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In this work, with the intent of exploring the out-of-equilibrium polymerization of active patchy particles

in linear chains, we study a suspension of active bifunctional Brownian particles (ABBPs). At all studied

temperatures and densities, ABBPs self-assemble in aggregating chains, as opposed to the uniformly

space-distributed chains observed in the corresponding passive systems. The main effect of activity,

other than inducing chain aggregation, is to reduce the chain length and favour the alignment of the

propulsion vectors in the bonding process. At low activities, attraction dominates over activity in the

bonding process, causing self-assembly to occur randomly regardless of the particle orientations.

Interestingly, we find that at the lowest temperature, as density increases, chains aggregate forming a

novel state: MISP, i.e., motility-induced spirals, where spirals are characterised by a finite angular

velocity. In contrast, at the highest temperature, density and activity, chains aggregate forming a

different novel state (a spinning crystalline cluster) characterised by a compact and hexagonally ordered

structure, both translating and rotating. The rotation arises from an effective torque generated by the

presence of competing domains where particles self-propel in the same direction.

1 Introduction

In the last decades, significant progress in the comprehension
of the structural and dynamical properties of liquids has been
made through the investigation of colloidal particles interact-
ing via spherically symmetric or (more realistic) anisotropic
forces.1 A practical model proposed to study anisotropic inter-
actions between colloidal particles is the so-called ‘‘patchy
particle’’ model, consisting of hard-spheres whose surface is
decorated with a finite number of short-range attractive sites.2,3

Patchy particles have allowed elucidating the behavior of

network-forming materials,4,5 such as water6 or silica,7 finite
aggregates, such as surfactant micelles,8 or more complex
structures, such as proteins.9,10 Patchy particles have also
represented a novel class of building blocks for constructing
precise structures, where the arrangements and the selectivity
of the sites dictate the overall structure of the assemblies.11–14

Indeed, the bottom-up approach of patchy colloidal self-
assembly has proven to be pivotal for technological advance-
ments across diverse fields, including materials science,15

pharmaceutical industry,16 electronics,17 nanotechnology,18

and even food technology.19

Optimization of colloidal self-assembly, inspired by biologi-
cal matter, has been further achieved by introducing activity20

on simple colloids, with possible applications ranging from
targeted drug delivery21 to autonomous depollution of contami-
nated water and soils.22

The majority of the published work on active colloidal
matter has focused on suspensions of active particles interact-
ing via an isotropic potential (attractive23 or repulsive24). Only
more recently, the field of active matter has branched out to
explore the interplay between activity and anisotropic interac-
tions, with the goal of developing a systematic understanding
of how active forces can be exploited together with anisotro-
pic forces to design assemblies with desired structural and
functional features.25–27

Active colloids have been shown to aggregate into functional
structures not detected in equilibrium systems. When active
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particles are spherical and repulsive, they undergo a Motility
Induced Phase Separation,24,28 whereas when spherical and
attractive they form living clusters.23,29 Interestingly, when
active particles are elongated, they aggregate into functional
transient clusters capable of rotating, such as those reported
in ref. 30 and 31. Thus, in order to detect a spinning state in a
self-assembled suspension of active particles, one needs two
main ingredients: particle activity and shape anisotropy. On the
other side, one could consider spinning of an already formed
structure. Spinning has also been observed in a passive gear
embedded in an active bath of elongated particles, such as a
bacterial suspension.32,33 When dealing with active polymers, a
spinning spiral state appears whenever the propulsion force
along the polymer backbone is tightly parallel to the local
tangent.34,35 A recent work has revealed a spinning state in a
suspension of active particles whose shape is more complex
than spherical and is characterized by an attractive patch on
their surface.36

Full control of the complex dynamics of active patchy
colloids remains yet challenging. So far, research has focused
on tuning the shape, size, and composition of the patches in
order to control autonomous locomotion and spontaneous
assembly.27,36,37 Specific interactions can be obtained by imple-
menting lock and key groups on the particle surfaces, such
as DNA oligonucleotides, protein cross-linkers or antibody–
antigen binding pairs.38 Due to their ability to self-assemble
into chains, sheets, rings, icosahedra, tetrahedra, etc., patchy
colloids provide access to a broad range of active colloidal
materials.39

In this article, we explore the effects of activity on a system of
active patchy particles forming linear chains.40 In Section 2,
we report the numerical details of the system under study:
a two-dimensional suspension of active Brownian repulsive
particles whose surface is decorated with two diametrically
opposed attractive sites that interact via a short-range attractive
potential. In Section 3, we report the results, focusing on the
structural features and on two observed novel states: active
spirals and spinning crystalline clusters.41

2 Simulation details and analysis tools

We simulate a two-dimensional system of active bifunctional
Brownian particles (ABBPs) in a square box with periodic
boundary conditions. Particles are modeled as hard-disks with
diameter s, featuring two identical and diametrically opposed
attractive sites, and self-propelling in the direction of the vector
connecting the two sites (see Fig. 1a).

