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Recycled electrode-based lithium-ion capacitors:
an efficient route for transforming LIB waste into
high-performance energy storage devices

Subhajit Bhowmik, Tausif Ahamad Ansari, Madhushri Bhar and Surendra K. Martha (2 *

The rapid proliferation of lithium-ion batteries (LIBs) has amplified concerns, with waste levels predicted to
reach 1.1 million tons by 2030. Current recycling efforts predominantly focus on either recovering critical
metals such as lithium, nickel, and copper or the direct regeneration of electrode materials. However,
a gap exists in fully utilizing these materials to create high-value products while recovering only metals.
Besides, direct regeneration involves challenges due to impurities, material degradation, complex
separation techniques, and difficulties restoring the original performances. Therefore, this study explores
innovative upcycling strategies to efficiently repurpose cathode and anode materials from spent LIBs into
lithium-ion capacitors (LICs) through a simplified and effective approach. Herein, mixed cobalt oxide
(mCO-R), generated from the spent LiCoO, and activated graphene oxide (AGO-R), developed from the
spent graphite, is utilized as an anode and cathode material for LICs, respectively, after coating onto
a carbon fiber (CF) mat. Switching from a Cu current collector to a carbon fiber backbone is crucial in
boosting Li-ion storage, accommodating volume changes in the internal void spaces, and providing
mechanical stability. The resulting LIC delivers an energy density and power maxima of 206 Wh kg™t and
7560 W kg™, respectively, rendering 75% retention after prolonged durability of 10 000 cycles. Thus, the
approach not only supports a circular economy offering sustainable solutions to mitigate LIB waste but
also contributes to the rising demand for renewable energy storage, showcasing the value derived from
end-of-life LIBs.

The rapid growth of lithium-ion batteries (LIBs) has led to mounting environmental concerns from spent cells. This work advances sustainability by innovatively

repurposing waste LIB materials— LiCoO, and graphite—into high-performance lithium-ion capacitors (LICs), thus addressing both energy storage needs and
electronic waste management. By eliminating metallic current collectors in favor of a 3D carbon fiber framework, the design reduces material intensity and

enhances device performance. This circular approach supports UN SDG 7 (affordable and clean energy) by improving access to high-efficiency storage, SDG 12
(responsible consumption and production) through materials reuse, and SDG 13 (climate action) by lowering emissions associated with raw material extraction

and battery waste disposal. The work exemplifies sustainable innovation for a cleaner energy future.

1 Introduction

valuable products is another strategy to solve serious environ-
mental problems and relieve the scarcity of metals.*™ In

The rapid adoption of lithium-ion batteries (LIBs) over the last
two decades has led to significant growth in their versatile
applications. However, with an average lifespan of 3 to 5 years,*
the disposal of these batteries is a growing concern. It is esti-
mated that global LIB waste may exceed 460 000 tons by 2025,>
with projections that it will reach nearly 1.2 million tons by
2030.® Therefore, LIB recycling has primarily concentrated on
recovering essential metal components such as lithium, copper,
aluminum, manganese, and nickel, or recycling them into other
valuable materials.*® Otherwise, converting metals into
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another strategy, the direct regeneration of electrode materials
is attempted.’** There are many works reported on recycling
spent graphite or the modification of spent graphite materials
for a second life in LIBs.®* Moreover, researchers have also
attempted to find suitable methods to recycle all the compo-
nents of spent LIBs."”** However, direct regeneration faces
many challenges, such as impurity contamination, material
deterioration, intricate separation processes, and difficulties in
fully restoring the original performance. Therefore, upcycling
can offer an alternative approach to repurposing spent electrode
materials into high-value applications through efficient and
sustainable strategies such as Li-S batteries,” dual carbon
batteries,* electrocatalysis,* etc.
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Meanwhile, with the heightened demand for energy-power-
balanced renewable energy systems, the research has focused
on lithium-ion capacitors (LICs) technology combining high
energy density, fast charge/discharge rates, and long cycle
life.>*” A typical LIC consists of a LIB battery-type anode, which
can be categorized into intercalation, conversion, and alloy
type.”®*3° In contrast, the cathode is often made of high surface
area activated carbon, which stores charges through the
adsorption-desorption of ions on its surface. This non-faradaic
charge-storage process in the cathode is pivotal for achieving
rapid power delivery for LICs.*'~** However, the different charge
storage mechanisms in cathode and anode materials create
a kinetic and capacitive mismatch and limit the broader
commercial adoption of LICs. Several strategies for the anode,
such as controlling the electrode morphology,**** introducing
carbon coating,***” and doping with other elements,***> have
been developed in the literature to overcome the challenges by
improving conductivity and cycling stability. In contrast, a high
specific surface area with an appropriate pore-size distribu-
tion**** and the introduction of beneficial functional groups***¢
were investigated for the cathode part.

