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structure–activity–selectivity
relationship of high-entropy alloys for CO2

reduction via interpretable machine learning

Jinxin Sun,ab Xiaokang Xu,ab Yuqing Mao,b Anjie Chen,b Shu Wang,b Li Shi, *c

Chongyi Ling, *a Jinlan Wang *a and Xiuyun Zhang *b

High-entropy alloys (HEAs) have emerged as a promising class of multisite catalysts that exhibit high levels of

performance due to a diversity of active sites; however, establishing their structure–performance

relationships remains a grand challenge. Herein, we systematically explored the structure–activity–

selectivity relationship of HEAs for the CO2 reduction reaction (CO2RR) with the assistance of a machine

learning framework and density functional theory computations. Statistical analysis of hundreds of

thousands of binding energies of *CO, *CHO, and *H on (FeCoNiCuMo)55 clusters revealed that HEAs can

break the well-established scaling relationship of pure metal catalysts, but they also face an activity–

selectivity tradeoff. This originates from the positive role of the unpaired d electron number in enhancing

the binding strength of *CHO and *H and limits the overall performance. Moreover, an activity and

a selectivity descriptor were constructed, giving accurate predictions for the performance variations of the

reported experiments. On this basis, rapid screening among 26 334 types of HEAs was performed, and 10

promising candidates that balanced activity and selectivity were selected. Our workflow not only provides

quantitative criteria to accelerate the rational design of HEA catalysts for the CO2RR, but it also offers

a systematic approach to unraveling the intricate structure–performance relationship in complex systems.
Introduction

The interaction between reaction intermediates and catalysts
usually plays a dominant role in catalysis.1–3 Due to the exis-
tence of an intrinsic correlation between different binding
strengths of different intermediates, pure-metal or single-site
catalysts usually exhibit functioning that is far below that of
an ideal performance.4–6 This situation is more pronounced in
multistep reactions that require balancing the interaction of
a series of intermediates. It is expected that multisite catalysts
will overcome this limitation due to the presence of diverse
active sites that will play different roles during the entire
process.7–9 Therefore, as typical multisite catalysts, high-entropy
alloys (HEAs) have attracted great attention and shown superior
catalytic performance in widespread reactions, such as the
hydrogen evolution reaction (HER),10–13 oxygen evolution reac-
tion (OER),14–16 and oxygen reduction reaction (ORR).16,17
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Despite these achievements, successful applications of HEAs in
a typical multistep reaction, i.e., the CO2 reduction reaction
(CO2RR), are quite rare,18–20 and how to design and optimize
their structure to realize superior performance remains a grand
challenge.

The structure–performance relationship unveils how mate-
rial structure inuences its properties and ultimately
performance.21–24 and has been widely adopted to guide catalyst
design and optimization. However, the diverse active sites of
HEAs also give rise to an extremely complicated structure–
performance relationship,25,26 in addition to the great promise
for realizing unattainable performance. Because of the large
number of possible active sites in HEAs, it is computationally
costly to comprehensively assess the binding strength of reac-
tion intermediates.27,28 However, diversity in structure
undoubtedly leads to the wide difference in binding strength
across different active sites,29,30 and therefore, it is also very
challenging to determine how to computationally evaluate the
overall performance. As a result, the structure–performance of
HEAs remains underexplored, although there have been great
efforts in the study of HEA catalysts.

Aiming at this challenge, a machine learning (ML) workow,
coupled with density functional theory (DFT) calculations and
statistical approaches, was adopted to explore the structure–
activity–selectivity relationship of HEAs for the CO2RR. Using
(FeCoNiCuMo)55 HEA clusters as prototypes, the binding
Chem. Sci.
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energies of three key intermediates, *CO, *CHO, and *H (DE*CO,
DE*CHO and DE*H), on an appropriate portion of possible sites
were calculated using DFT computations. On this basis, three
ML regression models were trained, realizing the rapid and
accurate prediction of DE*CO, DE*CHO, and DE*H on all the
possible sites of (FeCoNiCuMo)55 HEA clusters (81 900, 488 250,
and 488 250 for *CO, *CHO, and *H, respectively).