The two-body interaction potential between particles i and j
is given by:

V(i,j) = VCM(i, j) + VS(i, j) (1)

where VCM(i, j) represents the hard-core interaction between
the centers of mass and VS(i, j) represents the directional
attractive interaction between the sites. Specifically, as in ref. 42,

we choose:

VCMði; jÞ ¼
s
rij

� �m

(2)

VSði; jÞ ¼ �
X2
a¼1

X2
b¼1

e exp �1
2

rabij

a

 !n" #
(3)

where rij is the distance between the centers of mass of the two
particles and rab

ij is the distance between sites a and b located on
particles i and j, respectively. The selected interaction potential
incorporates the following assumptions: (1) particles are hard
(m = 200); (2) the site–site VS interaction resembles a square-
well (n = 10); (3) the single bond per site condition is fulfilled
(a = 0.12); and (4) the potential depth u0 is set to 1 (e = 1.001).
The choice of a = 0.12 rises from purely geometric considerations.
Indeed, geometric considerations for a three touching sphere
configuration show that the choice of a well-width 0.119s guar-
antees that each site is engaged at most in one bond.40 Fig. 1b
depicts the shape of the interaction potential (black line) when
two particles are in the most favorable bonding configuration.

Each particle is characterized by the position vector of its
center of mass r = (x, y, 0) and the orientation angle y
representing the direction of the vector connecting the two
sites with respect to the x-axis. The orientation vector Z = (cos y,
sin y, 0) is applied at each particle’s center of mass and is
restricted to rotate in the two-dimensional plane of the system.

While self-propelling in the same direction of the orienta-
tion vector with a constant speed v, each particle undergoes
Brownian motion, in both position and orientation, at a con-
stant temperature T. Thus, for a particle i, the translational and
rotational equations of motion read as:

_riðtÞ ¼
DT

KBT
Fi frij ; gi; gjg
� �

þ vgiðtÞ þ
ffiffiffiffiffiffiffiffiffi
2DT

p
xTðtÞ (4)

_giðtÞ ¼
DR

KBT
Ti frij ; gi; gjg
� �

þ
ffiffiffiffiffiffiffiffiffi
2DR

p
xRðtÞ � gðtÞ (5)

The diffusion coefficients DT and DR relate to each other via
DR = 3DT/s2. In both the translational and rotational equations,

Fig. 1 (a) Pictorial representation of ABBPs: hard-disks featuring two
identical and diametrically-opposed attractive sites (small golden disks)
and self-propulsion (red arrow) along the segment connecting the two
sites. (b) Interaction potential between two ABBPs in the most favorable
bonding configuration, i.e., when two sites are facing each other (see
inset). The dashed red line represents the hard-core plus square-well
potential used as a reference for the choice of the interaction potential.
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the Gaussian white-noise terms are characterized by hx(t)i = 0
and hx(t)x(t0)i = d(t � t0). The total force Fi and torque Ti acting
on each particle are, respectively, given by:

Fi frij ; gi; gjg
� �

¼
X
jai

Fijðrij ; yi; yjÞ ¼ �
X
jai

rrij Vijðrij ; yi; yjÞ (6)

Ti frij ; gi; gjg
� �

¼
X
jai

Tijðrij ; yi; yjÞ

¼
X
jai

gi �
@Vijðrij ; yi; yjÞ

@gi
(7)

where Fij and Tij are, respectively, the force and the torque
between particles i and j interacting via the potential Vij = V(i, j)
described in eqn (1). The potential only depends on the
distance between centers of mass rij and the orientations of
both particles yi and yj.

In this article, all results are reported in reduced units. The
unit length is s (one particle’s diameter, which is set to 1) and
the energy unit is u0 (the potential depth, which is also set to 1).
With kB = 1, temperature is measured in units of energy. Time is
in units of s2/DT. All simulations are run for at least 108 steps
with an integration time step of 10�6 units.