The present study investigates the development of an LIC
device utilizing the spent LIB components, focusing on material
upcycling and optimizing performance, as follows: (1) inte-
grating both recovered materials into a carbon fiber mat-
supported LIC device demonstrates a sustainable, binder-free,
and flexible architecture, which has not been reported in our
prior work. (2) Direct calcination of the LCO + graphite black
mass (without prior separation) under optimized conditions to
generate a mixed cobalt oxide (mCO-R) phase with improved
structural features and electrochemical properties suitable for
anode application. (3) Tailored KOH activation and thermal
treatment of the recovered graphite to obtain activated gra-
phene oxide (AGO-R) with significantly controlled porosity
compared to previous protocols.

Herein, the graphite anode of spent LIBs is transformed into
activated graphene oxide (AGO-R) to act as a cathode for the
LICs. The generated AGO-R can have the following advantages:
(i) excellent electrical conductivity due to the restoration of sp*
carbon domains, (ii) provides abundant active sites for ion
adsorption, (iii) reduces the dependency on pristine graphene
and minimizes waste. This environmentally friendly and cost-
effective approach makes it suitable for sustainable energy
storage applications. On the other hand, the LiCoO, cathode of
spent LIBs is converted into a mixed cobalt oxide and acts as an
anode for LICs. Utilizing recycled LCO reduces waste and
promotes the circular economy by reusing cobalt, a critical and
expensive raw material. Mixed cobalt oxides typically exhibit
high lithium storage capacity and enhanced pseudocapacitive
properties. Mixed cobalt oxide can exhibit porous structures
that allow efficient ion transport and good electrical conduc-
tivity, strengthening the power capability of LICs.

Furthermore, the cathode and anode materials are coated on
a carbon fiber mat, which mainly acts as a current collector and
contributes some capacity. This architecture shows a uniform
distribution of active materials, accommodates
changes, and allows efficient electrolyte percolation in the

volume
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internal void space, resulting in good rate capability and cycle
life. Moreover, it is more environmentally friendly compared to
metals like copper and aluminum. Thus, this configuration
fulfills the design of sustainable, flexible, and energy-power-
balanced LIC devices.

2 Experimental details
2.1 Extraction of black mass from spent LIBs

The black mass containing LCO-type cathode and graphite
anode mixture recovered from spent LIBs. 18 650-type cylin-
drical cells from discarded battery packs are discharged below
2.0 Vin the brine solution. The cells were dismantled. The black
mass was recovered by a mechanical separation process that
involves crushing and multiple stages of sieving based on
different mass fractions and density separation techniques.

2.2 Synthesis of cobalt oxide (mCO-R)

The black mass mixtures of LCO and graphite material were
subjected to direct calcination at 850 °C for 12 hours in an air
atmosphere. Spent LCO-type cathodes primarily consist of
a lithium-deficient LiCoO, phase and a converted spinel Co;0,
phase. During the high-temperature calcination process, the
carbon from the anode aids in the carbothermal reduction of
LiCo0O,, producing Coz;O, as the main product and CoO,
metallic cobalt, and Li,CO; as byproducts. This process likely
results in Co;0, as the predominant product and CoO, metallic
Co, and Li,CO; as secondary products.

2.3 Spent graphite to activated graphene oxide (AGO-R)

Graphite was mechanically separated from the copper current
collector. The separated graphite was washed with water and
calcined at 750 °C under an inert atmosphere to remove all
organic impurities (hereafter, the calcined graphite is termed
recovered graphite, RG). One portion of this RG was then con-
verted to graphene oxide (GO-R) through a modified Hummers'
method.

For AGO-R synthesis, GO-R was impregnated with KOH in
a1:6ratio at 130 °C for 24 h. The dried mass was then calcined
in an inert atmosphere at 800 °C to impart efficient porosity.

