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Patterns with long and short-range order in
monoloyers of binary mixtures with
competing interactions

M. Litniewski, W. T. Gozdz and A. Ciach *

Lateral microsegregation in a monolayer of a binary mixture of particles or macromolecules is studied

by molecular dynamics simulations in a generic model with the interacting potentials inspired by

effective interactions in biological or soft-matter systems. In the model, the energy is minimized when

like particles form small clusters, and the cross-interaction is of opposite sign. We show that the laterally

microsegregated components in the dense ordered phases form alternating stripes for similar densities,

or the clusters of the minority component fill the hexagonally distributed voids formed in the dense

phase of the majority component. A qualitative phase diagram in the plane of densities of the two

components is constructed for low temperatures. An addition of the second component significantly

enlarges the temperature range of the stability of the ordered phases compared to the stability of these

phases in the one-component system. At higher temperatures, the disordered phase consisting of

individual particles, one-component clusters and two-component super-clusters of various sizes is

stable. The product kn(k), with n(k) denoting the average number of super-clusters composed of k

particles, decays exponentially with k, and the inverse decay rate depends linearly on temperature.

I. Introduction

Complex solvents in soft- and living matter often induce
complex interactions between particles or macromolecules. A
notable example is the thermodynamic Casimir potential
between objects present in binary or multicomponent solvents
that are close to a miscibility critical point.1 The objects
attracting the same or different components of a solvent attract
or repell each other, respectively, and the range of these
interactions is equal to the correlation length of the concen-
tration fluctuations in the solvent. When the macromolecules
or particles are charged, electrostatic interactions with a sign
opposite to the sign of the Casimir potential appear.1–3 When
the attraction and the repulsion of any origin are both present
and dominate at different separations between the particles or
macromolecules, complex patterns may appear.4–16

Interestingly, multicomponent biological membranes in
homothermic living organisms are close to the miscibility
critical point.17–19 It was hypothesised that the Casimir attrac-
tion may induce aggregation of the membrane proteins, but a
macroscopic separation of the proteins was not observed.19,20

The membrane proteins are charged and according to recent
discoveries, the screening length can be large in ionic solutions

as concentrated as in living organisms.21–28 When the screen-
ing length is larger than the correlation length but the strength
of the screened electrostatic interactions is smaller than the
strength of the Casimir potential, then the interaction between
charged particles or macromolecules is attractive at short and
repulsive at large distances (SALR). SALR interactions would
lead to formation of aggregates of the membrane proteins of a
size determined by the range of the attraction, and separated by
a distance determined by the range of the repulsion. Small, well
separated clusters of membrane proteins are indeed observed.

The hypothesis that like membrane inclusions interact with
the SALR potential, and that the interaction between oppositely
charged inclusions favouring different components of the lipid
bilayer is repulsive at short and attractive at large distances was
not verified yet. It inspires, however, a general question of
pattern formation in monolayers of binary mixtures of particles
with such interactions. We try to answer this question by
considering models with different ranges and shapes of the
attractive and repulsive parts of the potentials.29–33

Although the models with the above interactions are
inspired by the interactions between two types of membrane
inclusions, one could design soft-matter systems that mimic
such type of interactions between particles. Colloidal particles
interacting with the thermodynamic Casimir potential have
been already studied experimentally and theoretically.9,34–37

Moreover, different attractive forces, such as depletion or
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capillary interactions can be present,5,14,15,38–40 and repulsion
may follow from dipole–dipole interactions or soft polymeric
shells.14,16,37 Thus, one can design many soft-matter systems
with competing attractive and repulsive potentials. Sponta-
neous patterns at different length scales may find various
applications, so this problem is of practical significance
as well.

Mixtures of self-assembling particles attract increasing
attention,31–33,41–45 but a complete phase diagram has not been
determined yet for any particular system. In the case of the
SALR interactions between like particles and cross-interaction
of the opposite sign, preliminary results have been obtained for
intermediate temperatures for interactions leading to large
aggregates (tens of particles) in mean-field (MF) approximation
and by MC simulations.30 The energetically favoured patterns
on the plane of chemical potentials were determined for a
potential favoring small aggregates on a triangular lattice by
direct calculations and MC simulations.32 The question how
the structure of the ordered phases and transitions between
them depend on the shape of the interactions (determining the
size of the aggregates), temperature, density and composition,
however, remains to a large extent open.

By comparing the snapshots in the one-component SALR
model and in the considered mixture, one can see that the
structure in the dilute disordered phase in the two cases is
significantly different. Dispersed small one-component clusters
in the first system are replaced by much larger super-clusters
made of alternating clusters of the two components in the
second one.31,33,46 However, quantitative characterization of
the patterns lacking long-range order in the self-assembling
mixture remains a real challenge.

In this work we focus on the low-temperature ordered
phases with laterally microsegregated components in the
monolayer of particles with energetically favoured alternating
thin stripes of the two components. We choose interactions
that favour the stripes consisting of two adjacent chains of
particles of the same component (a bilayer in 2D). We perform
molecular dynamics (MD) simulations, and construct a quali-
tative phase diagram with a topology that should be common
for many mixtures with interactions favouring alternating thin
stripes of the two components. In addition, we focus on the
high-temperature region of the phase diagram where the dis-
ordered phase is stable, and study structure of this phase by
calculating the size distribution of self-assembled clusters and
super-clusters. We investigate the evolution of the structure
upon increasing temperature, density and mole fraction of the
particles.

