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y predictions in multi-atom
systems with multiscale topological learning†
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Lithium, a key element in high-energy-density batteries such as lithium-ion batteries, plays a crucial role in

determining battery performance, safety, and longevity. Understanding how lithium atoms interact in

clusters is essential for optimizing these properties. However, the complexity of these interactions grows

exponentially as the number of Li atoms increases. While the rise of large models offers promising

avenues for predictive accuracy in such multi-atom systems, the limited data available in material

science hinders such breakthroughs. To answer the challenge, we present an interpretable topological

learning framework designed to enhance the accuracy of energy predictions in multi-atom systems. This

study explores the application of Persistent Topological Laplacians (PTLs), a multiscale topological

method that effectively captures the intrinsic properties of many-body interactions. By applying PTLs, we

offer a comprehensive analysis to uncover persistent topological features and geometric nuances in

complex material systems. A dataset of 136 287 lithium clusters was analyzed using the proposed

framework, and the results show that the PTL method aligns with traditional many-body theories,

demonstrating its efficacy in capturing complex many-body interactions and improving prediction

accuracy.
1 Introduction

In the realm of material science, understanding the behavior of
multi-atom systems remains a fundamental yet challenging
task, with the complexity of interactions increasing exponen-
tially as the number of interacting particles grows.1 One of the
most prominent examples is lithium, a key element in high-
energy-density batteries like lithium-ion batteries, which plays
a critical role in determining performance, safety, and
longevity.2 Accurately predicting the energy and interactions
within lithium clusters is crucial for advancing next-generation
energy storage technologies.

However, for multi-atom systems, classical approaches,
ranging from quantum chromodynamics in nuclear physics to
quantum mechanics in atomic and molecular scales, oen
resort to reduced one- or two-body approximations.3 Higher-
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order perturbations, like those in Feynman diagrams and
Ursell functions,4,5 are immensely valuable, but sometimes fall
short in capturing non-perturbative effects. Similarly, statistical
tools such as the BBGKY hierarchy6 provide critical insights into
particle correlations but are oen beset with formidable
computational challenges. These traditional methods for
studying such systems are oen hindered by the sheer scale of
the problem.

The rise of deep learning models, such as ChatGPT,7,8 has
demonstrated the immense potential of machine learning in
making accurate predictions based on vast amounts of data.
These models excel at handling complex tasks in natural
language processing by identifying intricate patterns and
correlations across large datasets. Inspired by this success,
machine learning has been applied to multi-atom systems to
improve predictive performance in areas like energy calcula-
tions and structure prediction.9,10 However, two critical limita-
tions hinder the applicability of large deep learning models in
material science: the scarcity of data and the ‘black box’ nature
of these models.11,12 First, the limited availability of high-quality
experimental data in material science presents a major bottle-
neck. Gathering large-scale datasets can be prohibitively
expensive and time consuming, limiting the effectiveness of
deep models that rely on data richness to generalize across
different systems.13,14 Without sufficient data, these models may
fail to capture the intricate physical interactions at play in
complex material systems like lithium clusters.15 Second, deep
learning models, though effective at predictions, oen lack
J. Mater. Chem. A, 2025, 13, 21555–21563 | 21555
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interpretability, making it hard to understand the physical
mechanisms behind their outcomes. In materials science, this
is crucial for material discovery and design, where under-
standing behavior and properties is as important as accurate
predictions.16,17

In the vast landscape of mathematical tools available, topo-
logical methods have emerged as powerful lenses through
which various scientic disciplines perceive and understand
intricate structures and interactions. The simplicial complex,18

for example, provides a topological framework for capturing
interactions in multi-atom systems, while persistent homology
has advanced our understanding in molecular19 and material
science.20–25 And the Quotien Complex was recently introduced
to study the inorangic system.26 In computational biology,
differential geometry27 and algebraic graph28 theory shed light
on the networks underlying life. Building on this, the persistent
topological Laplacian (PTL) combines algebraic topology with
topological spaces like simplicial complexes and manifolds,
producing persistent spectral graph (PSG)29 and Hodge Lap-
lacians,30 respectively. These methods link quantum
mechanics, through zero-dimensional Hodge Laplacians, to
topological spaces, promising new analytical tools for studying
the many-body interactions with multi-atom systems. The
reader is referred to a review.31

In this work, we propose a multiscale topological learning
(MTL) framework, utilizing topological representations to reveal
the intricate relationships of multi-atom systems, focusing on
the Li clusters particularly. Drawing inspiration from algebraic
topology, we introduce the PTL method, a novel approach
designed to capture interactions inherent to multi-atom
systems from a topological standpoint. This method allows
the PTL to create a unied multiscale framework, adept at
revealing topological persistence and distilling geometric
shapes from intricate many-body interactions. As we navigate
the bridge between the mathematical structures and the multi-
atom systems, we harness the power of machine learning to
validate our approach. Through rigorous qualitative and
quantitative analyses of a diverse set of 136 287 Li cluster
structures, spanning from 4-body to complex 40-body systems,
we demonstrate the prociency of the PTL in capturing and
elucidating many-body interactions. Our ndings underscore
the topological method's capability to not only represent these
interactions but also accurately predict properties intrinsic to
multi-atom systems. This exploration, blending topological
insights with physics, holds promise as a trailblazing frame-
work, shedding light on the elaborate interactions that shape
multi-atom systems and offering a fresh perspective on their
study.

