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High-entropy alloys (HEAs) have emerged as a promising class of multisite catalysts that exhibit high levels of
performance due to a diversity of active sites; however, establishing their structure—performance
relationships remains a grand challenge. Herein, we systematically explored the structure—activity—
selectivity relationship of HEAs for the CO, reduction reaction (CO,RR) with the assistance of a machine
learning framework and density functional theory computations. Statistical analysis of hundreds of
thousands of binding energies of *CO, *CHO, and *H on (FeCoNiCuMo)ss clusters revealed that HEAs can
break the well-established scaling relationship of pure metal catalysts, but they also face an activity—
selectivity tradeoff. This originates from the positive role of the unpaired d electron number in enhancing
the binding strength of *CHO and *H and limits the overall performance. Moreover, an activity and

a selectivity descriptor were constructed, giving accurate predictions for the performance variations of the
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Accepted 29th September 2025 reported experiments. On this basis, rapid screening among 26 334 types of HEAs was performed, and 10

promising candidates that balanced activity and selectivity were selected. Our workflow not only provides

DOI: 10.1039/d55c05762k quantitative criteria to accelerate the rational design of HEA catalysts for the CO,RR, but it also offers
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Introduction

The interaction between reaction intermediates and catalysts
usually plays a dominant role in catalysis.” Due to the exis-
tence of an intrinsic correlation between different binding
strengths of different intermediates, pure-metal or single-site
catalysts usually exhibit functioning that is far below that of
an ideal performance.**® This situation is more pronounced in
multistep reactions that require balancing the interaction of
a series of intermediates. It is expected that multisite catalysts
will overcome this limitation due to the presence of diverse
active sites that will play different roles during the entire
process.”” Therefore, as typical multisite catalysts, high-entropy
alloys (HEAs) have attracted great attention and shown superior
catalytic performance in widespread reactions, such as the
hydrogen evolution reaction (HER),"*** oxygen evolution reac-
tion (OER), ™ and oxygen reduction reaction (ORR).***”
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a systematic approach to unraveling the intricate structure—performance relationship in complex systems.

Despite these achievements, successful applications of HEAs in
a typical multistep reaction, i.e., the CO, reduction reaction
(CO,RR), are quite rare,®?® and how to design and optimize
their structure to realize superior performance remains a grand
challenge.

The structure-performance relationship unveils how mate-
rial structure influences its properties and ultimately
performance.”** and has been widely adopted to guide catalyst
design and optimization. However, the diverse active sites of
HEAs also give rise to an extremely complicated structure-
performance relationship,*?® in addition to the great promise
for realizing unattainable performance. Because of the large
number of possible active sites in HEAs, it is computationally
costly to comprehensively assess the binding strength of reac-
tion intermediates.””?®* However, diversity in structure
undoubtedly leads to the wide difference in binding strength
across different active sites,>?° and therefore, it is also very
challenging to determine how to computationally evaluate the
overall performance. As a result, the structure-performance of
HEAs remains underexplored, although there have been great
efforts in the study of HEA catalysts.

Aiming at this challenge, a machine learning (ML) workflow,
coupled with density functional theory (DFT) calculations and
statistical approaches, was adopted to explore the structure-
activity-selectivity relationship of HEAs for the CO,RR. Using
(FeCoNiCuMo)ss HEA clusters as prototypes, the binding
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energies of three key intermediates, *CO, *CHO, and *H (AE+co,
AE+cuo and AE.«y), on an appropriate portion of possible sites
were calculated using DFT computations. On this basis, three
ML regression models were trained, realizing the rapid and
accurate prediction of AE«co, AExcho, and AExy on all the
possible sites of (FeCoNiCuMo)ss HEA clusters (81 900, 488 250,
and 488 250 for *CO, *CHO, and *H, respectively).