In Section II, we introduce the model. In Section III, we
summarize the MF results for the l-surface separating the low-
and high temperature regions in the phase space, where the
phases with the long-range order are and are not expected,
respectively. The simulation method is described in Section IV.
Our results for the patterns formed spontaneously at low T are
presented in Section V A, and for the structure of the disordered
phase in Section V B. The last section contains summary and
concluding remarks.

II. The model

Our model is developed for large macromolecules or colloidal
particles, with diameters in the range s B 10 nm–1 mm.
Interactions between such large particles differ from interac-
tions between atoms and small molecules that are very well
described by the Lennard-Jones (L-J) potential. To avoid overlap
of the particles, the repulsive part of the L-J potential should be
replaced by a stronger repulsion at short distances (in s-units).
Moreover, particles in statistical mechanics are modeled as
hard spheres with additional interactions beyond the hard
core, and to compare theory with simulations, we should
assume similar interactions. For the above reasons, we assume
that the particles of both components have hard or nearly hard
spherical cores, and the sizes of the cores are equal. As in the
previous studies,10,29 we assume the same interactions between
like particles,

u11(r) = u22(r) = uhc(r) + u(r), (1)

whereas for the cross-interaction we assume

u12(r) = uhc(r) � u(r). (2)

Different shapes of the interactions were considered in the case
of the one-component SALR systems, including u(r) consisting of
attractive square well and repulsive ramp,11 or of attractive and
repulsive Yukawa potentials (double Yukawa).13,30,37 u11(r) equal to
the sum of the L-J and Yukawa potential29,47 or with the repulsive
part of the L-J potential replaced by r�n with n 4 12, and the
exponential repulsion at larger distances48 were also studied. The
same sequence of ordered phases was obtained in each case,7

therefore for the qualitative analysis of the phase behavior, only
major features of the interaction potential play a significant role.
This universality resembles the universal topology of the phase
diagram in simple fluids, where the gas–liquid coexistence has the
same qualitative features for the L-J and the hard-core square-well
potentials. The optimal size of the clusters and the separation
between them, however, are determined mainly by the range of the
attractive and repulsive parts of the potential. From the simula-
tions point of view, it is advantegous to study small aggregates,
because many of them can be formed with a resonable number of
particles, and sufficiently large number of the aggreagates is
necessary for determination of their distribution in space. Impor-
tantly, clusters of membrane proteins are small, and it is not
obvious if the same phase diagrams are obtained in mixtures
forming large and small aggregates. For the above reasons, in this
work we are interested in self-assembly into bilayers or small
clusters in the absence of the second component. Self-assembly
into small clusters can be induced by potentials that have different
shapes, provided that a deep minimum for a relatively small
distance is followed by a repulsive barrier. We verified that the
potential satisfying the above requirements has in particular
the form

uðrÞ ¼ �2:725
r6

þ 1:5
expð�r=2Þ

r
; (3)
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and we choose this potential to study qualitative properties of the
self-assembly in the considered binary mixture.

In the mesoscopic theory, uhc is the hard-sphere potential,
ut

hc(r) = N for r o 1 and ut
hc(r) = 0 for r 4 1 that prevents from

overlapping of the particle cores. We use the superscript t for
the theory. To mimic the (nearly) hard cores in the MD
simulations, we assume very strong repulsion for r o 1 of
the form

ushcðrÞ ¼
2:725

r30
; (4)

where the superscript s is for simulations. In the above equa-
tions, the length is in units of the particle diameter s, and the
energy is in arbitrary units E. The cutoff distance in simulations
is rcut = 6.75 for all uij(r) with i, j = 1, 2, as in our previous
works.10,47

To compare the theoretical results obtained for ut
hc(r) with

the MD simulations obtained with us
hc(r) given by eqn (4), we

should take into account that the minimum of uii(r) depends on
the form of uhc. uii(r) takes the minimum at r = 1, and ut

min =
u(1) = �1.815 when uhc = ut

hc, and uii(r) crosses zero for r E
1.2808. For uhc approximated by eqn (4), the minimum of uii(r)
is umin = uii(1.075) E �0.6393, and uii(r) crosses zero for r E
1.28. The large difference between the minimum of uii(r)
in theory and simulations means that the kinetic energy
and the minimum of the potential energy are equal at different
temperatures in the two cases. To overcome this problem in
comparing the results of theory and simulations, we assume
that the appropriate energy scale is the minimum of uii, and
introduce the dimensionless temperature T* = kBT/|umin|, with
kB the Boltzmann constant and umin = us

min E �0.6393 in the
simulations and umin = ut

min E �1.815 in the theory. The
potentials uii for i = 1, 2 and u12 are shown in Fig. 1.