2.4 Physical characterization

The structure and phase are characterized by using a powder X-
ray diffractometer (Empyrean, Panalytical) with Cu Ko (1.54 A)
as a radiation source, operated at a voltage of 40 kV and current
of 30 mA, in the 26 angle range of 10° to 70°. The surface
morphology of the materials is recognized by scanning electron
microscopy SEM (FESEM, JEOL-JEM 2011 instrument, Japan). X-
ray photoelectron spectroscopy (XPS) (Axis Supra Kratos
Analytical Pvt. Ltd) analyzes the surface functional groups or
oxidation states of the constituent elements. The XPS data are
deconvoluted into Gaussian functions after calibrating the data
concerning the main C 1s peak at 284.6 eV. The fitting and
analysis are done using OriginPro 9.0 software. A N, adsorp-
tion-desorption study is followed to estimate the BET surface
area and pore size distribution of the composite material.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Attenuated total reflection-infrared (ATR-IR) spectra are recor-
ded from a Bruker Tensor 37 spectrophotometer.

2.5 Electrode preparation and cell assembly

The electrode preparation procedure typically involves several
steps, such as slurry mixing, coating, calendaring, and drying.
At first, the desired number of active materials, conductive
additives (Super P C65, TIMCAL Ltd, Switzerland), and PVDF
binder (Kureha, KF polymer # 1700) in 80:10:10 ratios are
weighed accurately. They are mixed and dispersed thoroughly
in NMP solvent (Sigma-Aldrich) to make a homogeneous and
consistent viscous slurry. Then, active materials are coated on
current collectors (carbon fiber), which are dried at 80 °C
overnight in a vacuum oven, followed by hot calendaring and
punching into 10 mm circular discs. The loading of the active

mass is maintained at ~2.2 & 0.3 mg cm ™.

2.6 Electrochemical characterization

The electrochemical characterization of cathode and anode
half-cells was conducted using a two-electrode system, with
lithium metal serving as both the reference and counter elec-
trode. CR2032 coin-type cells were assembled in an argon-filled
glove box (MBraun, Germany), where oxygen and moisture
levels were maintained below 0.1 ppm. During assembly, a PP/
PE/PP trilayer separator pre-soaked in 1 M LiPF, dissolved in
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EC:DEC (1:1) electrolyte was placed between the electrodes.
Galvanostatic ~ charge-discharge (GCD) measurements,
including cycling and rate capability tests, were performed
using Biologic instruments BCS 805 system (France). The GCD
cycling and C-rate performances are carried out in the voltage
range of 0.01 to 3 V for the mCO electrode and 1.5 to 4.0 V for
the AGO-R cathode. C-rate study involves different current
densities of 0.05, 0.1, 0.2, 0.5, 1, 2, and 5 A g~ ". Cyclic voltam-
metry (CV) and Electrochemical Impedance Spectroscopy (EIS)
are studied in the Solartron (Oak Ridge, USA) 1470E multi-
channel potentiostat system coupled with a 1455A frequency
response analyzer. During EIS measurement, the frequency
range is maintained between 1 MHz and 10 mHz with a voltage
perturbation of 10 mV.

3 Results and data analysis
3.1 Physicochemical and morphological characteristics

3.1.1 Activated graphene oxide - partially in-plane ordered
amorphous, defective structure with balanced micro-meso
porosity and fragmented graphene sheets. The Phase and
structural characterizations of AGO-R are carried out and shown
in Fig. 1. The XRD pattern (Fig. 1a) shows two broad peaks at 26
= 22.23 and 43.83°, indicating the amorphous nature of the
AGO-R materials. A comparatively more intense peak than other
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(a) XRD diffractometer, (b) Raman spectra, (c) N>-adsorption—desorption isotherm, (d) SEM images of AGO-R materials.
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activated carbon at 26 = 43.83° suggests an in-plane nature,
signifying an improved electronic conductivity of the present
activated carbon (AGO-R). The amorphous and conductive
nature of AGO-R materials is beneficial for high-rate cathodes
for LICs.