Statistical analysis of the obtained hundreds of thousands of
binding energies revealed an activity-selectivity tradeoff that
leads to a low overall performance of HEAs for the CO,RR. This
rationalizes the aforementioned phenomenon that experi-
mental reports on HEAs for the CO,RR are very rare, despite the
abundance of research in electrocatalysis. Additionally, classi-
fication models for activity and selectivity evaluations were
established to determine the key factors regarding catalytic
performance, and the structure-activity-selectivity relations
were explored based on the SHapley Additive exPlanations
(SHAP) analyses of these features. Furthermore, we constructed
activity and selectivity descriptors using SHAP values, and
related experimental reports were referenced to validate the
reliability. Finally, these descriptors were employed for the
rapid screening of 26 334 types of unknown HEAs, where 10
promising candidates with significantly enhanced performance
as compared to reported HEAs were determined.

Computational methods
DFT calculation

The first-principles calculations were implemented using the
projector augmented wave method as employed in the Vienna
Ab initio Simulation Package (VASP).*'*> The Perdew-Burke-
Ernzerhof (PBE) functional was used to treat the exchange-
correlation interactions.®*** The van der Waals interactions
were incorporated using Grimme's D3-type of semi-empirical
method.*® All calculations were performed in a 20 x 20 x 20
A3 periodic cubic simulation box, sufficiently large to exclude
interactions between adjacent nanoparticles, and the Brillouin
zone was sampled by the gamma point. All the geometries were
fully optimized, where the convergence criteria for total energy
and forces were set at 10> eV and 0.02 eV A™*, respectively. Spin
polarization was considered, and the energy cutoff for the
plane-wave basis set was 450 eV. LOBSTER software was used
for the crystal orbital Hamilton population (COHP) analysis.*®

In the calculation of binding energies, to compare the
scaling relations of HEA clusters with those of transition metals,
we used the same calculation equations reported by Negrskov
et al®** The binding energies of *CO, *CHO, and *H are
calculated through:

AE*CO = E*CO — Ex — ECO

1
AE*CHO = E*CHO — E« — ECO — EE]-[2

1
~Ey

AE*H:E*HfE*f 2 5
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where AE«co, AE+chyo, and AE«y are the binding energies of
*CO, *CHO, and *H, respectively. E+co, Excuo, E+u, and E«
represent the total energies of *CO, *CHO, *H adsorbed on HEA
clusters, and isolated HEA clusters, respectively. Eco and Ey,
represent the energy of gas-phase species for CO and H,,
respectively.

ML methods

The workflow employing ML methods, including ML regres-
sion, ML classification, and SHAP analyses, to investigate the
structure-performance relationship in catalysis is presented in
Fig. S1. For ML regression, the XGBRegressor algorithm was
utilized to build prediction models for the binding energies of
*CO/*CHO/*H, and the mean square error (MSE) was adopted
to evaluate the model performance.***® For ML classification,
the XGBClassifier algorithm was utilized to build models to
distinguish the activity/selectivity of HEAs, and the area under
the receiver operating characteristic (ROC) curve was utilized
to evaluate model performance.*** During the training
process, 5-fold cross-validation was employed to mitigate the
bias resulting from data splitting and obtain more reliable
estimates of model performance, and the optimal hyper-
parameters for each ML model were selected to obtain the
optimal model (Table S1).** To break the ‘black box’ of ML
models for interpretability, SHAP values were computed with
the SHAP packages to quantify the marginal contribution of
features.**

Results and discussion

To explore the structure-performance for CO,RR, a Cu-based
HEA cluster, namely, (FeCoNiCuMo)ss, consisting of 55 metal
atoms (Mss) with random occupation of five commonly used
metal elements, including Fe, Co, Ni, Cu, and Mo, was used as
the prototype.**** Due to the random distribution of multiple
atoms, the total number of the possible structures for this
(FeCoNiCuMo)ss HEA is huge (approximately 16562 000).
Considering the fact that the coordination environment of the
active site usually dominates its catalytic performance,*”*%°
further evaluations were carried out based on the consideration
of the local microstructures (MS-HEASs) of the active site, where
two distinct local microstructures (penta-coordinate sites
(MSpenta-HEAs) and hexa-coordinate sites (MShex-HEAS), as
shown in Fig. 1a) were involved.