III. Stability of the disordered phase in
mean-field approximation

In theoretical studies, the stability analysis of the disordered
phase in MF gives the first approximate information about the
onset of the periodic ordering. In the disordered phase, the
average density of both components is position independent.
This phase can be inhomogeneous when the self-assembled
aggragates are mobile. It looses stability when the second
functional derivative of the grand potential functional of the
local densities r1(r), r2(r),

O r1; r2½ � ¼ U r1; r2½ � � TS r1; r2½ � � m1

ð
drr1ðrÞ

� m2

ð
drr2ðrÞ (5)

is no longer positive definite for constant functions r1(r) = �r1,
r2(r) = �r2. The internal energy for the interactions having the
property u11(r) = u22(r) = �u12(r) outside the hard cores has
the form

U r1; r2½ � ¼ 1

2

ð
dr1

ð
drc r1ð ÞVðrÞc r1 þ rð Þ

¼ 1

2

ð
dkĉðkÞV̂ðkÞĉð�kÞ; (6)

where c(r) = r1(r) � r2(r), r = |r|, k = |k| and V(r) = u(r)g(r), where
g(r) is the pair distribution function. V̂(k) is the Fourier trans-
form of V(r). In the case of hard cores, g(r) = 0 for r o 1. We
neglect correlations outside the cores in MF, therefore we make
the approximation g(r) = y(r � 1). The entropic contribution in
(5) is approximated by the free energy of a hard-sphere mixture
in the local density approximation,

�TS r1;r2½ �¼
ð
dr kBT r1ðrÞln r1ðrÞð Þþr2ðrÞln r2ðrÞð Þ½ �þfex rðrÞð Þf g;

(7)

Fig. 1 The interaction potential uij with i, j = 1, 2 between like particles, uii(r) (eqn (1) and (3), red line) and the cross-interaction u12(r) (eqn (2) and (3), blue
line). Left panel: Hard core with diameter s = 1 (dotted line), uhs = ut

hs. Right panel: Nearly hard core, uhs = us
hs (eqn (4)), as in the simulations. Distance is in

units of s and energy is in arbitrary E units.
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where r(r) = r1(r) + r2(r) and the hard-spheres packing is
described by the free-energy density fex in the Carnahan-
Starling approximation.30

The period of the self-assembled patterns should corre-
spond to the densities ri(r) that minimize the internal energy.
The wave number of the energetically favored density oscilla-
tions corresponds to the minimum of V̂(k) at k = k0. In our
model k0 E 1.6558 giving the period of concentration oscilla-
tions 2p/k0 E 3.8, consistent with alternating bilayers of the
particles of the two components. V̂(k) for our model is shown in
Fig. 2.

The boundary of stability of the disordered phase in MF,
Tl(r1, r2), is called l-surface, and was determined in ref. 30. In
our temperature units defined at the end of Section II it has
the form:

T�l �r1; �r2ð Þ ¼
�rþ �r2 � �c2

� �
A2ð�rÞ

� �
1þ �rA2ð�rÞ

V̂ðk0Þ
utmin

; (8)

where T* = kBT/|ut
min|, %c = �r1 � �r2 and �r = �r1 + �r2 are the

equilibrium values of the concentration and the density of the
particles in the disordered phase, and

A2ðrÞ ¼
1

kBT

d2fexðrÞ
dr2

: (9)

T�l �r1; �r2ð Þ separates the phase space (�r1, �r2, T*) into the
high-T region where in MF the disordered phase is stable or
metastable, and the low-T region where the disordered phase is
unstable. In fact local fluctuations c(r) restore stability of the
disordered phase beyond MF,29 and the l-surface separates the
phase space regions with dominating homogeneous and inho-
mogeneous distributions of the particles in instantaneous
states. The ordered periodic phases can be expected on the
low-T side of the l-surface shown for our model in Fig. 3.

As already noted in ref. 30, the periodic order can be present
at a temperature incresing linearly with �r for �r1 E �r2 (Fig. 3 and
eqn (8)). For increasing difference in densities of the two
components, however, the temperature at the boundary of
stability of the disordered phase rapidly decreases to much
lower values. This means that the ordered periodic patterns in
the one component system or with a small addition of the
minority component can be expected only for much lower
temperatures. Note that high or low temperature refers to
T* = kBT/|umin|, i.e. it strongly depends on the strength of the
interactions.

In ref. 30, the phase diagram of a similar mixture, but with
much larger period of concentration oscillations was deter-
mined under the assumption that c(r) is a superposition of
sinusoidal waves with the period 2p/k0 in different directions.
Such assumption for ensemble averaged concentration can be
valid for thick layers of particles and for not too low
temperature.13 For the stripes made of two adjacent chains of
the same particles, however, large deviations of the concen-
tration profiles from the sinusoidal shape are expected in the
ordered phases. For this reason, the results of ref. 30 do not
apply to our model, especially at low temperature.

IV. Simulation method

We are interested in spontaneous pattern formation in mono-
layers of particles or macromolecules anchored in lipid bilayers
or adsorbed at interfaces, where small out of plane displace-
ments are possible. To mimic such situation in simulations, we
consider particles in a rectangular box Lx � Ly � Lz with Lx = Ly =
L and with periodic boundary conditions along these two
directions, and Lz = 2.8. Motion of the particles along the
z axis is additionally strongly restricted by the external potential

Fig. 2 The interaction potential times the pair distribution function in
Fourier representation, V̂(k). Red solid line: uhs = ut

hs (hard spheres). Blue
dashed line: uhs = us

hs (eqn (4), nearly hard spheres) k is in s�1 units, and V̂(k)
is in arbitrary E units.