2 Results

In the realm of multi-atom systems, the intricacy of interactions
poses a formidable challenge for traditional analytical tech-
niques. To address this, we rst introduce the simplicial
complexes to represent structures, which provide a structured
topological framework to encode many-body interactions. Also,
drawing inspiration from the parallels between the Hodge
21556 | J. Mater. Chem. A, 2025, 13, 21555–21563
Laplacian in algebraic topology and the kinetic operator in
physics, we employ the PTL to facilitate a multiscale spectral
analysis of physical systems. We show that the spectra of the
PTL built from physical systems capture many-body interac-
tions and reveal multifaceted physics.

The workow of analyzing a multi-atom system using the
PTL is illustrated in Fig. 1a. Specically, the multi-atom system
used in this work is a Li cluster system. There are 136 287
energy-paired Li cluster structures involved in the experiments,
including 4-body, 5-body, 6-body, 7-body, 8-body, 9-body, 10-
body, 20-body, and 40-body systems.15 The details and statistic
information of all Li clusters are given in ESI Fig. S1†. With the
PTL approach, multidimensional system information is trans-
formed into features for the given structure. More precisely, the
0-, 1-, and 2-dimensional PTL features are generated for all the
ltration parameters from 0.1 Å to 10 Å with an interval of 0.1 Å.
Here, the upper bound of 10 Å was selected to prevent isolated
atoms, ensuring all relevant interactions are captured. The
lower bound of 0.1 Å allows for a ne-grained description of
local interactions for Li-cluster system. These multi-
dimensional features, acting as representative ngerprints of
the many-body interactions, are then channeled into machine
learning models to demonstrate their predictive power. When
the many-body interactions are present in a multi-atom system,
they subtly inuence the PTL, creating nuanced deviations in
the resulting features. As these features feed into the machine
learning model, the prediction accuracy becomes an indirect
gauge of these higher-order interactions' presence and impact.
As shown in the nal chart in Fig. 1a, the Laplacian matrices
like L0, L1, and L2 embed the multi-order interactions of the
system, representing interactions within vertices (0-simplices),
edges (1-simplices), and triangles (2-simplices), respectively.
Fig. 1b illustrates these 0, 1, and 2-simplices, which serve as
fundamental building blocks in their respective dimensions.
The quantitative results indicate that the contribution of
features from each dimension of the PTL to energy prediction
diminishes as the dimensionality increases, suggesting that
while these higher-order interactions are complex and multi-
faceted, they introduce signicant perturbations to themachine
learning model's predictions. Fig. 1c illustrates an example of
the schema for employing topological Laplacians to capture
multi-order interactions within a Li5 cluster. The cluster is rst
expanded into 0-, 1-, and 2-dimensional spaces, corresponding
to 0-, 1-, and 2-simplex topological spaces, and the associated
topological Laplacian matrices (L0, L1, and L2) are applied to
record interactions of various orders.

We perform unsupervised cluster analysis on the dataset.
The 0-, 1-, and 2-dimensional PTL features are denoted as
L0b;min

0
, L1b;min

0
, and L2b;min

0
, respectively. Here, the superscript

represents the harmonic part of the spectrum (b) and the
minimum of the non-harmonic part of the spectrum, such as
the smallest nonzero eigenvalues (min0). To investigate the
impact of higher-dimensional PTL features on the system, we
dene three feature sets: (i) only 0-dimensional features
ðL0b;min

0 Þ, (ii) both 0- and 1-dimensional features ðL01b;min
0 Þ, and

(iii) 0-, 1-, and 2-dimensional features ðL012b;min
0 Þ. Fig. 2b pres-

ents the two-dimensional t-SNE embedding of the
This journal is © The Royal Society of Chemistry 2025
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Fig. 1 Overall scheme of multiscale topological learning to enhance the accuracy of energy prediction. (a) Workflow for energy prediction in
multi-atom systems using the persistent topological Laplacian. The 20-atom Li cluster is treated as a simplicial complex, and the PTL method is
applied to capture system characteristics across different dimensions, specifically the 0th, 1st, and 2nd dimensions, represented by L0, L1, and L2,
respectively. Machine learning analysis reveals that the contribution of PTL information to energy prediction decreases with increasing
dimensionality. Representative interactions for 0th, 1st, and 2nd orders are depicted on the right. (b) Illustration of 0-simplex, 1-simplex, and 2-
simplex. (c) Demonstration of the schema for using topological Laplacians to capture the multi-order interactions within a Li5 cluster. The cluster
is first expanded into 0, 1, and 2-simplex representations, and the corresponding topological Laplacians (L0, L1, and L2) are applied to record
interactions of different orders.

Fig. 2 Persistent topological Laplacian. (a) Filtered simplicial complex along with the filtration parameter d. The filtration is considered in
dimensions 0, 1, and 2. The lightly shaded parts indicate the values of the topological invariants in the different dimensions of the structure, i.e., b0,
b1, and b3, in the varying filtration parameters. The dark lines indicate the minimum values of the non-harmonic spectral information along with
the changing filtration parameters in dimensions 0, 1, and 2. (lmin

0

0 , lmin
0

1 , and lmin
0

2 ). (b) Two-dimension t-SNE embedding of the representation on
PTL features. The colored points correspond to structures with different atomic numbers. More points of the same color clustered together,
indicating a better clustering result. (c–e) PTL analysis for three specific structures. The structures in (c and d) contain 10 atoms each, but have
binding energies of −0.757 eV per atom and −0.910 eV per atom, respectively. The structure in (e) contains 40 atoms and has richer PTL
information, and its binding energy is −1.183 eV per atom.