The presence of the D and G bands in Raman spectra
(Fig. 1b) indicates the sp>-bonded carbon atoms. The calculated
Ip/Ig value is 1.5 (considering the integral area under the peak),
suggesting a slightly greater degree of disorderness. The higher
disorderness in the carbon structure aids in more adsorption
capacity. The N, adsorption-desorption study (Fig. 1c) revealed
the presence of surface area and pore structure in the materials.
The estimated surface area is 857 m> g™, corresponding to the
type I and IV isotherm according to the IUPAC nomenclature.
The pore size distribution is plotted in Fig. S1, showing that the
average pore size is 3.1 nm, with ample amount distribution in
the microporous region, indicating the mixture of meso and
micropores. This combined feature can facilitate ample
accommodations and smooth transportation of more ions. The
SEM image exposes the surface morphology of AGO-R. The SEM
image (Fig. 1d) reveals a porous and fragmented graphene
nanosheet structure. This indicates the activation process that
leads to forming a structure conducive to improved ion
adsorption. Furthermore, the TEM images (SI Fig. S2a) reveal
irregularly shaped carbon particles with disordered domains.
High-resolution TEM (HRTEM) images (Fig. S2b) display short-
range graphitic layers, turbostratically arranged, indicating
partial ordering with a lack of long-range crystallinity. These
structural characteristics are typical of activated carbon and are
beneficial for improved ion transport and surface accessibility
for EDLC-type charge storage phenomena during the function
of LICs.

View Article Online

Paper

3.1.2 Mixed cobalt oxide composites — Coz;0, and CoO as
key active materials, and metallic Co improves electronic
conductivity. On the other hand, the required physical charac-
terizations of the mCO-R are studied and shown in the SI file.
The detailed characterizations of mCO-R have already been di-
scussed in our previous communications.”” The XRD pattern
(Fig. S3a) confirms the presence of primarily mixed cobalt oxide,
such as Co;0,4 and CoO, which are the key active materials. The
presence of metallic cobalt confers better electronic conduc-
tivity to the composites. The XPS survey spectrum of the mCO-R
electrode (Fig. S3b) shows peaks corresponding to Co, O, and C,
along with an F 1s signal (~682 eV) originating from PVDF
binder used during electrode preparation. The Co 2p region
confirms the presence of cobalt oxides, while the O 1s and C 1s
peaks indicate lattice oxygen and adventitious carbon. The
deconvoluted XPS study (Fig. S3c and d) reveals the presence of
Co®" and Co®" states of the cobalt, further confirming the exis-
tence of both cobalt oxides (Co;04 and CoO) phases. The SEM
(Fig. S4a and b) shows an ordered stacking-type surface
morphology of the mCO-R particles. Fig. S4c displays the CF
current collector's morphology, showing the fiber strands and
void spaces to accommodate volume expansion and electrolyte
infiltration.

Furthermore, TEM analysis assesses the upcycled composite
metal oxide's particle morphology and microstructural features.
The low-magnification images (Fig. 2a) demonstrate nanosized
particles with relatively uniform size distribution. TEM micro-
graph of one particle (Fig. 2b) shows fine particles with an
average size of ~200-300 nm. High-resolution TEM (HRTEM)
images (Fig. 2¢c) clearly show lattice fringes with different types
of interplanar spacing corresponding to different other planes
and components present in the composite, indicating the
crystalline nature of the material. Moreover, the d-spacing of

Fig. 2

(a) Low magnification TEM image, (b)TEM micrograph of a single particle, (c) different lattice fringes, (c-i) d = 0.29 nm corresponding to

(220) of Coz0y4, (c-ii) d = 0.21 nm corresponding to (200) plane of CoO, and (c-iii) d = 0.47 nm (111) plane of CozO4 crystal, of mCO-R materials.

4680 | RSC Sustainability, 2025, 3, 4677-4687

© 2025 The Author(s). Published by the Royal Society of Chemistry


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5su00413f

Open Access Article. Published on 22 2025. Downloaded on 08/11/25 07:59:32.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Paper

distinct lattice fringes from different regions marked by (i), (ii),
and (iii) in Fig. 2c are shown separately to understand the lattice
fringes and their corresponding d-spacing values precisely. The
d-spacing of 0.29 nm (Fig. 2c-i) and 0.47 nm (Fig. 2c-iii) corre-
sponds to the (220) plane and (111) plane of the Coz;0, crystal,
respectively. On the other hand, the d-spacing value of 0.21 nm
corresponds to the (200) plane of the CoO crystal structure,
present in the composite.

Thus, all the above physical and morphological characteris-
tics suggest the formation of electrochemically active nano-
structured mixed cobalt oxide. These physicochemical charac-
teristics can be favorable for the high-rate anode for LICs, as
discussed in the electrochemical performance sections.