Fig. 3 The l-surface of the MF boundary of stability of the disordered
phase (eqn (8)). On the low-T side, the disordered phase is unstable in the
MF approximation, and self-assembly into alternating aggregates of the
particles of the two components takes place in typical configurations.
Ordered patterns can be stable on this side of the l-surface. Number
densities ri are dimensionless, T�l ¼ kTl=juminj.
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that plays a role analogous to anchoring of the particles to the
bilayer or interface located at the (x, y) plane,

uzðzÞ ¼
1

z30
� 1

z6
þ 1

ðz� 2:8Þ12: (10)

At z = 1.07, the potential uz(z) has a deep minimum, uz(1.07) =
�0.84 (in E units). As a consequence, in the considered tem-
perature range the equilibrium states attained by the system
may be treated as two dimensional ones. Our simulations
were performed applying the standard molecular dynamics
method.49 The system temperature was kept constant by scal-
ing particle velocities. The simulation procedure is described in
detail in ref. 10 and 29.

We started the initial simulations at high temperature with
particles distributed randomly in the simulation box, and with
N and L chosen such that the two-dimensional density r = N/L2

was somewhat smaller than the density expected for the crystal.
During the simulations, the temperature was gradually
decreased until a monocrystal with the two-dimensional den-
sity rs larger than N/L2 was formed. The obtained monocrystal
occupied a part of the simulation box, and the remaining part
of the box was esentially empty.

For studies of two-phase systems we chose the final state of
the simulations with N1 = N2 = 1800 and L = 84 (giving N/L2 =
0.51), where the solid phase had the characteristic pattern with
the repeated motif of two adjacent chains of particles of the
first component followed by two such chains of particles of the
second component, and its density was r = 0.76. Further
simulations started from this configuration, but with the size
of the simulation box increased from L = 84 to L = 180. Next the
particles of the second type were added gradually to the system
in the way described in ref. 10, with the temperature fixed at
T* = 0.156. In this way, a few different systems were obtained
with N1 = 1800, and with N = N1 + N2 in the range 3840 o N o
17 600. The simulations of each system created in this way were
performed at T* = 0.156 and with fixed N1, N2. In the additional
simulations, the temperature was increased until the one-phase
systems were obtained. For some systems, the simulations were
carried out at the temperature up to T* = 0.469.

In order to study the structure of the disordered phase, we
considered the one-component clusters in the same way as in
the one-component SALR,47 and introduced the concept of two-
component super-clusters. A cluster is a compact aggregate of
particles; a particle belongs to a cluster when its distance from
at least one particle in the cluster is smaller than rcl = 1.2835,
where rcl is the distance for which uii(r) (eqn (1)) changes sign
(uii(rcl) = 0). The super-cluster is a group of connected clusters of
different components. Because the minimum of u12(r) is very
flat and the range of the interactions is large, there is no unique
way of defining the connectivity between clusters of different
components. We arbitrarily choose the distance rscl = 2.15
between particles belonging to different clusters as the upper
limit for formation of a bond between these clusters. We
verified that different reasonable values of rscl do not influence
the results on the qualitative level. According to Fig. 1, rscl is
significantly larger than the distance corresponding to the

energy minimum for u12(r). On the other hand, |u12(rscl)| is
only slightly lower than the absolute value of u12(r) at
its minimum (see Fig. 1). Cluster and super-cluster size dis-
tribution was obtained by averaging over at least 105

configurations.
We compared two connectivity criteria for super-cluster

formation. In the first one, one bond between particles belonging
to different clusters was sufficient, and in the second one,
formation of at least four bonds was neccessary to classify the
two considered clusters as a part of a super-cluster. In the case of
at least four-bonds formation, the bonding energy between two
clusters is larger than 1.3 (in E units). A disadvantage of the first
criterion was formation of transient bonds during time evolution
and short life-time of the super-cluster consisting of two weakly
connected parts. We choose for the analysis of the structure of the
disordered phase the second criterion. We verified that there was
no qualitative difference between the results obtained with the
two connectivity criteria. A quantitative difference, however, was
significant.

V. Results
A. Low temperature phase behavior

Our aim is a construction of a qualitative phase diagram with a
topology common for various mixtures self-assembling into
alternating stripes or other aggregates, rather than determina-
tion of a precise phase diagram for our particular form of the
interactions. Here we focus on low T, where the patterns with a
long-range order can appear. To study the low temperature
behavior in the simulations, we consider T* = 0.156 that is close
to the l-surface for r1/r2 { 1 (Fig. 3), i.e. ordered phases in the
one-component limit can be stable.

We simulated systems with different mole fractions and
different two-dimensional (2D) densities. For presentation of the
results, we choose 5 representative cases. Snapshots obtained for

Fig. 4 (a) A snapshot from MD simulations at T* = 0.156 for N1 = 1800 and
N = N1 + N2 = 3840 projected on the planar square with Lx = Ly = 180. The
regions inside the small frames are zoomed in (b) for the gas phase and in
(c) for the stripe phase.
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these representative systems are shown in Fig. 4–8 and the 2D
densities in the coexisting phases are given in Table 1. In each
selected system, T* = 0.156 and N1 = 1800, whereas the total
number of particles from the first to the fifth system (Fig. 4–8)
takes the value N = N1 + N2 = 3840, 5280, 10 400, 15 200, 17 600. The
average concentration and density both increase from Fig. 4–8.