This journal is © The Royal Society of Chemistry 2025 J. Mater. Chem. A, 2025, 13, 21555–21563 | 21557
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representations for L0b;min
0
, L01b;min

0
, and L012b;min

0
. The colored

points in the gure represent structures with different atomic
numbers. As shown in the gure, the clustering quality of the
multi-atom system, reected in the tendency of data points of
the same color to group together, improves with the inclusion of
high-dimensional information. However, the rate of improve-
ment noticeably decreases, indicating that high-dimensional
information contributes less to structure identication
compared to low-dimensional information. A similar trend is
observed when using Principal Component Analysis (PCA),
a linear dimensionality reduction method, for visualization
with the two largest principal components, as shown in Fig. S2.†
Similarly, higher-order interactions are oen treated as pertur-
bations in many-body physics.32 In the clustering analysis, we
only look at the clustering effect of each group feature to
perform a qualitative analysis. The nal results obtained are
consistent with existing ndings in many-body physics, which
indicate that the PTL method can accurately capture the many-
body interactions of the system.

Fig. 2c–e show the three structures analyzed by the PTL
method, including two 10-particle systems (top, middle) and
one 40-particle multi-atom system (bottom). For the systems of
10 particles, the structure's topological invariants b1, b2 in
Fig. 2d contain a larger shaded area compared to Fig. 2c. It
means that as the ltration parameter increases, the Li cluster
in Fig. 2d has more 1- and 2-dimensional cavities. Note the
topological cavities here are analogous to the many-body
interactions within the system. The binding energies of
structure in Fig. 2c and d are −0.756 eV per atom and
−0.910 eV per atom, which implies that more many-body
Fig. 3 Results analysis. (a) Energy distribution of multi-atom systems con
the energy (eV per atom) of the system gradually decreases. The red line is
(b) The MAE of cross-validation for multi-atom systems with different nu
0-dimensional topological information is used. b01 means both b0 and b1 a
Comparison between MTL-based prediction results and DFT results of
learning prediction results for Li20, and Li40 structures using different top

21558 | J. Mater. Chem. A, 2025, 13, 21555–21563
interactions favor the stability of the system. As for the non-
harmonic information lmin

0

0 , lmin
0

1 , and lmin
0

2 , the lines in
Fig. 2d also enclose more area, which means that the particles
in Fig. 2d have more complex connectivity relationships.
Fig. 2e shows a 40-atom lithium cluster, which contains more
high-dimensional topological and geometric complexity (b1
and b2, lmin

0

1 and lmin
0

2 ) than aforementioned two 10-atom
lithium clusters do and has a lower binding energy of
−1.183 eV per atom. In addition, we generated topological
ngerprints of the structures using the persistent homology
method, which is equivalent to the features from the harmonic
spectra part in the PTL method, for the three structures
mentioned above, as shown in ESI Fig. S3.†

Fig. 3a demonstrates the binding energy distribution of all
136 287 Li cluster structures, from bottom to top, which are Li4
to Li10 systems, Li20 system, and Li40 system, respectively. It can
be seen that the average binding energy per atom of each type of
system gradually decreases with the increase of the number of
particles in the system, which indicates that the complex
interactions in the multi-particle system enhance the stability of
the system. The mean and median energies of all structures can
be found in ESI Fig. S1.† To better understand how different
dimensional PTL features contribute to the multi-atom system,
we rst perform a feature analysis of the PTL features. Speci-
cally, to explore the Laplacian spectral information, we extract
six key properties from each dimension's Laplacian matrix: the
multiplicity of zero eigenvalues (b), the minimum nonzero
eigenvalue (min0), the maximum, the mean, the standard
deviation of the eigenvalues, and the generalized mean graph
energy.33–35 Consequently, six values are used per Laplacian at
taining different numbers of atoms. As the number of atoms increases,
themedian energy, and the black line is themean energy (see Fig. S1†).
mbers of atoms using different topological information. b0 means only
re used. b012 means all b0, b1 and b2 are used in the prediction. (c and d)
the formation energy of Li20 and Li40. (e) The RMSE of the machine
ological features.

This journal is © The Royal Society of Chemistry 2025
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each dimension and ltration scale. Given a multiscale range
from 0.1 Å to 10 Å with a step size of 0.1 Å each dimension
contributes 600 features, resulting in a total of 1800 features
across the three considered dimensions. The distribution of
feature importance for predicting Li20 and Li40 is shown in
Fig. 3b and c. It is observed that 0-dimensional features
contribute the most to the system, followed by 1-dimensional
features, while 2-dimensional features have a certain but rela-
tively minor contribution. This trend aligns with the qualitative
analysis in Fig. 2b. Additionally, the feature importance were
extracted from gradient-boosted decision trees (GBDT) models
trained exclusively on 4- to 10-atom Li clusters, meaning that
Li20 and Li40 clusters were unseen during training. Detailed
results can be found in ESI Table S2.† Interestingly, using only
the L0 features yields the best predictive performance for Li20
and Li40, whereas models incorporating L01 and L012 perform
relatively worse. This may be due to the inclusion of additional
feature dimensions leading to overtting in the same model
setting, particularly when predicting structurally distinct
systems such as the unseen Li20 and Li40 multi-atom clusters.