3.2 Electrochemical performances

3.2.1 Cathode half-cells analysis (vs. Li"/Li)

3.2.1.1 EDLC behavior, negligible IR drop, high rate capability
- showcasing better material conductivity and electrolyte infiltra-
tion through the CF current collector. The CV and GCD of CF-AGO-
R are consistent with the EDLC type of behavior, as expected.
The CVs (Fig. 3a) show quasi-rectangular plots at various scan
rates in the voltage range from 1.5 to 4 V, indicating a reversible
adsorption-desorption ion storage phenomenon at the surface
of the electrode.

(a) 15
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At the same time, the triangular linear form of the charge-
discharge graph (Fig. 3b) confirms the EDLC mechanism,
primarily governed by the adsorption and desorption of ions.
Again, the negligible IR various current densities at low to
higher rates suggest excellent electronic conductivity as evi-
denced by the in-plane ordered and a lesser degree of di-
sorderness the XRD and Raman of the AGO-R materials.
Besides, using a CF current collector is vital in reflecting better
electronic and ionic conductivity through its 3D network. The
specific capacity is calculated at various current densities,
tabulated in Table S1. It is seen that CF-AGO-R can deliver
a maximum capacitance of ~150 F g~* at a medium current
density of 0.3 A g~ ' and ~90 F g~ ! at a higher current density of
2 A g~'. The good retention in capacity after 5000 repeated
charge-discharge cycles (Fig. 3c) indicates the robust structural
integrity of the material provided by the well mechanical
strength and electrolyte infiltration of the CF current collector.
Moreover, the consistently high coulombic efficiency
throughout the cycling indicates minimal side reactions, good
structural stability, and high reversibility of the electrochemical
reactions. All the combined electrochemical performances
accentuate the material's potential for operating as a cathode in
LICs. Fig. 3d shows the Nyquist plots of the CF-AGO-R cathode
half-cell before and after cycling. The plot shows significant
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Fig. 3
cathode half-cell vs. Li*/Li.

© 2025 The Author(s). Published by the Royal Society of Chemistry

(a) Cyclic voltammogram, (b) voltage profile, (c) cycling stability, (d) EIS spectra and equivalent circuit model (inset) for the CF-AGO-R
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changes only in the R value, indicating the enhanced interfa-
cial resistance due to the reduced active surface area and pore-
blocking caused by the degradation products on the surface.

3.2.2 Anode half-cell analysis (vs. Li'/Li)

3.2.2.1 Better reversibility, high-rate capability, and cycling
stability — suggestive of better material conductivity and utilization
of void spaces of CF to buffer the volume expansion. The cyclic
voltammogram at 0.05 mV s~ (in Fig. 4a) and galvanostatic
charge-discharge at 30 mA g~ * (Fig. 4b) of the CF-mCO-R have
been studied in the voltage range of 0.01 to 2.5 V to understand
the Li-ion storage behavior of mCo-R at a high rate for the
application as anode in LICs. Fig. 4a depicts a prominent, broad
cathodic peak around 1 V during the initial lithiation process,
which corresponds to the electrochemical reduction of Co;0,4
and CoO to Co° within an amorphous Li,O matrix, accompa-
nied by the formation of a solid electrolyte interface (SEI) on the
electrode surface. In the subsequent cycles, this reaction occurs
at two distinct redox potentials, 1.03 and 1.24 V, indicating
multistep electrochemical reactions occurred between Li" and
C030,4/Co0.

The corresponding anodic peak occurs in one step at 2.02 V,
which can be attributed to the reaction between Co and Li,O
with the concomitant decomposition of Li,O. The cathodic and
anodic peak intensity decreases in the subsequent cycle,
ascribed to the newly formed amorphous nature of Li,O, Co
products, and the reproduced CoO and Co;0, phases. The other
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reduction peaks at 0.17 and 0.01 V can be ascribed to the
intercalation of Li" ions into the carbon residue in the mCO-R
sample and in the carbon fiber matrix of the current collector.

The stable GCD profile (Fig. 4b) (second cycle onwards)
shows a long plateau and short plateau, starting from 1.23 V
and 0.12 V, respectively, corresponding to the two-step reactions
associated with the reaction between lithium and cobalt oxides,
supporting the CV plots of Fig. 3a. The deliverable capacity in
the first cycle is 870 mAh g, which is reduced to 698 mAh g~*
in the second cycle. The loss (<20%) is obvious due to the
formation of the solid electrolyte interphase caused by the
reductive decomposition of the electrolytic solvent in the first
cycle. However, the loss is minimal compared to the reported
work, which can be explained by residual Li-salts in the mCO-R
sample, which minimizes the Li-ions consumption during 1st
cycle.