Statistical analysis of the obtained hundreds of thousands of
binding energies revealed an activity–selectivity tradeoff that
leads to a low overall performance of HEAs for the CO2RR. This
rationalizes the aforementioned phenomenon that experi-
mental reports on HEAs for the CO2RR are very rare, despite the
abundance of research in electrocatalysis. Additionally, classi-
cation models for activity and selectivity evaluations were
established to determine the key factors regarding catalytic
performance, and the structure–activity–selectivity relations
were explored based on the SHapley Additive exPlanations
(SHAP) analyses of these features. Furthermore, we constructed
activity and selectivity descriptors using SHAP values, and
related experimental reports were referenced to validate the
reliability. Finally, these descriptors were employed for the
rapid screening of 26 334 types of unknown HEAs, where 10
promising candidates with signicantly enhanced performance
as compared to reported HEAs were determined.

Computational methods
DFT calculation

The rst-principles calculations were implemented using the
projector augmented wave method as employed in the Vienna
Ab initio Simulation Package (VASP).31,32 The Perdew–Burke–
Ernzerhof (PBE) functional was used to treat the exchange–
correlation interactions.33,34 The van der Waals interactions
were incorporated using Grimme's D3-type of semi-empirical
method.35 All calculations were performed in a 20 × 20 × 20
Å3 periodic cubic simulation box, sufficiently large to exclude
interactions between adjacent nanoparticles, and the Brillouin
zone was sampled by the gamma point. All the geometries were
fully optimized, where the convergence criteria for total energy
and forces were set at 10−5 eV and 0.02 eV Å−1, respectively. Spin
polarization was considered, and the energy cutoff for the
plane-wave basis set was 450 eV. LOBSTER soware was used
for the crystal orbital Hamilton population (COHP) analysis.36

In the calculation of binding energies, to compare the
scaling relations of HEA clusters with those of transitionmetals,
we used the same calculation equations reported by Nørskov
et al.37,38 The binding energies of *CO, *CHO, and *H are
calculated through:

DE*CO = E*CO − E* − ECO

DE*CHO ¼ E*CHO � E* � ECO � 1

2
EH2

DE*H ¼ E*H � E* � 1

2
EH2
Chem. Sci.
where DE*CO, DE*CHO, and DE*H are the binding energies of
*CO, *CHO, and *H, respectively. E*CO, E*CHO, E*H, and E*
represent the total energies of *CO, *CHO, *H adsorbed on HEA
clusters, and isolated HEA clusters, respectively. ECO and EH2

represent the energy of gas-phase species for CO and H2,
respectively.
ML methods

The workow employing ML methods, including ML regres-
sion, ML classication, and SHAP analyses, to investigate the
structure–performance relationship in catalysis is presented in
Fig. S1. For ML regression, the XGBRegressor algorithm was
utilized to build prediction models for the binding energies of
*CO/*CHO/*H, and the mean square error (MSE) was adopted
to evaluate the model performance.39,40 For ML classication,
the XGBClassier algorithm was utilized to build models to
distinguish the activity/selectivity of HEAs, and the area under
the receiver operating characteristic (ROC) curve was utilized
to evaluate model performance.39,41 During the training
process, 5-fold cross-validation was employed to mitigate the
bias resulting from data splitting and obtain more reliable
estimates of model performance, and the optimal hyper-
parameters for each ML model were selected to obtain the
optimal model (Table S1).40 To break the ‘black box’ of ML
models for interpretability, SHAP values were computed with
the SHAP packages to quantify the marginal contribution of
features.42
Results and discussion

To explore the structure–performance for CO2RR, a Cu-based
HEA cluster, namely, (FeCoNiCuMo)55, consisting of 55 metal
atoms (M55) with random occupation of ve commonly used
metal elements, including Fe, Co, Ni, Cu, and Mo, was used as
the prototype.43,44 Due to the random distribution of multiple
atoms, the total number of the possible structures for this
(FeCoNiCuMo)55 HEA is huge (approximately 16 562 000).
Considering the fact that the coordination environment of the
active site usually dominates its catalytic performance,27,29,30

further evaluations were carried out based on the consideration
of the local microstructures (MS-HEAs) of the active site, where
two distinct local microstructures (penta-coordinate sites
(MSpenta-HEAs) and hexa-coordinate sites (MShex-HEAs), as
shown in Fig. 1a) were involved.