We set the number of particles to N = 5000 and simulated
the system at four different number densities r = N/A (with A
the total area): r = 0.1, 0.2, 0.3, and 0.4. Activity is quantified by
means of the Péclet number, defined as in ref. 43:

Pe ¼ 3vtR
s

(8)

tR = 1/DR being the reorientation time. We fix the value of
the rotational diffusion (DR = 3) and vary the value of the
propulsion speed. Specifically, the Péclet number varies
among the following values: Pe = 0, 1.66, 3.33, 5, 10, and 20
(corresponding to speeds v = 0, 1.66, 3.33, 5, 10, and 20,
respectively). Simulations in the passive regime (Pe = 0) are
performed as a reference. We choose to study the behaviour of
the system at two temperatures: a lower one T = 0.07 and a
higher one T = 0.1.

In order to study the assembly features of the suspension,
we evaluate the chain length distribution rch and the cluster
size distribution rcl according to:

rchðlÞ ¼
NlP
l

Nl

* +
(9)

rclðsÞ ¼
NsP
s

Ns

* +
(10)

where Nl is the number of chains of length l, Ns is the number
of clusters of size s,

P
l

and
P
s

run, respectively, over all chain

lengths and all cluster sizes and h� � �i averages over steady state
configurations. The maximum values of l and s are fixed by the
largest chain and largest cluster found in the entire simulation.
On the one hand, the chain length distribution relies on an
energetic criterion: two particles form a chain bond when their

interaction energy is lower than �0.3 units. On the other hand,
the cluster size distribution relies on a geometric criterion: two
particles belong to the same cluster when the distance between
their centers of mass is smaller than 1.2 units.

To describe the structural properties of the suspension, we
compute the system structure factor:

SðqÞ ¼ 1

N

XN
m¼1

XN
n¼1

e�iq� rm�rnð Þ

* +
(11)

where q is the exchanged wave vector, rm is the coordinate of
particle m and h� � �i averages over steady state configurations.

In order to be able to extract more detailed conclusions, we
have decided to compare the S(q) calculated from the simula-
tions (eqn (11)) with a theoretical S(q) representative of an ideal
gas of polydisperse straight chains (eqn (12)). In the ideal gas
limit, correlations between different chains can be neglected,
and the structure factor of the system should be provided by the
structure of a single chain, weighted by the appropriate chain
length distribution:

SðqÞ ¼

P
l

rl lSlðqÞP
l

rl l
(12)

where Sl(q) is the structure factor of a chain of length l:

SlðqÞ ¼
1

l

Xl
m¼1

Xl
n¼1

e�iq� rm�rnð Þ

* +
(13)

which, under the approximation that chains are straight, and
averaging over all possible orientations of a chain, becomes:

SlðqÞ ¼
1

l
l þ
Xl�1
m¼1
ðl �mÞ e�iqsm cos y þ eiqsm cos y� �" #

(14)

¼ 1

l
l þ
Xl�1
m¼1

2ðl �mÞ cosðqsm cos yÞh i
" #

(15)

¼ 1þ 2

l

Xl�1
m¼1

l �mð ÞJ0ðqsmÞ
" #

(16)

where J0ðxÞ ¼
1

2p

Ð 2p
0 cosðx cos yÞdy represents the Bessel func-

tion of order zero. Any deviation we observe with respect to the
theoretical predictions is due to a correlation between chains or
the bending of the chains.

To analyze the bonding dynamics, we compare the orienta-
tion of the first and the second particle of each chain and
assign +1 if the orientations are the same and �1 if they are not
(i.e., we measure the scalar product between the two propulsion
vectors and assign +1 if the product is greater than 0 or �1 if is
less than 0). We repeat the same procedure for each pair of
particles in the chain and then sum all values. Hence, for each
chain i of length l, we obtain a value Bi ranging between +(l � 1)
and �(l � 1). The upper limit +(l � 1) represents the case in
which all particles are assembled with the same orientation and
the lower limit �(l � 1) represents the case with alternating
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ones. We evaluate the average over all Nl chains of length l
(EB(l)) and the variance (VarB(l)) as:

EBðlÞ ¼

PNl

i¼1
Bi

Nl
(17)

VarBðlÞ ¼

PNl

i¼1
Bi

2

Nl
� EB

2ðlÞ (18)

This method is intended to determine whether two particles
prefer to assemble with propulsion vectors aligned in the same
direction, in opposite directions, or randomly, rather than
evaluating the chain propulsion. Given the flexibility of the
chains, simply summing all propulsion vectors in one direction
and subtracting the ones in the opposite direction would not
adequately evaluate the chain propulsion.