The rate capability study of mCO-R (Fig. 4c) has been carried
out to understand the high-rate capability of the materials
required to use it as an anode for LICs. The CF-mCO-R electrode
shows a reasonable capacity of 325, 262, and 155 mAh g~ " at
a higher current density of 0.5, 1, and 2 A g’l, respectively. The
results show good compatibility with EDLC-type cathode
materials, showing a maximum capacity of 80-100 mAh g~ .
This high-rate capability of the composite electrode is feasible
due to the excellent conductivity arising from the synergistic
effect of the CF-based current collector and pre-existing metallic
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Fig.4 (a) Cyclic voltammogram at 0.05 mV s, (b) GCD profile at 0.03 A g™, (c) C-rate studies at various current densities of 0.03, 0.05, 0.1, 0.2,
0.5,1,and 2 A g% (d) cycling stability plot with coulombic efficiency at 1 A g~%, of in the voltage range of 0.01 to 2.5 V for CF-mCO-R half-cell.
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Co in the active materials. Moreover, the utilization of the CF
matrix provides smooth electrolyte percolation and structural
integrity for the active materials even at higher currents.

The high rate cycling stability of the CF-mCO-R half-cell is
studied at 1 A g~ (Fig. 4d). It shows 225 mAh g~" capacity
starting from 280 mAh g, rendering ~80% capacity after 6000
cycles. The rationally good cycling stability at a high rate is
possible because of the 3D framework of the carbon fiber-based
current collector, which plays a crucial role in housing the
volume expansion that occurs by the repeated conversion reac-
tion with cycling.

Furthermore, the CV plots (Fig. 5a) are conducted at different
scanning rates of 0.1, 0.2, 0.5, 1, and 2 mV s ' to elucidate the
charge storage kinetics and evaluate the capacitive and diffusive
contributions.

It is observed that the redox peaks become broader with the
increase in the scan rates. Using the power law, the b-value is
calculated at a particular redox potential. The b-value is close to
0.5 at the lithiation—-delithiation potential of cobalt oxide, i.e.,
cathodic 0.7 V and anodic 2 V, as shown in Fig. 5b and c,
respectively. The b value indicates that the charge-storage
process is mostly diffusion-limited during the conversion
reaction of cobalt oxide with lithium. Moreover, the charge
storage kinetics in other potentials are also determined and
shown in Fig. S5. The resulting b-values (~0.67) suggest that the
charge storage processes that occurred at 0.12 and 0.86 V are
a combination of both capacitive and diffusive control.

Using the Trasatti method, the diffusive and capacitive
percentages are separated, as shown in Fig. 5d and e. It was
found that the capacitive percentage increased from 17 to 49%
with the increase in the scan rate from 0.1 to 2 mV s~ " during
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the lithiation reaction into cobalt oxide. On the other hand, the
capacitive contribution increases from 30 to 66% during the
delithiation in response to cobalt oxide. Fig. 5f exhibits the
capacitive percentage of the total charge storage process
through CV at 0.2 mV s~ . The capacitive contribution of 38%,
even at a medium scan rate of 0.2 mV s~ %, implies the good rate
capability of the materials, which is beneficial as an anode for
the full cell LICs.

3.2.3 Full-cell analysis: hybrid LIC (CF-mCO-R//CF-AGO-R)
devices

3.2.3.1 Optimum mass ratio and voltage range — for energy-
power balance and good cycle life. Lithium-ion capacitors (LICs)
were developed using CF-AGO-R as the positive electrode
material and prelithiated CF-mCO-R as the negative electrode
material. The optimum mass ratios for the full LIC cell are
optimized by making and testing the cells at different mass
ratios. The rate capability study in Fig. S6 shows the obtained
capacity at lower (0.2 A g~ ') to higher current densities (5 A g™ )
for the different anode-to-cathode mass ratios. It is observed
that the deliverable capacity is stable and greater for 1:2 than
for the other mass ratios across all the current densities. The
corresponding LICs provide 47 mAh g~ ' capacity at 0.1 A g~*
and 25 mAh g~' at a higher current of 5 A g~'. Further, the
optimum voltage range is determined by studying the reflection
in cycling stability at different voltage ranges of 1 to 4, 1to 3.6 V,
and 0.5 to 3.6 V (Fig. S7). It is noted that the decay in capacity is
very fast, although the initial capacity is higher. Again, the
maximum available capacity is reduced by lowering the cut-off
voltage. Hence, the optimum voltage range is 1 to 3.6 V.