In all the shown cases, a dense two-component solid phase
coexists with a less dense fluid phase where only the majority
component is present (Fig. 4–6) or the minority component
forms a few dispersed clusters surrounded by shells made of
the majority component (Fig. 7 and 8). In Fig. 4–6, the dense
phase consists of alternating stripes of the two components,
and in Fig. 7 and 8, clusters of the minority component occupy
hexagonally distributed vacancies in the crystal of the majority
component.

We interpret all patterns with alternating parallel stripes
of the two components as the same phase denoted by S.

With growing difference between N1 and N2, first holes in the
stripes of the minority component are formed (Fig. 5), and next
stripes of the majority component become thicker (Fig. 6). Such
evolution of the pattern leads to increased stability region of
the S phase on the phase diagram (Fig. 10). The mole fraction of
the first component in this phase is 0.4 r N1/N r 0.6 (Table 1).
In the dense phase with hexagonal or locally hexagonal sym-
metry, the vacancies in the majority component can be fully or
partially filled with the particles of the minority component,
and the mole fraction of the minority component is around 1/4.

In order to verify if the two-component hexagonal phase is
stable or metastable at low T, we performed additional simula-
tions, starting from a random distribution of the particles for

Table 1 Systems with snapshots presented in Fig. 4–8. N = N1 + N2 and
N/L2 are the number of particles and the density in the quasi-2D system
with area 180 � 180, where the length unit is the particle diameter. In each
case N1 = 1800. rs and rf are the 2D densities, and r1

s and r1
f are the 2D

densities of the first component in the coexisting solid and fluid phases,
respectively. The 2D densities in the coexisting phases were estimated by
direct calculation from a central part of the crystallite, and from a large
portion of the fluid phase. ni with i = 1, 2 is the average number of bonds a
particle of the i-th component forms with particles of the same compo-
nent inside the crystalite of the denser phase. A pair of particles of the
same component is considered as bonded when the distance between
them is r r rcl = 1.2835 (see Section IV for more details)

N N/L2 rs r1
s/rs rf r1

f /rf n1 n2

Fig. 4 3840 0.119 0.79 0.50 0.004 0.0000 4.00 4.00
Fig. 5 5280 0.163 0.76 0.47 0.050 0.0000 3.84 4.00
Fig. 6 10 400 0.321 0.84 0.4 0.210 0.0005 4.00 4.67
Fig. 7 15 200 0.444 0.75 0.26 0.380 0.0300 2.96 4.47
Fig. 8 17 600 0.543 0.80 0.26 0.470 0.0200 3.10 4.63

Fig. 5 (a) A snapshot from MD simulations at T* = 0.156 for N1 = 1800 and
N1 + N2 = 5280 projected on the planar square with Lx = Ly = 180. The
regions inside the small frames are zoomed in (b) for the gas and in (c) for
the stripe phase.

Fig. 6 (a) A snapshot from MD simulations at T* = 0.156 for N1 = 1800 and
N1 + N2 = 10 400 projected on the planar square with Lx = Ly = 180. The
regions inside the small frames are zoomed in (b) for the one-component
clusters and in (c) for the stripe phase. Note the larger thickness
(3 particles) of the stripes of the majority component.

Fig. 7 (a) a snapshot from MD simulations at T* = 0.156 for N1 = 1800 and
N1 + N2 = 15 200 projected on the planar square with Lx = Ly = 180. The
regions inside the small frames are zoomed in (b) for the almost one-
component clusters and in (c) for the two-component hexagonal phase.
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r1 = 0.19 and r1 + r2 = 0.76 corresponding to the dense phase
shown in Fig. 7a and c. The resulting structure was the same as
the one obtained in the procedure described in Section IV for the
same r1 and r, indicating that for such or similar values of the
densities, the hexagonal rather than the S phase is stable at low T.

Let us focus on the less dense phase in Fig. 4–8. First a dilute
gas of the majority component coexists with the S phase
(Fig. 4). When the density increases, the particles in the gas
surrounding the dense phase self-assemble into clusters
(Fig. 5). These clusters tend to form a locally hexagonal pattern
for still larger density (Fig. 6). We expect that the equilibrium
phase at still lower temperature should contain clusters with
average positions of the centers of mass forming a hexagonal
lattice. Individual snapshots, however, may differ from the
perfect hexagonal order, and defects may be present. When
N2 further increases with fixed N1 = 1800, the phase coexisting
with the two-component hexagonal phase consists of stripes of
the majority component, as shown in Fig. 8 for N = 17 600. For
this dense system, the barriers that must be overcome to reach
the global minimum are very high, therefore the shown snapshot
may not represent the global minimum of the free energy.
Similar defects were observed in various systems self-
assembling into stripes or layers.50 In Fig. 7 and 8, micelle-like
clusters with a core made of the minority-component sur-
rounded by a shell consisting of the majority-component can
be seen. They resemble structural units of the dense phase, and
at lower temperatures presumably condense on the crystallite of
this phase in thermal equilibrium. The interface between the
two phases is smoother in thermal equilibrium at low T than in
our snapshots, but we did not try to reach the final stable state,
since the equilibrium shape of the monocrystal is not our goal in
this study. We did not simulate still larger densities.