When the formed structures are more compact, we evaluate
the hexagonal order parameter,44 whose expression, for each
particle m, is given by:

cm ¼
1

k

Xk
n¼1

eikymn (19)

where the sum runs over the k = 6 nearest neighbors and ymn is
the angle formed by the vector rmn and the x-axis. In particular,

we are interested in: c ¼
PN
m¼1

cm=N

	 

, where h� � �i average over

steady-state configurations.
In the context of the crystalline structure, predominantly

characterized by straight chains, we evaluate the chain propul-
sion as follows. For each chain, we compare the orientation of
the first particle with the orientation of each other particle and
assign +1 if they are the same (scalar product greater than 0) or
�1 if they are not (scalar product less than 0). Then, chain
propulsion is obtained by summing 1 (value for the first
particle) to all values, once computed its absolute value. We
normalize the chain propulsion by dividing it by the chain
length, with 0 indicating no propulsion and 1 indicating
maximum possible propulsion. Intermediate values provide
insight into the chain’s propulsion relative to its maximum
possible value.

To demonstrate that a phase separation takes place, we
assess the local density distribution by applying a Voronoi
tessellation to the system.45 Each cell in the Voronoi tessella-
tion corresponds to the area of a particle identified by all
points that are closer to that particle than to any other. The
reciprocal areas of these Voronoi cells can be interpreted as
local densities.

As far as we are aware, one can characterise a spiral-like
structure quantifying the number of turns of the chain, by
computing either the turning number34 or the spiral number.46

The two quantities, although defined in a slightly different way,
identically give the same information.

The turning number is computed,34 for each chain i with
length l, as:

wi ¼
1

2p

Xl�1
j¼1
ðbjþ1 � bjÞ (20)

where bj is defined by t̂j = (cos bj, sin bj), which represents the
bond unit vector t̂j = (rj+1 � rj)/|rj+1 � rj|. Thus, (bj+1 � bj) gives
the angle increment between two consecutive bonds. The turn-
ing number defines the transition from an elongated to a spiral
state, by quantifying the number of turns of the chain between
its two ends: wi = 0 (no turns), wi = �1 (one turn), wi = �2
(two turns), and so on. In particular, we are interested in the

average turning number, defined as: w ¼
P�N

i¼1
wij j= �N

* +
, where

%N is the total number of chains and h� � �i average over steady
state configurations.

The spiral number,46 for each chain i with length l, is
defined as:

si ¼
al � a1
2p

(21)

where al is the bond orientation of the last monomer and a1 of
the first one. To note that, in this case, the bond orientation a
takes into account all full rotations. Therefore, a can be larger
than 2p. The spiral number defines the transition from an
elongated to a spiral state, by quantifying the number of turns
of the chain between its two ends: si = 0 (no turns), si = �1
(one turn), si =�2 (two turns), and so on. Thus, the definition of
the turning number is equivalent to that of the spiral number
(see the ESI†).

To conclude, we underline that one could also use the end-
to-end distance of the chain to characterise the spiral state.
Our choice is to focus on the turning number in the main text
as a way to characterise the system in a spiral state. The results
on the spiral number are reported in the ESI.†

3 Results

We define the steady state as the state where the total number
of bonds is stationary in time (the same applies for the total
potential energy, see the ESI†). We cannot exclude that at
longer time intervals a coarsening (or phase separation) could
occur, but our evidence suggests that the system enters a
stationary state where all static quantities (such as chain length
and cluster size distributions) do not change over time. We
start by analysing the phase behaviour of the suspension when
varying activity and density. Fig. 2 reports two panels, each
showing snapshots taken once the system was in steady state:
the top one represents the system at a lower temperature
(T = 0.07) and the bottom one at a higher temperature (T = 0.1).

Passive particles (left-most column) self-assemble into uni-
formly space-distributed linear chains (independently of tem-
perature and density). With increasing activity, active particles
self-assemble into linear chains that aggregate with each other.
These dense and compact structures are more clearly visible at
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the highest density (top row in both panels of Fig. 2). At the
lowest temperature, aggregates appear even at lower densities
(bottom rows of the top panel of Fig. 2). For the largest
simulated activity Pe = 20 (at the highest temperature, bottom
panel), the system forms a compact and ordered structure.

Counterintuitively, this compact and ordered structure
forms at the highest temperature: this is coherent with the fact
that shorter chains are present at this temperature. This is
further supported by the observation of this structure at the
highest activity, when chains are the shortest.

