
subsequent entangled networks. Nonetheless, the modulus
increases and swelling ratio decreases systematically from SN to
DN to TN, consistent with increased effective crosslink density.
Nonetheless, swelling ratios decrease from Q = 6.7 (SN) to 4.5
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(DN) and 2.7 (TN), consistent with the observed increased
stiffness as a result of increased effective crosslink density. ATR-
FTIR spectra show disappearance of C-H (3100-3000 cm™ ') and
C=C (1640-1680 cm™') absorptions (Fig. S2), indicating
complete polymerization of acrylate double bonds. While FTIR
confirms full monomer conversion, swelling and mechanical
analyses provide more direct and quantitative evidence for
crosslink density and multiple-network formation.

Increasing the extent of prestretch, A, significantly improved
the fracture energy, I'. (Fig. 2C). TN-BD exhibited the highest
fracture energy, followed by DN-BD and SN-BD, indicating that
the networks are effectively toughened through sacrificial bond
scission in the prestretched first network.>® Besides the
multiple network strategy, toughening of an SN was also ach-
ieved by replacing the BD strong crosslinks with the AM weak
crosslinks (Fig. 2C), suggesting an alternative toughening
mechanism from mechanophore-enabled stress delocalization
via selective decrosslinking.** Moreover, DN and TN were also
effectively toughened by the implementation of AM mechano-
phores as weak crosslinks, as evidenced by the higher fracture
energy values for AM-crosslinked networks compared to their
respective controls. Notably, the fracture energy increased 20-
fold—from 0.27 k] m~2 for SN-BD to 5.4 k] m~? for TN-AM—
indicating a synergistic toughening effect from the MN archi-
tecture coupled with weak crosslinks, which significantly
improves stress redistribution capabilities that act to resist
fracture. These findings highlight the role of weak, scissile AM
crosslinks and increased prestretch in enhancing toughness
through sacrificial and selective bond scission.

To gain mechanistic insights into the toughening mecha-
nism, the extent of bond scission near the fracture surfaces was
visualized and mapped via mechanofluorescence. The force-
induced retro-Diels-Alder reaction of the AM mechanophore
releases a fluorescent anthracene moiety (Fig. 3A). Fluorescence
microscope images of SN-AM, DN-AM, and TN-AM samples
revealed distinct gradient patterns of blue emission due to bond
scission near the fracture surfaces (Fig. 3B). The breadth and
amount of bond scission varied significantly among the
networks, with TN-AM showing the widest and brightest

(o]

o AM

= BD E
I//

el

o

Fracture Energy, I, (kJ/m?)
7‘\) »

o

]
o
-

1.0 15 2.0 25
Stretch, A

Prestretch, A,

2 3 1 9 3
Prestretch, A,

Fig.2 Mechanical properties of the MN elastomers. (A) Representative stress—stretch curves of notched samples of MN elastomers in pure shear
geometry (illustrated in the inset) with different degrees of prestretch, Ao, and first network crosslinker. Red, green, and blue lines correspond to
SN, DN, and TN, respectively. Solid and dashed lines correspond to AM and BD as the crosslinkers, respectively. (B) Young's modulus, E, from
tensile tests for SN (red), DN (green), and TN (blue) over prestretch ratio, Aq. (C) Fracture energy, I'c, obtained from pure shear fracture tests for SN
(red), DN (green), and TN (blue) over prestretch ratio, Aq. Solid circles and squares denote AM and BD as the crosslinkers, respectively. Error bars
show the standard deviation with triplicates per experiment. Hollow circles and squares denote AM and BD as the crosslinkers, respectively.
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Fig. 3 Mapping the extent of bond scission in post-fracture MN
elastomers via mechanofluorescence. (A) Force-induced retro-Diels—
Alder reaction of AM mechanophore to release a fluorescent anthra-
cene moiety. (B) Fluorescence microscope images of SN-AM, DN-AM,
and TN-AM along the fracture surfaces. The crack propagated through
the positive x direction. The notch length was about 4.7-5.0 mm. (C)
Blue fluorescence intensity profiles in the center of two fracture
surfaces of SN (red), DN (green), and TN (blue) in the z direction.

fluorescence. Quantification of fluorescence intensity perpen-
dicular to the crack propagation direction (Fig. 3C) confirmed
these observations. In SN-AM, only a narrow region (~30 pum)
near the crack edge exhibited a low amount of fluorescence,
indicating localized and limited bond scission. In contrast, DN-
AM and TN-AM samples showed significantly broader bond
scission zones with stronger fluorescence, with thickness
approximating 100 um and 400 um, respectively. It is note-
worthy that the AM concentration in TN-AM (6 mol m ™) was
much lower than that in SN-AM (121 mol m™?) and DN-AM (23
mol m™?), due to the dilution from the second and third
networks. Therefore, the actual differences in the extent of
mechanophore scission for SN-AM, DN-AM and TN-AM were
much more distinct than what is shown in Fig. 3C. This trend
where increasing the amount of prestretch increases both the
intensity and spatial extent of fluorescence correlates with the
fracture energy results, as TN-AM, with its greater fracture
resistance, underwent more extensive bond scission, compared
to SN-AM. It demonstrates that a higher degree of prestretch on
the first network increases both the local concentration of
strands amenable to scission and the volume of the network in
which sacrificial bond scission occurs, synergistically contrib-
uting to the toughness enhancement.