3.2.3.2  Full-cell - storage mechanisms, a reflection of battery-
type materials, lead to improved energy density, retaining
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charge storage at 0.2 mV s~ 2, for CF-mCO-R half-cell.
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a significant cycle life of EDLC. The mechanism of the charge
storage phenomenon involved in the LICs is explained in
Fig. 6a. During charging, the migration of PFs ions into the
layered porous structure of the AGO-R and CF current collector
of the positive electrode, while Li" ions are intercalated or
adsorbed onto the surface of the mCO-R and CF structure in the
negative electrode. The reverse phenomena of these steps occur
during the discharge process.

The CV curves of optimized LIC (the anode/cathode mass
ratio of 1:2 and 1 to 3.6 V) are presented in Fig. 6b. The curves
are almost quasi-rectangular at the scan rates range from 0.2 to
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10 mV s ', with the presence of a redox hump after 2.6 V,
confirming the hybridization of EDLC-type cathode with LIB-
type anode. This suggests a redox reaction accompanied by
the conversion and intercalation of Li-ions with the CF-mCO-R
electrode. To gain further insights, galvanostatic charge-
discharge experiments were performed at different current
densities, as shown in Fig. 6¢c and d. The profile deviates from
the linear triangular plot, revealing the involvement of two
distinct charge storage mechanisms in the LIC. However,
areduction in discharge time is observed as the applied current
rate increases, which is an expected behavior. Again, the
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Fig. 6

(a) The charge storage mechanism in full cell LIC during charging, (b) cyclic voltammogram at different scanning rates of 0.2, 0.5, 1, 2, 5,

10 mV s~% charge—discharge profile (c) at the medium current rate of 0.1, 0.2, 0.5, 0.75 A g™ (d) at the higher current rate of 1, 1.5, 2 A g~ (e)
cycling stability plot at 1 A g~ and (f) fitted EIS plot and corresponding equivalent circuit model (inset) before and after cycling, for CF-mCO-R//

CF-AGO-R LIC device.
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charge-discharge plot at higher current rates results in a shorter
discharge time, reflecting the limited utilization of the active
materials in the faradaic reactions. A critical aspect of the
hybrid system's performance is the cycling stability, which is
shown in Fig. 6e. The optimized LIC can run at 1 A g ' current
density for 10000 cycles, showing 75% retention with an
average coulombic efficiency of 99.48%. This confirms the long-
term stability of the LIC device constructed by the CF-mCO-R
anode and CF-AGO-R cathode.

To understand the nature of the interfacial and diffusion
behavior of the electrode with cycling, the EIS has been studied
and presented as a Nyquist plot in Fig. 6f. The impedance cor-
responding to the high-frequency region refers to solution
resistance (Rg). An increase in the R, value from R;. The negli-
gible change in R, value after 10 000 cycles supports the mate-
rials' good electronic and ionic conductivity and CF backbone.
However, the capacity fading can be correlated with the increase
in the R, value and the Warburg tails. The significant rise in R,
value from 26.6 to 57.5 Q is due to the growth of the interfacial
charge-transfer resistance across the electrode and electrolyte
interphase, resulting from the parasitic reactions with long-
term cycling. Moreover, a reduction in the slope of the low-
frequency Warburg tails suggests pore blockage and
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interference with capacitive charge storage. These factors
collectively lead to the performance degradation of the LIC cell
after 10 000 cycles.

Furthermore, post-mortem SEM analysis was performed on
the electrodes after 10000 cycles to assess their structural
stability; the comparison images are shown in Fig. S8. Both
mCO-R and AGO-R maintained their overall morphology
without noticeable pulverization or delamination, indicating
excellent mechanical robustness. Only minor surface rough-
ening was observed, likely due to prolonged electrolyte inter-
actions. Notably, mCO-R exhibited smaller and more uniform
particle sizes than its pristine state, suggesting gradual particle
refinement during cycling. This may have contributed to its
sustained electrochemical performance over extended opera-
tion. These observations confirm the mechanical and structural
robustness of the electrode materials.