We underline that the spinning crystalline phase differs
from the well known MIPS phase for many reasons. First, this
compact structure is rotating and translating, while the dense
phase in MIPS does not rotate. Second, the spinning crystalline
phase is composed of chains of different lengths instead of
single particles as in the MIPS phase. Third, the spinning
crystalline phase is characterized by a monocrystalline struc-
ture instead of a polycrystalline one, as in the MIPS case.
To better characterize the region of the state diagram where
the crystal is observed, we report a zoom of the state diagram in
the ESI.†

At the lowest temperature and highest densities (rows r = 0.4
or r = 0.3 of top panel of Fig. 2), especially when the activity

assumes low or mid-range values (such as Pe = 1.66, 3.33, or 5),
chains aggregate forming spirals which are rotating at a finite
angular velocity, reminiscent of the recently experimentally
observed spirals in driven actin filaments on a motility
assay.47 We note that these spirals differ on the basis of their
structures from the vortices detected in experiments of active
filaments in ref. 48. These aggregates are very different from the
density fluctuations observed in the suspensions of purely
repulsive active Brownian particles (MIPS).24 For this reason,
we define this novel state with the acronym MISP, i.e., Motility-
Induced SPirals.

The most common aggregated states are temporary chains
of different lengths or compact spinning crystals. In the former
case, i.e. when particles form a chain, they are able to adjust
their propulsion direction while maintaining the bond with
neighboring particles. However, if a particle’s propulsion direc-
tion changes such that the particle can no longer stay con-
nected to its neighbor, the chain breaks. This constrains how
much particles in a chain can change their propulsion direc-
tion. On the other hand, a crystal is a more compact structure,
even though it consists of several chains merged together.
In this case, if particles change their propulsion direction
enough to break the bonds within the chain they belong to,
they are trapped by their neighbors and the compact structure
does not break (unless they are located at the outer surface of
the crystal and are free to move away).

3.1 Chain and active spiral phase

In either passive or active systems, particles self-assemble into
linear chains whose length distribution decays exponentially
(see Fig. 3a and c). In active systems, chains tend to be shorter
than in the corresponding passive system. In particular, the
higher the activity, the shorter the chains. This is observed at all

Fig. 2 Steady state configurations, as a function of activity and density, at
temperature T = 0.07 (top panel) and T = 0.1 (bottom panel). Activity
increases horizontally (from left to right) and density increases vertically
(from bottom to top).

Fig. 3 Chain length distributions (left) and cluster size distributions (right)
at temperature T = 0.1, density r = 0.3 (top) and density r = 0.4 (bottom),
and all Péclet numbers studied (as indicated in the legend). Note that the
bottom panels do not include the case Pe = 20 (red line), where the system
is in a crystalline phase.
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temperatures and densities within the studied ranges (see the
ESI† for the chain length distributions and cluster size dis-
tributions at different temperatures and densities). Therefore,
activity clearly affects chain formation.

Moreover, as activity increases, a consistently more pro-
nounced peak is observed at small chain lengths, likely due
to the higher diffusivity of small chains as compared to long
ones. This faster diffusion of smaller chains likely results in
their quicker assembly with other particles, leading to a smaller
number of small chains than what would be expected from the
exponential trend.

On top of that, as density increases, chains aggregate form-
ing clusters. At the highest density (see Fig. 3d), both passive
and active clusters exhibit percolation. In fact, all cluster size
distributions follow the same power law: rch(s) B s�t with
t = 2.05, which is consistent within the random percolation
universality class.49

At the highest density (Fig. 3d), the cluster size distributions
for all active systems present a peak for large cluster sizes
(of the order of the total number of particles). A similar
behavior has already been observed by the authors of ref. 50,
which have demonstrated that the cluster size distribution of a
system of self-propelled soft disks exhibits a peak when the
system phase separates. The peak corresponds to a cluster size
equal to the average number of particles in the dense phase. In
contrast, the dilute phase contributes to the same cut-off power
law observed in the homogeneous state.

Using a kinetic model in a finite-size system of active
particles, the authors of ref. 51 and 52 have quantitatively
demonstrated that active systems can exhibit not only an
individual phase (characterized by a cluster-size distribution
dominated by an exponential form) but also a clustering phase,
characterized by a non-monotonic cluster-size distribution.
In the latter case, a peak appears towards the tail of the
distribution, which is an indication of particles aggregating
in one large cluster. We observe the same features in our dense
active system.

Instead, at a lower density (see Fig. 3b), only the clusters in
the more active systems percolate. Indeed, the passive cluster
size distribution follows an exponential power law, indicating
that clusters simply coincide with chains.