To avoid the overtting issues, we further perform super-
vised learning only using the harmonic spectral features of the
PTL to explore the contribution of high-dimensional infor-
mation to energy prediction. We set up three sets of features,
i.e., b0 containing only 0-dimensional topological information,
b01 containing 0- and 1-dimensional topological information,
and b012 containing 0-, 1-, and 2-dimensional topological
information. The RMSE, MAE, and Pearson correlation coef-
cient (PCC) are used as evaluation metrics, and their deni-
tions are given in ESI Note S1.† Subsequently, for each system,
cross-validation is performed for each of these three sets of
features. The GBDT algorithm was employed as the regressor
for cross-validation, utilizing 1D PTL features as input. Addi-
tionally, PTLs can generate image-like features,36 which are
suitable for models like CNNs or Transformers that process
image-like inputs. Only one parameter set is used in all
machine learning processes, as detailed in ESI Note S1.† The
results are shown in Fig. 3d. For all types of systems, the MAE
of prediction decreases while adding higher dimensional
topological information. However, the improvement of
prediction accuracy diminishes gradually, indicating that the
higher dimensional information contributes less to the
prediction accuracy. In addition, we found that the MAE is
lower for systems with more atoms, i.e., 20-atom and 40-atom
compared to other systems. It indicates that as the number of
particles in the system increases, the system will have more
higher-order interactions within the system, and the PTL
method can capture these higher-order interactions, thus
increasing the accuracy of the model prediction. It is also
consistent with the previous analysis of the special cases in
Fig. 2c–e, indicating that as the number of particles in the
system increases, the multi-atom system will contain richer
high-order interactions. Furthermore, we trained models
separately using b1, b2, and b12. The results were worse
compared to those incorporating b0, highlighting the primary
contribution of low-dimensional information and low-order
interactions. The cross-validation results for all types of
This journal is © The Royal Society of Chemistry 2025
cluster systems are listed in Table S4.† All cross-validation
experiments were carried out ten times using different
random seeds. The nal results were reported using the
average of the ten experiments.

Furthermore, we explored the contribution of high-
dimensional structural features to the ranking power of the
multi-atom systems. The ranking power of the model can be
used to nd the lowest energy structural congurations.
Specically, we trained a machine learning model using all Li4–
Li10 data, and subsequently, used such a model to predict the
structural energy of Li20 and Li40. To compare the ranking
power, the PCC is used to evaluate the model. Fig. 3e shows the
comparison between machine learning prediction results and
DFT calculation results of the binding energy of Li20. The best-
ranking power (PCC = 0.771) is obtained by using b012, while
the ranking power for b0 and b01 are 0.508 and 0.742, respec-
tively. We also tested the performance by using b1, b2, and b12,
as listed in Table S3,† which were shown worse performances.
For b0, adding features of b1 information can improve the
prediction accuracy by 46.1%. Although b012 contains infor-
mation of 0-, 1-, and 2-dimension spaces, the prediction accu-
racy is only 4.0% better compared to b01. As shown in Fig. 3f,
similar results can also be found for Li40. The ranking power for
b0, b01, and b012 are 0.592, 0.801, and 0.817. The improvement
of b01 for b0 is 35.3%, while the improvement of b012 for b01 is
only 2.0%. By adding high-dimensional information, the
prediction accuracy of the model continues to improve, but the
added higher-dimensional information has only a smaller
contribution. Our results indicate that while high-dimensional
information enhances prediction accuracy, its contribution
gradually diminishes as dimensionality increases. Similarly, the
inuence of many-body interactions on approximation
decreases with higher-order interactions. Models trained using
only b1, b2, or b12 performed worse compared to those incor-
porating b0, further emphasizing the signicance of lower-
dimensional features. The prediction results using the
harmonic part of the Laplacian, evaluated with RMSE, MAE,
and PCC, are summarized in Table S3.† The machine learning
processes in this work were repeated 10 times and the average
results are used in the nal demonstration.

3 Discussion

In this work, we explore the intricate relationship between
many-body interactions in lithium clusters and the corre-
sponding simplicial complex structures across various dimen-
sions. This mapping allows us to introduce the combinatorial
Laplacian operator, akin to the discretized energy operator in
physics, offering a new perspective for analyzing material
structures. Through the PTL method, we generate a series of
combinatorial Laplacians, revealing harmonic and non-
harmonic spectra that encapsulate essential topological and
geometric features of the multi-atom system, such as Li cluster.

By leveraging these spectra through the PTL method, multi-
dimensional features emerge, capturing complex many-body
interactions at various scales. When integrated with machine
learning models, these PTL-based features reveal the subtleties
J. Mater. Chem. A, 2025, 13, 21555–21563 | 21559
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Fig. 4 Illustration of the interaction expansion for the three-body
system, and the simplicial complex for the three-point system. (a) The
full interaction of the three-body system represents by the density
operator r123

(3), which can be composed of singlets (r1
(1), r2

(1), and
r3

(1)), doublets (r1
(1)c23

(2), r2
(1)c13

(2), and r3
(1)c12

(2)), and triplet (c123
(3)).

Each colored sphere corresponds to the one particle operator and the
colored circles/ellipses to the correlations. (b) The simplicial complex,
K3, is the combination of 0-simplices (hv1i, hv2i, and hv3i), 1-simplices
(hv1, v2i, hv2, v3i, and hv3, v1i), and the 2-simplex (hv1, v2, v3i). The
number in the sphere corresponds to the subscript in the operator/
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of higher-order interactions, reected as perturbations in the
model's predictive power. In this study, 136 287 Li cluster
structures, ranging from 5-atom to 40-atom systems, were
analyzed to validate the proposed PTL-based topological
learning scheme. The results of clustering experiments
demonstrated that PTL-based features provide strong clustering
performance, with high-dimensional information contributing
positively to clustering, though its effect diminishes with
increasing dimensionality.

Further validation was conducted by categorizing the data
into nine groups based on the number of atoms in the system
and performing cross-validation. The cross-validation results
reaffirmed that while high-dimensional features enhance
prediction accuracy, their contribution diminishes with
increasing dimensionality. For larger systems with complex
many-body interactions, such as Li20 and Li40, the PTL model
effectively ranked these systems by energy, demonstrating that
lower-dimensional features are more inuential in improving
prediction accuracy. Additionally, a comparison was made
between the Li40 prediction results and those obtained from
a previous persistent homology-based method, which was used
to identify stable congurations of Li40.15 The latter method
reported a PCC of 0.95, while the proposed method in this study
achieved a PCC of 0.968 (without any parameter tuning, as
shown in Table S2†).