3.2.3.3 Practical viability of the full-cell LIC device — negligible
leakage current and improved self-discharge rate. The practical
applicability of the LIC device is comprehensively evaluated by
the Ragone plot (Fig. 7a), which describes the comparative value
of energy and power density. The capacitance and energy-power
value of the full cell are calculated at different current densities
and shown in Table S2. This LIC device exhibits a higher energy
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Fig. 7
mCO-R//CF-AGO-R LIC device.
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density of 42 Wh kg ' at a power density of 7560 W kg™ *,
indicating improved electrochemical performance. However,
the value is compared with the literature value in Table S3,
showecasing the superior results of the present work in terms of
energy-power balancing with satisfactory cycle life.

This enhancement is attributed to the synergistic combina-
tion of the EDLC-type positive electrode and pre-lithiated
battery-type negative electrode and the use of a 3D carbon
framework as the current collector, which facilitates efficient
charge storage mechanisms even at high rates.

Another important practicality parameter of LICs is self-
discharge, particularly for applications requiring extended
standby periods. Herein, the self-discharge behavior of the LIC
was monitored by recording the open-circuit voltage over 50
hours (Fig. 7b). The device retained approximately 72% (2.59 V)
of its initial voltage (3.6 V) after 50 hours, indicating low self-
discharge rates compared to other reported LIC systems. The
observed low self-discharge is primarily attributed to the stable
electrochemical behavior of the LICs. This ensures minimal
energy loss during idle periods and improves energy efficiency.

Further, Leakage current is studied to reflect the device's
self-discharge behavior. The leakage current of the LIC was
measured by applying a constant voltage of 3.6 V for 35 hours
(Fig. 7¢). The steady-state current flow is recorded to be 6.9 pA,
which has stabilized for 3 hours, indicating minimal parasitic
reactions and excellent electrochemical stability.

4 Discussions

This study utilizes the spent LIB's electrodes to upcycle them to
the LIC's electrode. This involves the transformation of the
recovered electrode from spent LIBs into valuable materials,
followed by the conjunction of a 3D carbon fiber current
collector to make the electrode. The approach has proven to be
effective in addressing the challenge of achieving a balance
between energy density and power density in LICs.

The improved energy density of the LIC is attributed to the
porous structure of the CF-AGO-R, which facilitates ion
adsorption and charge storage. The pre-lithiated CF-mCO-R
electrode enhances the faradaic contribution, improving the
overall charge storage capacity. In addition, 3D carbon fiber,
a freestanding electrode, facilitates the high rate capability due
to its smooth and faster ionic movement through the 3D
framework and electrolyte percolation.

While the LICs demonstrated promising performance,
future studies could focus on developing scalable synthesis
methods and investigating advanced electrolytes to reduce self-
discharge rates.

Additionally, a comparative table (Table S4) summarizes key
parameters from the cited works—such as source of recycled
materials, processing methods, device configurations, and
performance metrics—and contrasts them with the current
study. Compared to previous reports that regenerate specific
cathode or anode components through multi-step recovery and
synthesis, our approach directly reuses the mixed black mass
from spent LIBs with minimal processing. This simplifies the
recycling route and enables simultaneous integration of both
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active components into a carbon fiber-supported LIC device.
Such a strategy significantly reduces chemical usage, energy
input, and processing time, offering a more sustainable and
scalable pathway for high-performance energy storage systems.

5 Conclusions

In summary, the electrode materials from the end-of-life spent
LIBs are successfully recovered and upcycled into the electrode
for high-rate capable LICs. The free-standing film is made for
LIC electrodes by using a carbon fiber-based current collector.
The void spaces in the 3D unique woven networks can accom-
modate volume expansion for conversion-type cobalt oxide
anode material acting as a protective buffer and active sites and
conductive filler, thereby enhancing capacitive-controlled Li-
storage even at high rates. In a cathode half-cell, the free-
standing film helps to provide the three-dimensional ionic
and electronic movement for high rate capability and enables
the delivery of good electrochemical performances. Further-
more, the assembled hybrid device LIC shows high energy
density (206 Wh kg™ ') and high power density (7560 W kg™ ),
with a realistic capacity retention of about 75% after 10 000
cycles. These findings contribute to advancing LICs toward
practical applications, bridging the gap between energy and
power density while offering an innovative solution to mitigate
global LIB waste.
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