For each structure, the active center (region 1, R;), along with
its nearest neighboring coordination atoms on the surface
(region 2, R,) and the subsurface (region 3, R;), were consid-
ered. As a result, over 80 000 (3150 for MSpenta-HEAs and 78 750
for MSpex-HEAs, Fig. S2) distinct active centers in Mss HEA
clusters were identified, which significantly decreased as
compared to the total number of the clusters, but is a suffi-
ciently large number for examination of the activity-perfor-
mance relationship for the CO,RR. Therefore, the diverse local
structure of active sites in M55 clusters enables comprehensive
exploration of the performance trend, although it is relatively
small.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 (a) Structure of FeCoNiCuMo HEA clusters, with top and side views of microstructures (MSyena-HEAs and MSy,-HEAs). The different
regions of the microstructures (Ry, R,, and Rz) have been outlined. (b) Coordination features extracted from top (*CO), bridge (*CHO), and hollow
(*H) sites. (c) Element vectors extracted from 6 regions (Ry, Ry, Rz, By, By, and Hy) on MSpenia-HEAs and MS;,-HEAs. (d) Composition features
converted from element vectors by group counting of different elements in different regions. (e) Atomic property features generated from the
composition features by grouping the average for atomic properties in different regions. Plots of DFT-calculated vs. ML-predicted values of (f)
AE+co, (@) AExcqo. and (h) AE«, and the mean square errors (MSEs) of training and testing sets for model evaluation.

The binding energies of three key intermediates, i.e., *CO,
*CHO, and *H (AE«co, AExcho, and AE«y), were adopted for the
assessment of electrocatalytic performance in the CO,RR,
according to numerous experimental and computational
studies.?***” These intermediates (*CO, *CHO, and *H) prefer
to adsorb on the top, bridge, and hollow site of the clusters

© 2025 The Author(s). Published by the Royal Society of Chemistry

(Fig. 83), respectively, leading to 81 900 (3150 for MSpenc-HEAS
and 78 750 for MSp.,-HEAs), 488250 (3150 x 5 + 78750 X 6),
and 488250 (3150 x 5 + 78750 x 6) distinct adsorption sites
(Fig. S4) for *CO, *CHO, and *H, respectively. The difference in
the adsorption configuration was characterized using the
coordination features X_1, X_2, and X_3, which denote the
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surface coordination number of the atoms at the adsorption
sites bonded to the intermediates (Fig. 1b). Furthermore, apart
from the Ry, Ry, and R; regions, the *O-connected atoms of
bridge sites (bridge region 1, B;), the nearest neighboring
coordination atoms of bridge sites on the surface (bridge region
2, B,), and the *H-connected atoms of hollow sites (hollow
region 1, H;) were extracted as active regions (Fig. 1c).

On this basis, composition features and atomic property
features were introduced to describe the variation of the active
sites. Specifically, element vectors corresponding to element
names in different regions (R4, Ry, R;, By, B,, and H;) of MSpena-
HEAs and MSy.-HEAs were extracted and converted into
composition features through counting the number of distinct
elements within different regions (Fig. 1d). In this way, 15, 25,
and 20 features for top, bridge, and hollow sites, respectively,
are generated. In addition, the number of unpaired d electrons
(Ng.up), the first ionization energy (I;), and electronegativity (x)
were used to describe the physical and chemical properties of
different metal atoms (Fig. 1e). By incorporating the composi-
tion feature and atomic property feature into the following
function based on the grouping average, 9, 15, and 12 features
for top, bridge, and hollow sites, respectively, were generated:

j .
> NF/

k J

where ij represents the number of j-th elements in the k-th
region, F/ represents the value of i-th elemental properties of
the j-th element, and 7 represents the mean feature value of i-
th elemental properties in the k-th region. After feature engi-
neering, the total number of features utilized for predicting
AE+co, AExcho, and AE«y is 25, 42, and 35, respectively.