The proposed multiscale topological learning scheme excels
at capturing interactions across multiple orders in Li clusters,
approximating the system's intrinsic properties with remark-
able accuracy. Experimental results using Li clusters underscore
the alignment of this approach with traditional many-body
theory, reinforcing its robustness and precision in predicting
system energy. Beyond lithium clustering studies, this frame-
work demonstrates signicant potential across various elds. In
materials science, PTLs can be used to encode materials into
a topological space, enabling material discovery within a more
manageable, smaller topological space. This not only stream-
lines the design process but also accelerates the discovery of
new materials, enhancing the efficiency of material develop-
ment. In catalysis, the PTL method effectively models and
predicts the unique congurations formed between catalytic
surfaces and catalysts. By accurately capturing these congu-
rations, it accelerates the design and optimization of catalytic
materials, which is essential for advancing catalytic processes
and developing novel catalytic systems. As for the molecular
and biological sciences, PTLs can be applied to model molec-
ular systems and interactions within complex environments,
such as drug–drug complexes, protein–ligand interactions, and
protein–protein systems. Traditional molecular dynamics
simulations oen face challenges when dealing with large
systems, but PTL serves as a promising computational tool for
extracting higher-order information. This approach provides
more accurate predictions of molecular interactions, offering
deeper insights into the complex dynamics of biological
systems. As such, PTL holds considerable promise for applica-
tions in drug discovery, protein engineering, and
bioinformatics.
21560 | J. Mater. Chem. A, 2025, 13, 21555–21563
4 Methods

In this section, we introduce some key principles from classical
many-body theories and algebraic topology. We will briey
discuss foundational concepts including simplices, simplicial
complexes, and the boundary operator, and then delve deeper
into homology, persistent homology, and the persistent topo-
logical Laplacian.

4.1 Reduced density operator and higher-order interactions

In many-body systems, the reduced density operator (RDO)
helps capture interactions between a subset of particles without
needing to consider the entire system. For an N-particle system,
the n-particle RDO, r(n), provides a view of the interactions
among n particles while marginalizing out the remaining N − n
particles.37 A key insight from RDOs is the ability to break down
complex, higher-order interactions into contributions from
lower-order ones. As an example in Fig. 4a, consider a three-
particle system described by r123

(3), which can be decomposed
as: r123

(3) = r1
(1)r2

(1)r3
(1) + r1

(1)c23
(2) + r2

(1)c13
(2) + r3

(1)c12
(2) +

c123
(3), where the correlation function c(n), n = 1, 2, 3, measures

the degree of correlation among n particles. This hierarchical
representation mirrors the way simplicial complexes in
topology use simplices of different dimensions to represent
interactions within a structure. Lower-order interactions, like
pairwise correlations, are oen dominant and easier to
compute, while higher-order terms (three or more particles)
capture more nuanced relationships and can be treated as
perturbative corrections.4,32 This hierarchical decomposition
vertex.

This journal is © The Royal Society of Chemistry 2025
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allows us to focus on the essential structure of interactions
while systematically including higher-order effects.
4.2 Simplex and simplicial complex

Topologically, a simplex is a fundamental building block that
generalizes points, line segments, triangles, tetrahedron, and
higher-dimensional analogs (Fig. 1b and S4a†). A k-simplex is
the convex hull of k + 1 affinely positioned vertices, denoted as
sk = hv0, v1, ., vki. A simplicial complex, denoted as K, is
formed by assembling simplices such that every face of
a simplex is also in the complex, encapsulating their spatial
relationships. The Vietoris–Rips complex connects points
within a specied distance, evolving to reveal topological
features at different scales (Fig. S4d†). Within such complexes,
cycles (e.g., 0-cycle, 1-cycle, 2-cycle) highlight topological attri-
butes like gaps or cavities (Fig. S4c†). Simplicial complexes are
versatile tools for depicting and analyzing complex systems. In
multi-atom systems, each simplex represents interacting parti-
cles, with its dimensionality indicating the number of bodies
involved. For instance, Fig. 4b shows a simplicial complex of a 3-
body system, K3, containing three 0-simplices (hv1i, hv2i, hv3i),
three 1-simplices (hv1, v2i, hv2, v3i, hv3, v1i), and one 2-simplex
(hv1, v2, v3i). This representation shows a one-to-one corre-
spondence between the reduced density operator r and simplex
s, providing a geometrically and topologically insightful
framework to understand multi-atom systems.
4.3 Boundary operator and chain complex

With the foundations of simplices and simplicial complexes
established, we turn to the hierarchical and topological aspects.
k-chains are formal combinations of k-simplices, which can be
algebraically combined to form chain groups denoted as Ck(K).
Here, these chains are considered under modulo two opera-
tions, Z2. The boundary operator vk: Ck(K) / Ck−1(K) maps a k-
simplex to its (k − 1)-dimensional faces. For example, applying
vk to a 2-simplex (triangle) yields its three 1-simplices (edges).
Fig. S4b† illustrates how vk operates from dimension 0 to 3. The
matrix representation of vk is denoted Bk, as shown in ESI
Fig. S1.†

A chain complex is a sequence of chain groups connected by
boundary operators:

/
�!vkþ2

Ckþ1 �!vkþ1
Ck !vk Ck�1 �!vk�1 / (1)

This structure ensures continuity, with a key property:
applying a boundary operator twice yields zero, i.e., vkvk+1 = 0.
The adjoint boundary operator v*k : Ck�1ðKÞ/CkðKÞ acts in the
reverse direction, increasing the dimension of simplices. Its
matrix representation, Bk