To quantify the observed structural changes for growing N
with fixed N1, we calculated the average number of bonds, ni,
formed by a particle of the i-th species with particles of the

same species. The results are shown in Table 1 for the two-
component crystalite (the denser phase). For the most symme-
trical case (N = 3840, Fig. 4), a particle of each component forms
on average 4 bonds with particles of the same component.
When the mole fraction of the minority component decreases,
n1/n2 decreases as well, but as long as stripes are formed, this
ratio differs only slightly from 1 and takes the lowest value
n1/n2 E 0.86 for N = 10 400. n1/n2 takes a smaller value in this
case because more bonds are formed by particles of the
majority component in the central line in the thicker stripes
(Fig. 6c). A significant decrease of n1 from n1 E 4 to n1 E 3
takes place at the structural change from the alternating stripes
to the hexagonal pattern, and n1/n2 E 0.66 for N Z 15 200
(Fig. 7). Another quantitative characterization of the patterns in
Fig. 4–8 is the probability of finding k particles in a cluster of
the minority component, p1(k). In the S phase, p1(k) takes a
maximum for the number of particles in a typical stripe that is
of order of N1 divided by the number of stripes. In contrast, in
the hexagonal phase p1(k) has the form shown in Fig. 9 for N1 =
1800, N = 17 600 and T* = 0.156.

The simulation results and the results obtained for the
triangular-lattice model,32 as well as the already established
phase behavior of the one-component SALR systems6–8,11,13,37

suggest that the low-temperature diagram should have the
qualitative shape shown in Fig. 10. The snapshots in Fig. 4–8
represent evolution of the pattern along a vertical line in the
diagram in Fig. 10 for fixed r1 smaller than in the one-phase
regions.

The one-component ordered phases loose stability at rela-
tively low T (see Fig. 3). Above their melting temperature, the
dense two-component phases coexist with the disordered
phase, and at this coexistence become less ordered and less
dense (see Fig. 11 for T* = 0.28). The structure of the disordered
phase, however, becomes more complex and self-assembly into
large two-component super-clusters takes place. Further heat-
ing leads to melting of the periodic patterns made by the two
components.

Fig. 8 (a) A snapshot from MD simulations at T* = 0.156 for N1 = 1800 and
N1 + N2 = 17 600 projected on the planar square with Lx = Ly = 180. The
regions inside the small frames are zoomed in (b) for the almost one-
component stripe and in (c) for the two-component hexagonal phase.

Fig. 9 Probability p1(k) that a cluster of the minority component inside the
two-component hexagonal phase consists of k particles, in the system with
N1 = 1800, N = 17 600 and T* = 0.156, with the snapshot shown in Fig. 8.
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To study the transitions to the disordered phase, we con-
sidered heat capacity and compressibility as functions of T.
The heat capacity per particle, N�1dhEi/dT, is shown in Fig. 12
with the derivative approximated by DE/DT*, with DT* = 0.0313
or DT* = 0.0156 far from or close to the maximum, respectively.
For a comparison, we calculated DE/DT* for N = 3840 and two
temperatures, T* = 0.156, i.e. for the two-phase system as in
Fig. 4, and T* = 0.313, i.e. close to the phase transition to the
disordered phase, as suggested by simulations. We obtained
N�1DE/DT* = 4.29 and N�1DE/DT* = 34.6 for the lower and the
higher temperature, respectively. The much larger value of

N�1DE/DT* for T* = 0.313, and the plots in Fig. 12 indicate
that the heat capacity takes a maximum when the long-range
order starts to disappear, causing large energy fluctuations.

In Fig. 13 we show the integral of the correlation function for
the number density r = r1 + r2. The density-density correlation
function h(r) = g(r) � 1 can be expressed in terms of the pair
distribution functions gij(r) between the components i, j accord-
ing to g(r) = g11(r)x1

2 + g22(r)x2
2 + 2g12(r)x1x2, where xi is the mole

fraction of the i-th component. The integral of h(r),

G ¼ 2p
ð1
0

ðgðrÞ � 1Þrdr ¼ kBTwT � 1=r; (11)

corresponds to the static structure factor for vanishing wavevec-
tor, S(0). wT in the above equation denotes the compressibility.
Since we consider a quasi-two dimensional system, we used the
two-dimensional integral in (11).

Fig. 10 Schematic phase diagram at fixed low temperature. r1 and r2 are
the densities of the first and the second component. In the white regions,
single phases are stable. Dark brown regions and light patterned regions
represent three-phase and two-phase equilibria, respectively. Structure of
the phases is illustrated in the pictures, with red and black circles repre-
senting particles of the first and the second component, respectively.

Fig. 11 Snapshot from MD simulations at T* = 0.28 for N1 = 1800, N =
5280 projected on the planar square with Lx = Ly = 180.

Fig. 12 Heat capacity per particle for N1 = 1800 and N = 5280, 8000,
17 600 as a function of temperature (in kBT/|umin| units). Lines are to guide
the eye.

Fig. 13 The function G, equal to the integral of the correlation function,
and related to the compressibility according to eqn (11) for N1 = 1800 and
N = 5280, 8000, 17 600 as a function of temperature (in kBT/|umin| units).
Lines are to guide the eye.
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The maxima of N�1DE/DT* and G in Fig. 12 and 13 suggest
a phase transition for r1/r E 0.34 and r1/r E 0.25, but for
r1/r E 0.1 no pronounced maxima can be seen in the shown
temperature interval. When r1/r E 0.34, the transition occurs
at higher temperature than for r1/r E 0.25. These results agree
with theoretical expectations of increasing temperature interval
of the stability of the ordered phase with decreasing |r1 � r2|
(see Fig. 3).