Mechanic insights via mechanofluorescence

The stress-stretch curves for AM-containing SN, DN, and TN
elastomers with different prestretch ratios exhibited similar tensile
behavior at low stretch and slightly higher strengths compared to
the control counterparts (Fig. 4A). The prestretched first network

This journal is © The Royal Society of Chemistry 2025
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effectively increases the stiffness of the overall network, thus
increasing the tensile stress at the same stretch. Since the first
network is prestretched and thus stiffened by the diluting matrix
network, it is safe to assume that the first network carries the
majority of the stress.**® To more accurately assess the mechanical
response of the MNs, stress-stretch curves were normalized to
account for the varying extent of prestretch, Ao, on the first network.
The tensile stress was normalized by the areal density of the first
network strands, which are diluted by a factor of 2,> by the matrix
network, in the plane normal to the stretching direction. The
stretch ratio was scaled by a factor of A,, corresponding to the
actual stretch, A-1,, experienced by the first network in the
stretching direction. Unified master curves were obtained, showing
similar mechanical responses up to the point of fracture across all
networks (Fig. 4B). This again demonstrates that increasing the
degree of prestretch effectively improves the load-bearing capacity
of the first network and its susceptibility to chain scission.

To gain deeper insights into the toughening mechanism, the
stress-induced bond scission of mechanofluorescent AM was
tracked in real time during uniaxial tensile extension. Plotting
the blue fluorescence intensity as a function of macroscopic
stretch revealed that the bond scission showed a stronger
dependence on stretch ratio with greater prestretch (Fig. 4C).
Similar to the mechanical response, the fluorescence profiles
were also normalized to reflect the first network being the load-
bearing component (Fig. 4D). The blue intensity was normalized
by a factor of 1°°-1,% the first term accounts for the area
expansion of the observed side during stretching, and the second
term accounts for the concentration of the AM mechanophore in
the observed plane that is diluted by the matrix network. Clearly,
DN-AM and TN-AM exhibited similar fluorescence build-up, with
TN-AM ending up with stronger fluorescence. A unified threshold
stretch ratio, that is, A- 4, = 4, for mechanophore activation was
revealed, independent of the number of networks, indicating that
mechanophore scission in the first network is governed by the
actual stretch seen by the first network strands rather than the
stretch ratio of the overall network. This is consistent with the
unified mechanical response across different networks (Fig. 4B).
Since the strain at break of SN-AM was smaller than the threshold
strain for mechanochemical activation of AM, it did not exhibit
significant fluorescence build-up upon elongation.

Spectral analysis of the fluorescence emission of the
ruptured samples in the gauge section confirmed the AM scis-
sion via force-induced retro-Diels-Alder reaction, showing
characteristic peaks of anthracene for DN-AM and TN-AM. SN-
AM did not show any fluorescence signal, consistent with the
real-time fluorescence measurements. The fluorescence inten-
sity for TN-AM appears to be lower than that for DN-AM
(Fig. 4E). As the AM content in TN-AM was 3.8 times lower than
that in DN-AM due to higher A,, the actual amount of AM
scission in TN-AM was higher than that in DN-AM (Fig. 4F). TN-
AM achieved 37% AM activation, while DN-AM reached 13%.
This further confirms that greater prestretch increases the
fraction of strands under sufficient tension to undergo mech-
anochemical reactions.

The fraction of activated mechanophores and the work of
fracture, Wy-A,> are plotted against the prestretch ratio, Aq

J. Mater. Chem. A, 2025, 13, 34409-34416 | 34413
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Fig. 4 Real-time visualization of AM mechanophore scission in tensile

Prestretch, A,

testing. (A) Representative stress—stretch curves of dog bone samples of

MN elastomers with different degrees of prestretch Ag and first network crosslinker. Red, green, and blue lines correspond to SN, DN, and TN,
respectively. Solid and dashed lines correspond to AM and BD as the crosslinkers, respectively. (B) Normalized stress—stretch curves by
accounting for the prestretch ratio, ¢, of the first network. (C) Fluorescence blue intensity profiles of the SN-AM (red), DN-AM (green), and TN-
AM (blue) elastomers as a function of stretch ratio. (D) Normalized fluorescence blue intensity profiles as a function of normalized stretch ratio. (E)
Fluorescence spectra for the ruptured samples in the gauge section. (F) The fraction of mechanically activated AM mechanophore in the ruptured
samples near the gauge section and the work of fracture normalized by the volume fraction of the first network, W;- 0%, as a function of pre-

stretch ratio.