For each structure, the active center (region 1, R1), along with
its nearest neighboring coordination atoms on the surface
(region 2, R2) and the subsurface (region 3, R3), were consid-
ered. As a result, over 80 000 (3150 for MSpenta-HEAs and 78 750
for MShex-HEAs, Fig. S2) distinct active centers in M55 HEA
clusters were identied, which signicantly decreased as
compared to the total number of the clusters, but is a suffi-
ciently large number for examination of the activity–perfor-
mance relationship for the CO2RR. Therefore, the diverse local
structure of active sites in M55 clusters enables comprehensive
exploration of the performance trend, although it is relatively
small.
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 (a) Structure of FeCoNiCuMo HEA clusters, with top and side views of microstructures (MSpenta-HEAs and MShex-HEAs). The different
regions of themicrostructures (R1, R2, and R3) have been outlined. (b) Coordination features extracted from top (*CO), bridge (*CHO), and hollow
(*H) sites. (c) Element vectors extracted from 6 regions (R1, R2, R3, B1, B2, and H1) on MSpenta-HEAs and MShex-HEAs. (d) Composition features
converted from element vectors by group counting of different elements in different regions. (e) Atomic property features generated from the
composition features by grouping the average for atomic properties in different regions. Plots of DFT-calculated vs. ML-predicted values of (f)
DE*CO, (g) DE*CHO, and (h) DE*H, and the mean square errors (MSEs) of training and testing sets for model evaluation.
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The binding energies of three key intermediates, i.e., *CO,
*CHO, and *H (DE*CO, DE*CHO, and DE*H), were adopted for the
assessment of electrocatalytic performance in the CO2RR,
according to numerous experimental and computational
studies.30,45–47 These intermediates (*CO, *CHO, and *H) prefer
to adsorb on the top, bridge, and hollow site of the clusters
© 2025 The Author(s). Published by the Royal Society of Chemistry
(Fig. S3), respectively, leading to 81 900 (3150 for MSpenta-HEAs
and 78 750 for MShex-HEAs), 488 250 (3150 × 5 + 78 750 × 6),
and 488 250 (3150 × 5 + 78 750 × 6) distinct adsorption sites
(Fig. S4) for *CO, *CHO, and *H, respectively. The difference in
the adsorption conguration was characterized using the
coordination features X_1, X_2, and X_3, which denote the
Chem. Sci.
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surface coordination number of the atoms at the adsorption
sites bonded to the intermediates (Fig. 1b). Furthermore, apart
from the R1, R2, and R3 regions, the *O-connected atoms of
bridge sites (bridge region 1, B1), the nearest neighboring
coordination atoms of bridge sites on the surface (bridge region
2, B2), and the *H-connected atoms of hollow sites (hollow
region 1, H1) were extracted as active regions (Fig. 1c).

On this basis, composition features and atomic property
features were introduced to describe the variation of the active
sites. Specically, element vectors corresponding to element
names in different regions (R1, R2, R3, B1, B2, and H1) of MSpenta-
HEAs and MShex-HEAs were extracted and converted into
composition features through counting the number of distinct
elements within different regions (Fig. 1d). In this way, 15, 25,
and 20 features for top, bridge, and hollow sites, respectively,
are generated. In addition, the number of unpaired d electrons
(Nd-up), the rst ionization energy (I1), and electronegativity (c)
were used to describe the physical and chemical properties of
different metal atoms (Fig. 1e). By incorporating the composi-
tion feature and atomic property feature into the following
function based on the grouping average, 9, 15, and 12 features
for top, bridge, and hollow sites, respectively, were generated:

Fi
k ¼

PJ

j

Nj
kFi

j

PJ

j

Nj
k

where Fj
k represents the number of j-th elements in the k-th

region, Fi
j represents the value of i-th elemental properties of

the j-th element, and Fi
k represents the mean feature value of i-

th elemental properties in the k-th region. Aer feature engi-
neering, the total number of features utilized for predicting
DE*CO, DE*CHO, and DE*H is 25, 42, and 35, respectively.

Based on the designed features and the moderate-scale DFT
calculations (Fig. S5–S7), three datasets for DE*CO, DE*CHO, and
DE*H were compiled, and three adsorption prediction models
designated as XGBR*CO, XGBR*CHO, and XGBR*H were trained
by employing the Extreme Gradient Boost Regression (XGBR)
algorithm.39,40 The training and testing datasets were randomly
selected and divided into an 80% and 20% ratio. To evaluate the
predictive accuracy of these models, the mean square errors
(MSE) between DFT-calculated and ML-predicted DE*CO,
DE*CHO, DE*H were calculated for training and testing datasets.