As clearly reported in Fig. 3, neither the chain length nor the
cluster size distribution show any relevant density-dependent
behavior. For this reason, from now onward, we will mostly
present our results at density r = 0.4 (indicating when not
otherwise).

Even though clusters percolate in both passive and active
systems, their structures differ significantly due to activity.
Fig. 4 illustrates the structure factor S(q) at different Péclet
numbers. As expected, due to the excluded volume effects, S(q)
oscillates with a periodicity set determined by the diameter
(first neighbors peak in Fig. 4).

An important finding in S(q) of passive systems is the
presence of a peak at qs E 3, which indicates the alignment
within the chains. As activity increases, the peak shifts towards
the first neighbors and, so, disappears. Its disappearance

implies that chains are aggregating among each other instead
of being uniformly distributed, as a characteristic distance
between chains is no longer evident.

The peak at qs E 3 also vanishes when decreasing the
density, implying that the chain alignment cannot generate a
sufficiently strong signal when the system is too diluted. Fig. 5
shows the comparison of S(q) of passive systems at different
densities with S(q) of an ideal gas of polydisperse straight
chains (dotted black line). In the latter case, where chains
are straight and non-interacting, the peak at qs E 3 is not
expected.

Chaining manifests in the non-negligible values of S(q) at
small q. In particular, higher values are observed in the active
case compared to the passive one (see Fig. 4). In the passive
case, higher values are observed at lower densities (see Fig. 5),
with particularly elevated values in the case of the ideal gas of
polydisperse straight chains.

Non-negligible values of S(q) at small q are present.
In particular, higher values are observed in the active cases
(see Fig. 4). In the passive case, higher values are observed at
lower densities (see Fig. 5), with particularly elevated values in
the case of the ideal gas of polydisperse straight chains.

Fig. 4 Structure factors S(q) at temperature T = 0.1, density r = 0.4, and
all Péclet numbers studied, except Pe = 20, where the system is in a
crystalline phase (see legend). The peak at qs B 3, indicating chain
alignment, disappears as activity increases. This observation holds also at
the other studied temperature and densities.

Fig. 5 Structure factors S(q) for the passive system at temperature T = 0.1
and varying density as indicated in the legend. The dotted black line
represents the structure factor of an ideal gas of polydisperse straight
chains.
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When analyzing the structure factor at different Péclet
numbers, we do not observe any significant signal indicating
the presence of spiral structures (see the ESI† for the analysis of
the structure factor of spiral configurations).

To better understand chaining, we study the dynamics of the
bonding process, to unravel whether particles have a tendency
to self-assemble into chains with similar or opposite orienta-
tions and whether such tendency is related to activity. We will
present our results at density r = 0.3 at which the system (for
the chosen temperature and activity range) is never in a crystal-
line state. This allows us to present the full range of simulated
activities. At low activities, EB(l) B 0 and VarB(l) B l � 1 (see
Fig. 6). This means that Bi follows a Bernoulli distribution with
equal probability of success (particles placed with the same
orientation of the preceding one) and failure (particle placed
with the opposite orientation of the preceding one). Hence,
attraction dominates over activity in the bonding process,
leading self-assembly to occur randomly regardless of the
particle orientations.

As activity increases, Fig. 6 shows that both EB(l) and VarB(l)
consistently take larger values. This indicates, for every bond-
ing event, an increase of the probability of two particles to self-
assemble with the same orientation and a decrease of the
probability to self-assemble with opposite ones. In this
instance, self-assembly occurs favouring an alignment of the
propulsion vectors. Hence, activity affects bonding, as we
observe the propulsion vectors of two particles aligning when
forming a bond.

At the lowest temperature and highest values of density and
activity, the chains aggregate forming rotating spirals. A movie
representing spiral formation is shown in the ESI.† The pathway
for spiral formation is characterised by a few steps: (1) ABBPs
self-assemble to form long chains; (2) chains aggregate due to
their persistent velocity; (3) due to combined density and tem-
perature effects, chains merge forming spirals, that spin due to
the alignment within the chains.

We characterise the MISP state via the average turning
number w (being w small when spirals are not present and large
when spirals are present in the system). Setting the temperature
at the lowest value, where we know the system can be in a spiral
state, we report the average turning number w as a function of
density r for different Péclet numbers (Fig. 7a).

As expected, spiral formation occurs at higher density and
smaller activity values. This is because when the system is too
diluted (low density), the chains do not need to compete for
space and move freely, and when activity is too high, chains are
too short to coil into a spiral. In the ESI† we also show the
probability density distribution of the average turning number.