Based on the designed features and the moderate-scale DFT
calculations (Fig. S5-S7), three datasets for AE+co, AE+cho, and
AE-«y were compiled, and three adsorption prediction models
designated as XGBR+co, XGBR+cHo, and XGBR+«y were trained
by employing the Extreme Gradient Boost Regression (XGBR)
algorithm.*>*° The training and testing datasets were randomly
selected and divided into an 80% and 20% ratio. To evaluate the
predictive accuracy of these models, the mean square errors
(MSE) between DFT-calculated and ML-predicted AE«co,
AE«cho, AE+y were calculated for training and testing datasets.

Our results showed that the XGBR+«co, XGBRxcyo, and
XGBR+y models exhibited excellent prediction accuracy when
the data scale reached 322, 368, and 831, respectively, where the
corresponding MSE values are 0.009/0.011/0.005 eV and 0.032/
0.057/0.028 eV for the training and testing sets (Fig. 1f-h). Using
the trained models, the AE:«co, AE«chno, and AEsxy on all the
possible sites of the (FeCoNiCuMo)ss HEA cluster (81 900, 488
250, and 488250 for *CO, *CHO, and *H, respectively) were
predicted (Fig. S8-S10). Some general tendencies can be ob-
tained from predicted energies: (i) the binding strengths of *CO
on the active sites with Cu atoms in the R, region are relatively
weak (Fig. S8); (ii) the binding strengths of *CHO on the active
sites with Mo atoms in the B, region are usually strong (Fig. S9);
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(iii) additional Cu atoms in the H; region usually lead to weaker
adsorption of *H (Fig. S10). The adsorption energies on most
sites deviate from the well-established scaling relations between
AEs«co and AExcpo on the (211) and (111) surfaces of mono-
metals (Fig. 2a).*”***® This deviation leads to a low reaction
free energy for *CO reduction into *CHO, which is usually the
potential-determining step for the CO,RR into deep-reduced
products. Consequently, HEAs demonstrate promising cata-
Iytic activity for the CO,RR by facilitating this crucial reaction
pathway.

To uncover the driving force behind this phenomenon, an
activity classification model (XGBCjcsivity) based on the XGBoost
algorithm was developed, where a dataset combining AE«co and
AExcho over 488250 sites with activity labels (where the sites
breaking the scaling relationship were recognized to be highly
active in the CO,RR and were labeled as 1; otherwise were
labeled as 0) and 7 key structural features were used. Herein, the
strategy for selecting 7 key structural features considered the
correlation with intermediate adsorption and the transferability
of the model. Specifically, the top 10 features from XGBR+co and
XGBR+«cyo were selected by taking their union to ensure a high
correlation with *CO and *CHO adsorption (Fig. S11). Then,
features with atomic properties (such as Ng.up-B1, Ng.up-Ro, and
I;-R;) were retained, while features with specific elemental
composition information (such as Cu-R,;, Co-R;, and Mo-B,)
were removed.

The accuracy of the trained classification model was very
high, where the area under the curve (AUC) value of the oper-
ating characteristic (ROC) curve was 0.987, and the main diag-
onal values of the normalized confusion matrix reached 0.95
and 0.98 (Fig. 2b). On this basis, SHAP analysis was further
carried out,*>*> and it showed that the highest importance to the
activity was attributed to the number of unpaired d electrons at
the B, region (Ng.up-B;) (Fig. 2c). This feature also dominated
the binding strength of *CHO (Fig. S12). Therefore, the rela-
tionship between the feature values of Ng.,p-B;, SHAP values of
Ng.wp-B1 in XGBR:cyo, and SHAP values of Ng,pB; in
XGBCyetivity Were plotted to understand the structure-property—
activity relationship from Ng..p-B;.