B. Structure of the disorderd phase

Characteristic snapshots in the disordered phase are shown for
N1 = 1800 and N = 8000 in Fig. 14 and 15 for T* = 0.438 and T* =
0.313, respectively. In addition to single particles of each
component and small clusters of the majority component,

aggregates of alternating one-component clusters of various
sizes are present. An example of such an aggregate that we call a
super-cluster is shown in Fig. 15. For comparison, in Fig. 16 we
show a snapshot of a one-component system (N1 = 0) with the
same N and T* as in Fig. 15. One can see by visual inspection
that in the one-component SALR system the size polydispersity
of the aggregates is much smaller than in our mixture, and no
clusters as large as the super-cluster shown in Fig. 15 are
present.

By visual inspection one can easily notice different distribu-
tion of the particles in Fig. 14 and 15. It is not easy, however, to
see the difference between the cluster-size distribution of the
minority and the majority component just by looking at indi-
vidual snapshots. To quantify the size distribution of the
clusters, we first consider each component separately and
compute the number of clusters consisting of k particles,
n(k), as well as kn(k), i.e. the number of particles of the
considered component belonging to a cluster consisting of k
particles of the same component. kn(k) is presented for N1 =
1800, N = 8000 and two temperatures, T* = 0.438, 0.313, for each
component in Fig. 17a and b. For comparison, we show in
Fig. 17c kn(k) for T* = 0.313, N = 8000 and N1 = 0. The snapshots
corresponding to the histograms in Fig. 17a–c are shown in Fig.
14–16, respectively.

At the higher T*, single particles of the minority component
dominate, kn(k) decreases from the maximum at k = 1, and
clusters larger than k = 6 are absent. On the other hand,
particles of the majority component are most probably mem-
bers of 5-particle clusters, and clusters consisting of up to 15
particles can be seen. At the lower T*, self-assembly of the
minority component into 3- or 4-particle clusters is more
probable than formation of dimers or monomers, kn(k) has a
minimum at k = 2 and the largest (rare) clusters consist of 8
particles. While the histograms of the minority component
change with decreasing T qualitatively, the histograms of the
majority component remain similar, except that much fewer

Fig. 14 Snapshot from MD simulations at N1 = 1800, N = 8000, T* =
0.438 projected on the planar square with Lx = Ly = 180.

Fig. 15 (a) a snapshot from MD simulations for N1 = 1800, N = 8000 and
T* = 0.313 projected on the planar square with Lx = Ly = 180. Note the
largest super-cluster in this configuration that consists of 280 particles and
is located inside the small frame. (b) The above super-cluster zoomed in.
The super-clusters are identified based on the four-bond criterion (Section
IV). If the one-bond criterion would be used, the particles located close to
the super-cluster would be identified as its part. However, life time of such
weakly connected super-clusters would be very short.

Fig. 16 Snapshot from MD simulations at T* = 0.313 for N1 = 0, N = 8000
(one-component SALR system) projected on the planar square with Lx =
Ly = 180. Total number of particles and T* are the same as in Fig. 15.
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particles of the majority component remain in the form of
monomers at the lower temperature. By comparing Fig. 17b
with Fig. 17c, we can see similarity between the distribution of
the particles of the majority component with the distribution of
the particles in the one-component system.

Similarity between the histograms for the second compo-
nent in Fig. 17b and c disagrees with the visual impression of
significantly different distribution of the particles in Fig. 15 and
16. This is because the distribution of the one-component
clusters does not give enough information about their connec-
tivity, clearly seen in the snapshots.

In Fig. 18 we compare the potential energy per particle, U/N,
in the mixture with N1 = 1800 and N = 8000, with U/N in the one-
component system (N1 = 0) with the same total density. Super-
cluster formation present only in the former case leads to a

significant decrease of the potential energy in the whole
temperature range. Because of this effect of super-clusters on
the energy, the ordered phases in the mixture can be stable at
temperatures higher than in the one-component system.

Unfortunately, there is no unique definition of the two-
component super-cluster, because there is no unique way of
defining the connectivity between the compact one-component
clusters, when the minimum of the energy of a pair of different
particles is very flat (Fig. 1). We choose for the analysis the
presence of at least four bonds between particles belonging to
different one-component clusters as the criterium that these
clusters belong to a super-cluster. For the details of the super-
cluster definition see Section IV. We use the same notation,
n(k), for the number of super-clusters consisting of k particles.

In order to analyse the super-clusters distribution, in Fig. 19
we plot the function

P(k) = ln(kn(k)) (12)

for the same thermodynamic states as in Fig. 17a and b. Linear
dependence of P(k) on k is clearly seen for suffciently large k in
Fig. 19, suggesting that n(k) has the following functional form

nðkÞ / expð�akÞ
k

; (13)

and that the probability of finding a particle in the super-
cluster consisting of k particles (proportional to kn(k)) has the
exponential form,

p(k) = A exp(�ak), (14)

where A is the normalization constant. A E a for integer k when
a { 1. The exponential form means that p(k) = p(k1)p(k � k1)/A
for any k1 r k/2, i.e. a formation of a large super-cluster occurs
with a probability that is approximately a product of probabil-
ities of findig super-clusters consisting of k1 and k � k1 particles,
times a�1

c 1. Since 1/a roughly measures the size of the largest

super-clusters, for k B 1/a we have pðkÞ �
Pk=2
k1¼1

p k1ð Þp k� k1ð Þ.