To understand the reason why the values of the turning
number reported in Fig. 7a are so small, we plot a typical
snapshot of the system in a spiral state as shown in Fig. 7b:
particles color-coded according to the absolute value of the
spiral number. Spirals are usually formed by more than one
chain and only a few of them are able to form strongly wound-
up conformations. The reason for this is that these structures
are quite unstable (unfolding and folding all the time) while
also varying in size.

As in ref. 46, we have also computed the absolute value
of the spiral number, averaging over all chains and over all
configurations (Fig. 8 of the ESI†). Comparing the spiral
number to the turning number computed for the same system,
we observe they coincide, being both very small for all the
chosen parameters (as shown in the snapshot of Fig. 7b).

3.2 Spinning crystalline cluster phase

At the highest temperature, density and activity (top-right
configuration of bottom panel of Fig. 2), the system forms a

Fig. 6 EB(l) (left) and VarB(l) (right) at temperature T = 0.1, density r = 0.3,
and all Péclet numbers studied (see legend). As activity increases, EB(l) and
VarB(l) take larger value consistently. This observation holds also for the
other studied temperature and densities.

Fig. 7 (a) Average turning number w as a function of density r at tem-
perature T = 0.07 and all Péclet numbers studied at this temperature.
(b) Typical spiral configuration (T = 0.07, Pe = 1.66, and r = 0.4) with particles
color-coded according to the absolute value of the spiral number |wi|.

Fig. 8 (a) Local density distributions at temperature T = 0.1 and density
r = 0.4. Péclet numbers vary according to the legend. At the highest Péclet
number (red color), the distribution is characterized by two distinguished
peaks, which indicate phase separation. (b) Crystal steady-state configu-
ration with particles color-coded according to the reciprocal volumes of
the associated Voronoi cells.
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crystalline cluster. Crystalline clustering is a two-step self-
assembly process (first particles self-assemble into chains, next
chains self-assemble into a cluster). For a more comprehensive
overview of this process, in the ESI,† we show local density
distribution computed for the location of the centers of mass
of the chains in the crystalline configuration, together with

a typical snapshot showing their location in the crystalline
cluster.

Fig. 8a shows the local density distributions (evaluated
performing a Voronoi tessellation of the system) at the highest
temperature and density. A phase separation takes place at the
highest activity (red line), as shown by the rise of two distin-
guished peaks. The bimodal behavior of the distribution is
visible even though the distribution assumes non-zero values at
mid-range densities, which is due to the contribution of
particles located at the boundary of the crystalline cluster.
Fig. 8b shows all particles of the crystalline configuration
color-coded according to the reciprocal volumes of the asso-
ciated Voronoi cells, clearly illustrating their influence on the
local density distribution.

Interestingly, the pathway towards crystal formation follows
the steps reported in Fig. 9 (also a movie of the entire process is
shown in the ESI†).

Fig. 9a shows an initial state where chains start to form and
aggregate but not in a stable way. Fig. 9b shows a stable cluster
of chains with a head (bluish chains) and a tail (yellowish
chains). Yellowish chains are chains where particles are point-
ing all in one direction and so have a non zero chain propul-
sion. Fig. 9c shows that the pushing chains in the tail allow the
cluster to explore the system, leading to its growth due to the
aggregation of other rather slow chains. All chains aggregate in
a compact way and activity helps to anneal defects present in
the cluster increasing its crystalline order (Fig. 9d).

Once the crystal is formed, it is interesting to notice that it
translates and rotates. To characterise its structure, we com-
pute several properties. Fig. 10 depicts this steady state configu-
ration in three different panels.

In Fig. 10a, particles are colored according to the value of
the crystalline order parameter ci (whose averaged value over
all particles is c E 0.87). In the core of the dense structure,
particles are arranged as in a hexagonal lattice with disclinations.

Fig. 9 Snapshots taken along the crystallization process. Particles
belonging to the same chain are depicted with the same color. A different
color indicates a different value of the chain propulsion (as introduced in
Section 2) divided by the chain length. (a) Chains are forming and
aggregating but there is not a stable nucleus. (b) A stable nucleus is formed
with a head (bluish chains) and a tail (yellowish chains). (c) The nucleus is
moving and aggregating chains in the head. (d) The growing nucleus
becomes a stable crystalline structure.