T , is the transpose of Bk.
4.4 Laplacian and spectrum analysis

The combinatorial Laplacian is a key tool in discrete geometry
and algebraic topology, extending the concept of the graph
Laplacian to higher dimensions. It provides insights into the
structure of simplicial complexes, similar to how the graph
This journal is © The Royal Society of Chemistry 2025
Laplacian reveals connectivity in graphs. For a graph viewed as
a 1-dimensional complex, the Laplacian matrix is L ¼ B1B1

T ,
where B1 is the boundary matrix. This generalizes to higher
dimensions with the Laplacian dened as:

L k ¼ Bkþ1Bkþ1
T þBk

TBk (2)

whereBk represents the boundary operator for k-simplices. The
termBk

TBk accounts for connectivity among k-simplices, while
Bkþ1Bkþ1

T captures interactions involving (k + 1)-simplices.
In chain complexes, the combinatorial Laplacian dk is

dened as:

dk ¼ vkþ1v
*
kþ1 þ v*kvk (3)

where vk and v*k are boundary operators and their adjoints.
The topological Laplacian extends the graph Laplacian to

higher-dimensional simplicial complexes, with eigenvalues
revealing topological and geometric properties. It is positive
semidenite, meaning all eigenvalues are non-negative. Zero
eigenvalues correspond to topological invariants such as Betti
numbers (bk), which count independent components,38 cycles,
and cavities. The smallest non-zero eigenvalue, or spectral gap
(lmin

k ), reects the geometric connectivity of the complex. This
analysis uses zero multiplicities and the smallest positive
eigenvalues to elucidate topological and geometric features.
4.5 Persistent topological Laplacians

Persistent topological Laplacians, or multiscale topological
Laplacians, arise from research in both differential manifolds30

and discrete point clouds.29 Central to persistent topological
Laplacians29,34,39,40 and persistent homology41,42 is the concept of
ltration, which allows for multiscale analysis. Filtration is
parametrized by a scale d, adapting to the data structure under
study. For instance, in a distance set, edges are added between
vertices if their distance is below a cutoff value. Increasing this
cutoff generates a sequence of nested graphs, where each graph
at a lower cutoff is a subset of those at higher cutoffs (Fig. 2a).
Similar nested simplicial complexes can be created using the
Vietoris–Rips, Čech, and alpha complexes. This study focuses
on the Vietoris–Rips complex.

Mathematically, these nested simplicial complexes are rep-
resented as follows:

B 4 Kd0
4 Kd1

4 / 4 Kdn
= K (4)

Here, for any two values di < dj, the complex Kdi
is a subset of Kdj

.
A chain complex associated with a specic ltration step
consists of a sequence of Abelian groups (or modules) con-
nected by boundary homomorphisms, which can be repre-
sented as follows:

//Ckþ1ðKdi;GÞ ��!
vkþ1

di

CkðKdi;GÞ ��!vkþ1
di

Ck�1ðKdi;GÞ// (5)

where Ck(Kdi; G) denotes the chain group in the k-dimensional
space at the specic ltration step di. Dene Ck+1

a,b as the set
containing elements x in Ck+1

b such that the boundary operator
vk+1

b applied to x yields an element in Ck
a. Formally, this is

expressed as Ck+1
a,b = {x ˛ Ck+1

brvk+1
bx ˛ Ck

a}.
J. Mater. Chem. A, 2025, 13, 21555–21563 | 21561

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5ta02687c


Journal of Materials Chemistry A Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

5 
 2

02
5.

 D
ow

nl
oa

de
d 

on
 2

6/
07

/2
5 

13
:0

8:
18

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
The persistent boundary operator, denoted as vk+1
a,b, maps

from Ck+1
a,b to Ck

a and is dened by the action vk+1
a,bx = vk+1

bx
for any x in Ck+1

a,b. The framework can be expressed by:

(6)

The k-th persistent topological Laplacian is dened as

dk
a,b = vk+1

a,b + (vk+1
a,b)* + (vk

a)* + vk
a (7)

Its harmonic part, kerdk
a,b, corresponds to the (a, b)-persistent

homology Hk
a,b = im(Hk(C*

a) / Hk(C*
b)),43 encoding persistent

homology information. Spectral analysis of the Laplacian
matrices for each vk and vk+1 provides insights into topological
and geometric attributes at different scales. Fig. 2a shows
persistent topological Laplacian analysis for a system of six
particles, with varying b values and spectral data indicating
changes in connectivity and geometric structure.

Code availability

The source code for the persistent topological Laplacian anal-
ysis, implemented in Python, is publicly available in the GitHub
repository at https://github.com/ChenDdon/LiCluster.

Data availability

The cluster structures and the energy data are publicly available
at https://github.com/ChenDdon/LiCluster.

Author contributions

Dong Chen designed the project, performed computational
studies, analyzed data, wrote the rst dra, and revised the
manuscript. Rui Wang draed part of the method. Guo-Wei Wei
conceptualized and supervised the project, revised the manu-
script, and acquired funding. Feng Pan supervised the project
and acquired funding.

Conflicts of interest

The authors declare no competing interests.

Acknowledgements

The research was partially supported by the National Natural
Science Foundation of China (Grant No. 92472206), the Major
Science and Technology Infrastructure Project of Material
Genome Big-science Facilities Platform supported by Municipal
21562 | J. Mater. Chem. A, 2025, 13, 21555–21563
Development and Reform Commission of Shenzhen, Interna-
tional joint Research Center for Electric Vehicle Power Battery
and Materials (No. 2015B01015), Guangdong Key Laboratory of
Design and calculation of New Energy Materials (No.
2017B030301013), Shenzhen Key Laboratory of New Energy
Resources Genome Preparation and Testing (No.
ZDSYS201707281026184). The work of Chen and Wei was sup-
ported in partial by NIH grants R01AI164266 and
R35GM148196, NSF grants DMS-2052983 and IIS-1900473, MSU
Research Foundation, and Bristol-Myers Squibb 65109. R. W. is
grateful for the support from the Simons Foundation and the
Simons Center for Computational Physical Chemistry (SCCPC)
at New York University.