Fig. 17 The number of particles, kn(k), belonging to a one-component cluster consisting of k particles, divided by the number Ni of the particles of this
component in the system. In each case, N = N1 + N2 = 8000 and (a) N1 = 1800, T = 0.438, (b) N1 = 1800 and T = 0.313, and (c) N1 = 0, and T = 0.313. Red
and black symbols correspond to the minority (i = 1) and the majority (i = 2) component, respectively.

Fig. 18 Potential energy per particle (in |umin| units) for N1 = 1800 and N =
8000 (red circles), and for a one-component system (N1 = 0) at the same
total density (black squares) as a function of temperature (in kBT/|umin|
units). Note the inflection point in the red curve at T* between 0.25 and
0.3, where the heat capacity takes a maximum, and the order–disorder
transition occurs.
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Thus, the large super-clusters appear and disappear by forming and
breaking bonds between smaller super-clusters almost randomly.

We should note that P(k) depends on the definition of the
connectivity between the clusters quantitatively, but not quali-
tatively, i.e. we get the linear dependence of P(k) on k with
different slopes for different connectivity criteria. Importantly,
for given connectivity criterium a takes the same value for
different sufficiently large values of N. We obtained the same
results for a for N = 8000 and N = 32 000.

The size of the largest super-clusters is of order of 1/a that
depends on the thermodynamic state. We considered a number of
systems with different T*, N and N1, and determined a from the
slopes of P(k). a is shown in Fig. 20 for N1 = 1800 and N = 5280,
8000 as a function of temperature, and in Fig. 21 for T* = 0.313 as a
function of the molar fraction N1/N for fixed number of particles
N = 8010, and as a function of N/L2 for the mole fraction N1/N = 0.3.
The results of simulations (symbols) perfectly fit the stright lines in
Fig. 20, clearly indicationg the linear dependence of a on T*.

VI. Conclusions

We investigated patterns with long- and short-range order
formed spontaneously at low and high temperature, respec-
tively, in a monolayer of a binary mixture of particles or
macromolecules. In the studied generic model, alternating
stripes of the two components are energetically favoured. We
did not determine the full (r1, r2, T*) phase diagram, but from
our present and from the previously obtained results, we can
draw general conclusions concerning evolution of the pattern
formation.

The phase coexistences expected at very low temperature are
shown schematically in Fig. 10. The ordered dense phases of
microsegregated components consist of alternating stripes of
the two components or of clusters of the minority component
filling the hexagonally distributed voids in the crystal of the
majority component. These two-component phases coexist with
the phases formed by the majority component. For increasing
density of the majority component, the phases coexisting with
the two-component crystals have the structure predicted pre-
viously for the one-component SALR systems (Fig. 4–8). We
expect such phase behavior for various mixtures with energeti-
cally favored alternating thin stripes of the two components.32

When the interactions favor much wider stripes, however, at
low temperatures the microsegregation into stripes takes place,
and only at intermediate temperatures the hexagonal pattern
occurs.30 Thus, the phase diagram depends significantly on the
width of the self-assembled aggregates that in turn depens on
the shape of the interactions.

The one-component ordered phases melt at relatively low
temperature upon heating the system (Fig. 3), and the two-
component dense phases coexist with the disordered phase. At
the coexistence with the disordered phase, the phases with
periodically distributed components become less dense and less
ordered, and the structure of the disordered phase becomes
quite complex (Fig. 11). Further heating leads to transition
between the hexagonal and disordered phases, and finally
between the stripe and the disordered phases (Fig. 12 and 13).

Fig. 19 P(k) (eqn (12)) for N1 = 1800 and N = 8000. (a) T* = 0.438 and (b) T* = 0.313.

Fig. 20 The parameter a in eqn (14) for N = 8000 (blue symbols) and N =
5280 (red symbols) as a function of temperature T* = kBT/|umin|. Dashed
lines are the stright lines fitted to our reults.
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The snaphots of the disordered phase (Fig. 11, 14 and 15) show a
complex pattern that looks like a rather chaotic mixture of individual
particles, one-component clusters and two-component super-
clusters with various sizes. The super-cluster size distribution,
however, is surprisingly simple, kn(k) p exp(�ak), where n(k) is
the average number of super-clusters consisting of k particles.
Moreover, the parameter a is proportional to temperature (Fig. 20),
i.e. the size of the largest super-clusters, B1/a, is inversely propor-
tional to temperature. Super-clusters of different sizes behave like
different components in a multicomponent mixture, and the equili-
brium between assembly and disassembly of the super-clusters
resembles equilibrium in chemical reactions in such a mixture.

From the fundamental point of view, it is important that
only two types of ordered patterns with laterally microsegre-
gated components can appear in monolayers of the considered
binary mixtures. While the symmetries of the 2D ordered
phases in the one-component SALR and in our mixture are
the same, the structure of the disordered phase in the two cases
is significantly different. It is intriguing that the size distribu-
tion of the super-clusters in the considered mixture has a very
simple exponential form.

From the point of view of potential applications, it is
important that it should be easier to obtain spontaneously
ordered patterns in this type of mixtures than in the absence
of the second component, due to the much larger temperature
range of stability of the phases with the long-range order.
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