Fig. 10 Crystalline structure formed at the highest temperature (T = 0.1), density (r = 0.4), and Péclet number (Pe = 20). (a) Particles are colored
according to the value of the crystalline order parameter ci. While ci = 1 represents perfect order, ci = 0 no order at all. (b) Particles belonging to the same
chain are depicted with the same color. A different color indicates a different value of the chain propulsion (as introduced in Section 2) divided by the
chain length. While 1 indicates that all particles are arranged in the chain with same orientation, 0 with orientations alternated. (c) Particles are colored
according to the value of the orientation vector along the x-axis. Note that cos yi = 1 indicates self-propulsion toward the right side of the box, cos yi = �1
toward the left side, and cos yi = 0 toward the top or bottom side. The big black arrows indicate the main direction of self-propulsion for each domain.
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All particles not belonging to the crystal are monomers, dimers or
trimers. In Fig. 10b, particles are colored with the same color
when belonging to the same chain and according to the value of
the chain propulsion (as introduced in Section 2) divided by
the chain length. In the core of the dense structure, particles
are arranged in straight chains, with alternated orientations in
the innermost region and similar orientation in the outermost
regions. This is due to the fact that, once the crystal core is
formed, particles aggregate to it at the interface (see crystallization
process in Fig. 9). In Fig. 10c, particles are colored according to
the value of the orientation vector Z along the x-axis. We note the
presence of domains where particles are self-propelling in the
same direction. The direction of such domains are indicated with
black arrows. This results in an applied torque to the crystalline
cluster. Thus, the crystalline cluster has a finite angular velocity
other than a translating motion of its center of mass dictated by
the evaporating front.

4 Conclusions

We investigate the phase behaviour of a model system made of
active Brownian particles with two opposite-located short-range
attractive sites. Our work explores the role of activity, tempera-
ture and density in the process of polymerization of active
patchy particles in linear chains.

If particles are active, they self-assemble into chains which
then aggregate (as opposed to uniformly space-distributed
chains observed in the passive corresponding systems), forming
from motility-induced spirals (lowest temperature and higher
densities) to crystalline clusters (highest temperature, density
and activity).

To characterise the structural features of the aggregated
chains, we evaluate the cluster size distributions on an energetic
and geometric basis. In particular, the first method (energetic
bonds) allows us to characterize the length of the chains in
function of the density, temperature and, most importantly,
activity. The presence of activity reduces the average chain length
at every temperature and density combination. On the other
hand, the second method (geometric bonds) is evaluated with
the purpose of characterizing the spatial chain aggregates. As a
result, we observe the onset of a percolation phenomenon in a
wide range of densities.

Then, we keep trying characterization the chain aggregates.
This time we exploit a well-known quantity in the description of
a system’s structural properties, which is the structure factor.
In all passive systems at the highest density, we observe the
presence of an anomalous peak in the function that we attrib-
uted to the alignment of the chains. Furthermore, as activity
increases, we observe that such peak shifts towards the
first neighbors peak. This can be explained by the fact that
when activity is introduced in the system, chains do not uni-
formly distribute but aggregate, and thus we cannot identify a
characteristic length anymore.

Next, the analysis proceeds by investigating the arrangement
of the particles within the chains based on the direction of the

propulsion vectors. Specifically, our interest focuses on under-
standing whether the particles were bonding with propulsion
vectors in the same or opposite direction. In systems with
low activity, we find the probability of bonding in the same
direction to be equal to the probability of bonding in the
opposite direction, i.e., the attraction being dominant over
activity in the bonding process. Interestingly, as activity
increases, we note the probability of bonding in the same
direction increases. This result is in agreement with our pre-
dictions of a bonding process being mainly determined by
activity.To summarize, in passive systems, clusters are made
of long, aligned and slow chains, while in active systems,
clusters are made of short, aggregating and fast chains.

Finally, we focus on the formation and features of the
crystalline structure observed at the highest values of tempera-
ture, density and Péclet number. In particular, we discover a
significant rotation of the crystal cluster. The rotation arises
from an effective torque generated by the presence of domains
where particles are self-propelling in the same direction. What
controls the nature of the fluid-to-solid transition in this active
system surely deserves further investigation.

In this study, we can tune the flexibility of the chains by
changing the angular aperture of the patch interaction. But in
order to compare these results with those reported in our
manuscript we would need to keep the bonding volume con-
stant (since the dimerization constant depends on it). Unfortu-
nately this cannot be done with the current functional form of
the potential (which is square-well patchy) and would require
us to switch to a different model (Kern–Frenkel53). This will be
the subject of a future research.

In conclusion, the presented results demonstrate the rich
dynamics and emergent phenomena in active bifunctional
Brownian particles highlighting the potential for a deeper
understanding of out-of-equilibrium systems, and for novel
applications in colloidal science.
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