As shown in Fig. 2d, highly active sites (the points in the blue
dashed box with positive SHAP values of XGBCyctivity) generally
possess positive SHAP values in XGBRx«cpo (corresponding to
the enhancement of *CHO binding strength) and relatively
large values (3-5) of Ng.p-B;. This can be ascribed to the
adsorption configuration of *CHO. Specifically, a higher Ny, of
B; atoms usually corresponds to a higher oxygen affinity of the
metal atom, leading to enhancement of the binding strength of
the O-M bond (Fig. 2e, f and $13). Interestingly, a large Nq.,, of
the coordination atoms also resulted in the relatively weak
binding strength of *CO (negative SHAP values of Ny, R, in
XGBR:co, Fig. 2g), due to the enhanced bonding strength
between the active center and coordination atoms (Fig. 2h, i and
S15). Specifically, the mean ICOHP values between the active
center and coordination atoms significantly decrease when
Ng.up'R, values are 3-5, while they remain almost unchanged
when Ng..pR, is in the range of 0-3. Therefore, the large
number of unpaired d electrons of coordination atoms

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2

(a) ML-predicted AE«co and AEx«cpo values for all MS-HEAs. The solid lines denote the scaling relations on metal (211) substrate (black) and

metal (111) substrate (red). (b) ROC curve and normalized confusion matrix of XGBC,ctivity- (€) SHAP summary plots of every feature in XGBCctivity-

The bidirectional arrows at the top of the figure show the relationship
feature value of Ny_,p-B; and SHAP values of Ny_yp-B1 in XGBRx«cHo and

between the SHAP values and activity. (d) The relationship between the
XGBCctivity- (€) ICOHP and (f) COHP between the O atoms of *CHO and

metal atoms in the B, region (with different values of Ny.,p-B1). (g) The relationship between the feature value of Ng_,p-R> and SHAP values of
Ng-up-R2 in XGBRxco and XGBC,ciivity- The (h) mean ICOHP and (i) COHP between the Cu atoms in the R, region and metal atoms in the R; region

(with different values of Ng_up-R2).

stabilizes the *CHO and simultaneously weakens the binding
strength of *CO, resulting in the breaking of the scaling rela-
tionship between AE«co and AE«cyo on pure metal surfaces and
potentially high activity of MS-HEAs for the CO,RR.
Nevertheless, these active sites exhibit low selectivity towards
the CO,RR, due to the preference of *H adsorption. Our results
show that most of the studied active sites possess a more
negative *H adsorption energy than that on a pure Cus;s cluster
(Fig. 3a). The stronger *H binding strength indicates that these
sites will be more easily covered by *H intermediates as
compared to Cu.**** This facilitates the competing HER or
blocks the related active sites, both of which lowers the reaction
rate of the CO,RR. Using a dataset of over 488250 sites with

© 2025 The Author(s). Published by the Royal Society of Chemistry

selectivity labels (where the sites with *H binding strength
weaker than Cu were labeled as 1, and otherwise were labeled as
0) and 5 key structural features, the trained classification model
exhibited high accuracy for AUC values reaching 0.988 (Fig. 3b).
Similar to the binding strength of *CHO, the mean Ng.,, of the
hollow site (Ng.up-H;) is also the determining factor for the AExy
(Fig. S16), as well as the selectivity (Fig. 3c), where a larger value
of Ng.up-H; usually leads to stronger *H-binding strength and
lower CO,RR selectivity (Fig. 3d). Therefore, a high number of
unpaired d electrons facilitates the activity but lowers the
selectivity of the CO,RR, suggesting an activity-selectivity
tradeoff in the HEAs that results in the low overall performance
for the CO,RR.
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of (e) Nd-up'Bl or (f) Nd»up'Hl-

To provide a more intuitive picture of the above phenom-
enon, we calculated the ratios of active sites with high-activity
(Pactiviy)s high-selectivity (Psclectiviy)y and high-performance
(with high-activity and high-selectivity, Pperformance) With the
variation of the key features (Ng.p-B; and Ng.p,-H; for the
activity and selectivity, respectively). The ratio is defined as
Nhigh
Nrotal
high activity, selectivity, or performance and Ny, denotes the
total number of active sites under specific situations. A general
tendency can be observed from Fig. 3e and f, where Pyviey
increases, while Pycjectivity decreases with the increase in Ny.yp-By
and Ng.up-H;. As a result, Pperformance CONstantly remains at a low
level. These findings highlight the activity-selectivity tradeoff in
HEAs, which likely explains the current lack of experimental
reports on HEAs for the CO,RR, despite extensive research on
their potential for electrocatalysis.