References

1 F. H. Stillinger, Exponential multiplicity of inherent
structures, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat.
Interdiscip. Top., 1999, 59(1), 48.

2 B. Scrosati and J. Garche, Lithium batteries: Status,
prospects and future, J. Power Sources, 2010, 195(9), 2419–
2430.

3 R. G. Parr, S. R. Gadre and L. J. Bartolotti, Local density
functional theory of atoms and molecules, Proc. Natl. Acad.
Sci. U. S. A., 1979, 76(6), 2522–2526.

4 G. W. Wei and R. F. Snider, Discrete basis representation of
ursell operators, Phys. Rev. E: Stat. Phys., Plasmas, Fluids,
Relat. Interdiscip. Top., 1996, 54(3), 2414.

5 H. D. Ursell, The evaluation of gibbs' phase-integral for
imperfect gases, Math. Proc. Cambridge Philos. Soc., 1927,
23, 685–697.

6 N. N. Bogoliubov, Problems of dynamical theory in statistical
physics (gostekhisdat, moscow, 1946)[in russian]; nn
bogoliubov, J. Phys., 1946, 10, 256.

7 A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones,
A. N. Gomez, Ł. Kaiser and I. Polosukhin, Attention is all
you need, Advances in Neural Information Processing
Systems, 2017, vol. 30.

8 L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. Wainwright,
P. Mishkin, C. Zhang, S. Agarwal, K. Slama, A. Ray, et al.,
Training language models to follow instructions with
human feedback, Adv. Neural Inf. Process. Syst., 2022, 35,
27730–27744.

9 P. Reiser, M. Neubert, A. Eberhard, L. Torresi, C. Zhou,
C. Shao, H. Metni, C. van Hoesel, H. Schopmans,
T. Sommer, et al., Graph neural networks for materials
science and chemistry, Commun. Mater., 2022, 3(1), 93.

10 J. Wei, X. Chu, X.-Y. Sun, K. Xu, H.-X. Deng, J. Chen, Z. Wei
and M. Lei, Machine learning in materials science, InfoMat,
2019, 1(3), 338–358.

11 J. F. Rodrigues, L. Florea, M. C. F. de Oliveira, D. Diamond
and O. N. Oliveira, Big data and machine learning for
materials science, Discover Mater., 2021, 1, 1–27.

12 C. Sutton, M. Boley, L. M. Ghiringhelli, M. Rupp, J. Vreeken
and M. Scheffler, Identifying domains of applicability of
machine learning models for materials science, Nat.
Commun., 2020, 11(1), 4428.
This journal is © The Royal Society of Chemistry 2025

https://github.com/ChenDdon/LiCluster
https://github.com/ChenDdon/LiCluster
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5ta02687c


Paper Journal of Materials Chemistry A

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

5 
 2

02
5.

 D
ow

nl
oa

de
d 

on
 2

6/
07

/2
5 

13
:0

8:
18

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
13 Y. Zhang and L. Chen, A strategy to apply machine learning
to small datasets in materials science, npj Comput. Mater.,
2018, 4(1), 25.

14 J. Cai, X. Chu, K. Xu, H. Li and J. Wei, Machine learning-
driven new material discovery, Nanoscale Adv., 2020, 2(8),
3115–3130.

15 X. Chen, D. Chen, M. Weng, Y. Jiang, G.-W. Wei and F. Pan,
Topology-based machine learning strategy for cluster
structure prediction, J. Phys. Chem. Lett., 2020, 11(11),
4392–4401.

16 X. Zhong, B. Gallagher, S. Liu, B. Kailkhura, A. Hiszpanski
and T. Y.-J. Han, Explainable machine learning in
materials science, npj Comput. Mater., 2022, 8(1), 204.

17 M. Faraji Niri, C. Reynolds, L. A. A. Román Ramı́rez,
E. Kendrick and J. Marco, Systematic analysis of the
impact of slurry coating on manufacture of li-ion battery
electrodes via explainable machine learning, Energy Storage
Mater., 2022, 51, 223–238.

18 H. S. Edwin and E. Henry Spanier, Algebraic Topology,
Springer Science & Business Media, 1989.

19 D. Chen, M.-Z. Zhang, H.-B. Chen, Z.-W. Xie, W. Guo-Wei
and F. Pan, Persistent homology for the quantitative
analysis of the structure and stability of carboranes, Chin.
J. Struct. Chem., 2020, 39(6), 999–1008.

20 G. Carlsson, Topology and data, Bull. Am. Math. Soc., 2009,
46(2), 255–308.

21 T. Jacob, C. P. Micucci, J. H. Hymel, V. Maroulas and
K. D. Vogiatzis, Representation of molecular structures
with persistent homology for machine learning
applications in chemistry, Nat. Commun., 2020, 11(1), 3230.

22 Y. Lee, S. D. Barthel, P. Dłotko, S. Mohamad Moosavi,
K. Hess and B. Smit, Quantifying similarity of pore-
geometry in nanoporous materials, Nat. Commun., 2017,
8(1), 1–8.

23 Y. Hiraoka, T. Nakamura, A. Hirata, E. G. Escolar, K. Matsue
and Y. Nishiura, Hierarchical structures of amorphous
solids characterized by persistent homology, Proc. Natl.
Acad. Sci. U. S. A., 2016, 113(26), 7035–7040.