(Fig. 4F). Here the work of fracture has been normalized by the
volume fraction of the first network, ®py = 1/1¢°, to represent
the work done to the load-bearing network. The quantitative
correlation here underscores that bond scission in the first
network is a major contributor to the overall toughness of the
MN elastomers. In all, while TN-AM exhibited lower elongation
at break compared to DN-AM, the actual stretch experienced by
the first network strands in TN-AM was higher, which increased
the fraction of mechanically labile strands in the first network.
This increases the extent of stress redistribution and thus
resistance to rupture.

Synergistic interplay between mechanophores and multiple
network structure

The effects of crosslinker strength and network topology govern

the fracture behavior and toughening mechanism of

34414 | J Mater. Chem. A, 2025, 13, 34409-34416

elastomers. As illustrated in the schematic (Fig. 5), elastomers
with strong crosslinks fracture through random bond scission.
In a conventional SN with strong crosslinks, fracture occurs
along a narrow zone where stress is localized and strands near
the crack tip break catastrophically (Fig. 5A). By contrast,
replacing strong crosslinks with weak, force-responsive ones,
i.e., AM mechanophores, changes the failure dynamics. In an
SN with weak AM crosslinks, bond scission still occurs near the
crack tip but is biased toward the mechanically weaker AM
crosslinks (Fig. 5B). This decrosslinking mechanism mitigates
the local stress through strand lengthening,** which ultimately
increases the fracture energy as it scales with square root of
strand length.>?

When a stretchable, interpenetrating network is introduced
to form an MN elastomer, the highly crosslinked first network
becomes prestretched and sacrificial, breaking over a much
broader zone during fracture (Fig. 5C). This delocalization of

This journal is © The Royal Society of Chemistry 2025
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Fig. 5 Schematic illustration for different scenarios upon network
fracture. (A) In a single network, a series of chain scission occurs as the
crack propagates. (B) In a single network with weak AM crosslinks,
bond scission occurs near the crack tip but is preferred over other
covalent bonds, leading to strand lengthening that delocalizes stress.
(C) In a conventional multiple network, the stress is redistributed
through bond scission over a large area, delaying the onset of fracture.
(D) In @ mechanophore-crosslinked multiple network, localized stress
is further alleviated via stress-induced mechanophore crosslinker
dissociation that lengthens the strands across a broad region.

stress via bond scission delays the onset of crack propagation
and improves toughness—yet this process remains random.
When the AM mechanophores as weak crosslinks are
embedded within an MN framework, the strands extend in
length as the crosslinks dissociate under stress (Fig. 5D),
resulting in a further increase in toughness.

Thus, the synergy between multiple networks and mecha-
nophores enables a dual-mode toughening strategy. The MN
structure enables delocalized, sacrificial scission in the first
network, while the incorporation of mechanophores as weak
crosslinks alleviates and distributes stress through stress-
induced strand extension. Together, they enable simultaneous
mechanical reinforcement and real-time, visualizable quantifi-
cation of damage, offering a powerful platform for the design of
self-reporting, resilient soft materials.

Conclusions

We have prepared tough, stress-reporting elastomers by inte-
grating mechanophore crosslinkers within an MN architecture
and elucidated the toughening mechanism. Mechanophore-
containing MN elastomers exhibited significantly enhanced
toughness compared to the conventional single network, owing
to sacrificial and selective bond scission in the prestretched first
network. The AM mechanophores enabled real-time visualiza-
tion of stress-induced bond breakage via mechanofluorescence,
providing direct mechanistic insights into the fracture process.
Mechanical and optical analyses revealed that the first network
serves as the primary load-bearing component and is selectively
fractured under loading, contributing to stress delocalization.
Fluorescence imaging showed that the extent and intensity of
mechanophore scission increased with the degree of prestretch,

This journal is © The Royal Society of Chemistry 2025
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correlating well with the toughness in both notched and
unnotched samples. Notably, TN elastomers with the highest
prestretch achieved 37% mechanophore activation post-frac-
ture, demonstrating the amplification effect of the MN structure
on mechanochemical responsiveness.

This study provides fundamental understanding of how
crosslink strength and network hierarchy govern stress distri-
bution and fracture resistance in soft materials, showing that
prestretch and weak crosslinks cooperatively enhance stress
redistribution and strand lengthening. It establishes a powerful
framework for designing multifunctional elastomers that
combine mechanical resilience with damage reporting capa-
bilities. The integration of weak, force-responsive crosslinks
with MN topology offers a dual-mode toughening platform that
integrates mechanical reinforcement with quantitative stress
mapping—a paradigm shift for designing smart elastomers.

Looking forward, this strategy opens up exciting opportuni-
ties to design next-generation elastomers with tailored
mechanical and optical properties. Future efforts may explore
a broader range of mechanophore chemistries, reversible or
self-healing network architecture, and deep dive into fracture
mechanics of elastomers. The approach described here lays the
groundwork for smart, self-sensing, and damage-tolerant
materials suitable for use in structural health monitoring, soft
robotics, and protective coatings, where real-time stress feed-
back and mechanical robustness are both essential.
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