The structure-activity-selectivity relationship was further
explored, to determine which sites of (FeCoNiCuMo)ss HEAs
can achieve high activity and selectivity for the CO,RR. To this
end, the sum of the SHAP values of the key features was adopted
as the descriptor. Accordingly, two descriptors, labeled as
SHAP,ctiviey and SHAPgejectivity, Were constructed for the activity
and selectivity evaluation, respectively, where the positive value
corresponds to high activity or selectivity. Our results show that

pP= , where Np;ep, denotes the number of active sites with

Chem. Sci.

these two descriptors can provide accurate classification of the
activity and selectivity of the active sites, where the values on the
main diagonal of the confusion matrix are as high as 0.93/0.97
and 0.99/0.94 for the activity and selectivity, respectively (Fig. 4a
and b). By combining SHAP ejcctiviey and SHAP,yity, the proba-
bility density distribution of different types of sites is obtained,
where the sites with high-activity and low-selectivity were found
to be dominant (Fig. 4c).

On the contrary, active sites with high activity and selectivity
are very rare, supporting the activity-selectivity tradeoff and
poor performance for the CO,RR of (FeCoNiCuMo)ss HEAs once
again. Furthermore, the local environments with excellent
performance were extracted, and were defined as (M;M,M;3)penta
or (M;M,M;3)hex- Specifically, M, M,, and Mj; are the three metal
atoms of a hollow site in MS-HEA, while other atoms are
random (Fig. 4d). The 8 local environments with the highest
Pperformance Were selected due to their ability to maintain high-
performance while the surrounding atoms change. Our results
show that (CuMoCu)pentay (MOMONI)penta, (CUMOCU)pey,
(MOMONi)hex, (NIMOMO)hex, (CuFeCu)pex, (CuFeCu)penca, and
(MoMoCu)penta are promising local structures for the CO,RR
(Fig. 4e). In particular, 75% of the active sites that contain
a (CuMoCu)penta center are expected to exhibit excellent
performance. This can be well understood from the aforemen-
tioned feature analysis. Specifically, the large Ng., of Mo

© 2025 The Author(s). Published by the Royal Society of Chemistry
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enhances the *CHO binding strength, and the small Ng.,, of Cu
atoms leads to the low mean Ny, of the active center to weaken
the *H binding strength, leading to the excellent performance.

The feasibility of the constructed structure-activity-selectivity
relationship in other HEAs was further evaluated. Specifically,
the performance of two representative HEAs, i.e., AgCuAuPdPt"®
and PtMoPdRhNi" that have been experimentally proven to be
promising catalysts for the CO,RR and HER, respectively, were
systematically  explored. = Using  (AgCuAuPdPt)ss and
(PtMoPdRhNi)s5 clusters as models, and SHAP,.y, and
SHAPgcicctiviey as the descriptors, the probability density distri-
bution of activity and selectivity was predicted (Fig. 5a and b).
The aforementioned activity-selectivity tradeoff still exists in
these two systems, where a large portion of active sites exhibits
high activity but low selectivity for the CO,RR. Nevertheless,
(AgCuAuPdPt)s5 possesses a considerable number of sites with
high activity and selectivity (Fig. 5a), in agreement with the
experimentally reported satisfactory performance in the
CO,RR." On the contrary, almost no active site lies in the region
that meets the requirement of high catalytic performance for
(PtMoPdRhNi)s5 (Fig. 5b), in accordance with its high HER
activity.*

The structure-activity-selectivity relationship was further
adopted to other reported HEAs, including FeCoNiCuAl"
CoMnNiCuZn,** CoCuNiZnSn,”” CoCuGaNiZn,** FeCoNiRuMn, "
RuRhPdPtIr,*® NiFeCoMoW,” PtCoNiMoRh,”> PtRuFeCoNi,**
PtPdRuMOoNi,** IrRuRhMoW,* PtCoNiRulr,*® NiFeCrVTi,*® and