24 Y. Lee, S. D. Barthel, P. Dłotko, S. M. Moosavi, K. Hess and
B. Smit, High-throughput screening approach for
nanoporous materials genome using topological data
analysis: application to zeolites, J. Chem. Theor. Comput.,
2018, 14(8), 4427–4437.

25 D. V. Anand, Q. Xu, J. J. Wee, K. Xia and T. C. Sum,
Topological feature engineering for machine learning
based halide perovskite materials design, npj Comput.
Mater., 2022, 8(1), 203.

26 C.-S. Hu, R. Mayengbam, K. Xia and T. Chien Sum, Quotient
complex (qc)-based machine learning for 2d hybrid
perovskite design, J. Chem. Inf. Model., 2025, 65(2), 660–671.
This journal is © The Royal Society of Chemistry 2025
27 D. D. Nguyen and G.-W. Wei, DG-GL: Differential geometry-
based geometric learning of molecular datasets, Int. J.
Numer. Methods Biomed. Eng., 2019, 35(3), e3179.

28 D. D. Nguyen and G.-W. Wei, AGL-score: algebraic graph
learning score for protein–ligand binding scoring, ranking,
docking, and screening, J. Chem. Inf. Model., 2019, 59(7),
3291–3304.

29 R. Wang, D. D. Nguyen and G.-W. Wei, Persistent spectral
graph, Int. J. Numer. Methods Biomed. Eng., 2020, 36(9),
e3376.

30 J. Chen, R. Zhao, Y. Tong and G.-W. Wei, Evolutionary de
rham-hodge method, Dyn. Contin. Discret. Impuls. Syst. Ser.
B, 2021, 26(7), 3785.

31 W. Xiaoqi and G.-W. Wei, Persistent topological Laplacians–
a Survey, Found. Data Sci., 2025, 13(2), 208.

32 R. L. Liboff and G. E. Perona, Compatibility requirements in
bbgky expansion, J. Math. Phys., 1967, 8(10), 2001–2012.

33 J. J. Wee and K. Xia, Persistent spectral based ensemble
learning (PerSpect-EL) for protein–protein binding affinity
prediction, Briengs Bioinf., 2022, 23(2), bbac024.

34 Z. Meng and K. Xia, Persistent spectral–based machine
learning (PerSpect ML) for protein-ligand binding affinity
prediction, Sci. Adv., 2021, 7(19), eabc5329.

35 X. Liu, H. Feng, J. Wu and K. Xia, Persistent spectral
hypergraph based machine learning (PSH-ML) for protein-
ligand binding affinity prediction, Briengs Bioinf., 2021,
22(5), bbab127.

36 P. Jiang, Y. Chi, X.-S. Li, Z. Meng, X. Liu, X.-S. Hua and K. Xia,
Molecular persistent spectral image (mol-psi) representation
for machine learning models in drug design, Briengs
Bioinf., 2022, 23(1), bbab527.

37 S. Alavi, G. W. Wei and R. F. Snider, Chain relations of
reduced distribution functions and their associated
correlation functions, J. Chem. Phys., 1998, 108(2), 706–714.

38 B. Eckmann, Harmonische funktionen und
randwertaufgaben in einem komplex, Comment. Math.
Helvetici, 1944, 17(1), 240–255.

39 D. Chen, J. Liu, J. Wu and G.-W. Wei, Persistent
hyperdigraph homology and persistent hyperdigraph
Laplacians, Foundations of Data Science, 2023, 5(4), 558–588.

40 F. Mémoli, Z. Wan and Y. Wang, Persistent laplacians:
Properties, algorithms and implications, SIAM J. Math.
Data Sci., 2022, 4(2), 858–884.

41 H. Edelsbrunner, D. Letscher, and A. Zomorodian,
Topological persistence and simplication, in Proceedings
41st Annual Symposium on Foundations of Computer Science,
IEEE, 2000, pp. 454–463.

42 A. Zomorodian and G. Carlsson, Computing persistent
homology, Discrete Comput. Geom., 2005, 33(2), 249–274.

43 J. Liu, J. Li and J. Wu, The algebraic stability for persistent
laplacians, Homol. Homotopy Appl., 2024, 26(2), 297–323.
J. Mater. Chem. A, 2025, 13, 21555–21563 | 21563

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5ta02687c

	Enhancing energy predictions in multi-atom systems with multiscale topological learningElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d5ta02687c
	Enhancing energy predictions in multi-atom systems with multiscale topological learningElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d5ta02687c
	Enhancing energy predictions in multi-atom systems with multiscale topological learningElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d5ta02687c
	Enhancing energy predictions in multi-atom systems with multiscale topological learningElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d5ta02687c
	Enhancing energy predictions in multi-atom systems with multiscale topological learningElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d5ta02687c
	Enhancing energy predictions in multi-atom systems with multiscale topological learningElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d5ta02687c
	Enhancing energy predictions in multi-atom systems with multiscale topological learningElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d5ta02687c
	Enhancing energy predictions in multi-atom systems with multiscale topological learningElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d5ta02687c
	Enhancing energy predictions in multi-atom systems with multiscale topological learningElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d5ta02687c
	Enhancing energy predictions in multi-atom systems with multiscale topological learningElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d5ta02687c

	Enhancing energy predictions in multi-atom systems with multiscale topological learningElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d5ta02687c
	Enhancing energy predictions in multi-atom systems with multiscale topological learningElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d5ta02687c
	Enhancing energy predictions in multi-atom systems with multiscale topological learningElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d5ta02687c
	Enhancing energy predictions in multi-atom systems with multiscale topological learningElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d5ta02687c
	Enhancing energy predictions in multi-atom systems with multiscale topological learningElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d5ta02687c