© 2025 The Author(s). Published by the Royal Society of Chemistry

NiCoFePtRh."* Surprisingly, our model provides a satisfactory
description of the performance variation of these systems, sup-
porting the reliability of the proposed models (Fig. S17 and S18).
Specifically, for the reported HEAs with a high CO,RR perfor-
mance, including FeCoNiCuAl,** CoMnNiCuZn,** CoCuNiZnSn,*
and CoCuGaNiZn,* there is a relatively high ratio of active sites
with high-performance (Pperformance = 0.12-0.18) as compared to
others with a high HER activity (Pperformance = 0-0.05) (Fig. 5¢).
Therefore, the constructed structure-activity-selectivity rela-
tionship deciphers the universal rule of the CO,RR over HEAs.
With the assistance of the constructed structure-activity—
selectivity relation, a high-throughput screening of promising
HEAs for the CO,RR was performed. The candidates were 26 334
HEAs via the possible combination of 22 elements (Fig. 5d).
Although the combinations are complex, the descriptors are
transferable because the features are based on fundamental
atom properties rather than specific elemental composition
information. With the assistance of the SHAP,.iy and
SHAP .|cctivity, all the high-performance sites of the 26 334 HEAs
were efficiently evaluated, and the top 10 HEAs with the highest
Pperformance Were selected as excellent catalysts for the CO,RR
(Fig. 5e), including AgCuZnCdTa, AgCuZnMnCd, AgCuZnCrCd,
AgCuZnVCd, AgCuZnNbCd, AgCuZnCdw, AgCuNiZnCd,
CuPdZnCdTa, AgPdZnCdTa, and AgCuPdZnCd (Fig. S19).
Clearly, the high-activity ratios (Pactviy = 0.72-0.96) and the
high-selectivity ratios (Pseiectiviey = 0.52-0.77) of these promising
HEAs reached a balance, leading to a significantly higher
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of active sites for the top 10 high-performance HEAs.

Pperformance (0.51-0.72) than the reported HEAs (0.12-0.18)
(Fig. 5f). Therefore, these HEAs are expected to exhibit excellent
overall performance for the CO,RR.

Conclusions

We have deciphered the structure-activity-selectivity relation-
ship of attractive but complicated HEA catalysts for the CO,RR,
with the assistance of a ML workflow and DFT computations. A
systematic and deep analysis of the adsorption properties of
*CO, *CHO, and *H across 488250 different sites of
(FeCoNiCuMo)ss HEA clusters uncovered the activity-selectivity
tradeoff of HEAs for the CO,RR. This originates from the posi-
tive effect of unpaired d electrons of coordination atoms on
enhancing the binding strength of *CHO and *H intermediates.
Therefore, most sites are expected to possess high activity by
breaking the scaling relation, but low selectivity exists due to the
preference for *H adsorption. This degrades the overall
performance of HEAs for the CO,RR and rationalizes the
current situation in this field, i.e., there are rare experimental
reports on HEAs for the CO,RR despite the abundance of
research into electrocatalysis.

Using the sum of the SHAP values of key features as the
descriptors for activity and selectivity, the activity—selectivity
tradeoff in (FeCoNiCuMo)ss HEAs is intuitively presented.
Moreover, the diversity in the structure and components of the
active sites enables the proposed descriptors to be generally
applicable to other HEAs, where the reliability is supported by

Chem. Sci.

the accurate description of the performance variation of reported
HEAs. On this basis, rapid screening among 26 334 types of HEAs
was performed, where AgCuZnCdTa, AgCuZnMnCd,
AgCuZnCrCd, AgCuZnVCd, AgCuZnNbCd, AgCuZnCdWw, AgCu-
NiZnCd, CuPdZnCdTa, AgPdZnCdTa, and AgCuPdZnCd were
selected as the top 10 promising catalysts to achieve a balance
between activity and selectivity for the CO,RR. These predictions
are expected to guide experimental research to realize superior
performance of HEAs in the CO,RR. Overall, our research, based
on quantitative descriptors, deciphers the structure-activity—
selectivity of HEAs for the CO,RR, provides insights into related
phenomenon and guidelines for the design of promising HEAs,
and also provides a useful method for the exploration of the
structure-performance relationship of complicated systems.
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