Our results showed that the XGBR*CO, XGBR*CHO, and
XGBR*H models exhibited excellent prediction accuracy when
the data scale reached 322, 368, and 831, respectively, where the
corresponding MSE values are 0.009/0.011/0.005 eV and 0.032/
0.057/0.028 eV for the training and testing sets (Fig. 1f–h). Using
the trained models, the DE*CO, DE*CHO, and DE*H on all the
possible sites of the (FeCoNiCuMo)55 HEA cluster (81 900, 488
250, and 488 250 for *CO, *CHO, and *H, respectively) were
predicted (Fig. S8–S10). Some general tendencies can be ob-
tained from predicted energies: (i) the binding strengths of *CO
on the active sites with Cu atoms in the R1 region are relatively
weak (Fig. S8); (ii) the binding strengths of *CHO on the active
sites with Mo atoms in the B1 region are usually strong (Fig. S9);
Chem. Sci.
(iii) additional Cu atoms in the H1 region usually lead to weaker
adsorption of *H (Fig. S10). The adsorption energies on most
sites deviate from the well-established scaling relations between
DE*CO and DE*CHO on the (211) and (111) surfaces of mono-
metals (Fig. 2a).37,38,48 This deviation leads to a low reaction
free energy for *CO reduction into *CHO, which is usually the
potential-determining step for the CO2RR into deep-reduced
products. Consequently, HEAs demonstrate promising cata-
lytic activity for the CO2RR by facilitating this crucial reaction
pathway.

To uncover the driving force behind this phenomenon, an
activity classication model (XGBCactivity) based on the XGBoost
algorithm was developed, where a dataset combining DE*CO and
DE*CHO over 488 250 sites with activity labels (where the sites
breaking the scaling relationship were recognized to be highly
active in the CO2RR and were labeled as 1; otherwise were
labeled as 0) and 7 key structural features were used. Herein, the
strategy for selecting 7 key structural features considered the
correlation with intermediate adsorption and the transferability
of the model. Specically, the top 10 features from XGBR*CO and
XGBR*CHO were selected by taking their union to ensure a high
correlation with *CO and *CHO adsorption (Fig. S11). Then,
features with atomic properties (such as Nd-up-B1, Nd-up-R2, and
I1-R1) were retained, while features with specic elemental
composition information (such as Cu-R1, Co-R1, and Mo-B1)
were removed.

The accuracy of the trained classication model was very
high, where the area under the curve (AUC) value of the oper-
ating characteristic (ROC) curve was 0.987, and the main diag-
onal values of the normalized confusion matrix reached 0.95
and 0.98 (Fig. 2b). On this basis, SHAP analysis was further
carried out,41,42 and it showed that the highest importance to the
activity was attributed to the number of unpaired d electrons at
the B1 region (Nd-up-B1) (Fig. 2c). This feature also dominated
the binding strength of *CHO (Fig. S12). Therefore, the rela-
tionship between the feature values of Nd-up-B1, SHAP values of
Nd-up-B1 in XGBR*CHO, and SHAP values of Nd-up-B1 in
XGBCactivity were plotted to understand the structure–property–
activity relationship from Nd-up-B1.

As shown in Fig. 2d, highly active sites (the points in the blue
dashed box with positive SHAP values of XGBCactivity) generally
possess positive SHAP values in XGBR*CHO (corresponding to
the enhancement of *CHO binding strength) and relatively
large values (3–5) of Nd-up-B1. This can be ascribed to the
adsorption conguration of *CHO. Specically, a higherNd-up of
B1 atoms usually corresponds to a higher oxygen affinity of the
metal atom, leading to enhancement of the binding strength of
the O–M bond (Fig. 2e, f and S13). Interestingly, a large Nd-up of
the coordination atoms also resulted in the relatively weak
binding strength of *CO (negative SHAP values of Nd-up-R2 in
XGBR*CO, Fig. 2g), due to the enhanced bonding strength
between the active center and coordination atoms (Fig. 2h, i and
S15). Specically, the mean ICOHP values between the active
center and coordination atoms signicantly decrease when
Nd-up-R2 values are 3–5, while they remain almost unchanged
when Nd-up-R2 is in the range of 0–3. Therefore, the large
number of unpaired d electrons of coordination atoms
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 (a) ML-predicted DE*CO and DE*CHO values for all MS-HEAs. The solid lines denote the scaling relations onmetal (211) substrate (black) and
metal (111) substrate (red). (b) ROC curve and normalized confusion matrix of XGBCactivity. (c) SHAP summary plots of every feature in XGBCactivity.
The bidirectional arrows at the top of the figure show the relationship between the SHAP values and activity. (d) The relationship between the
feature value ofNd-up-B1 and SHAP values of Nd-up-B1 in XGBR*CHO and XGBCactivity. (e) ICOHP and (f) COHP between the O atoms of *CHO and
metal atoms in the B1 region (with different values of Nd-up-B1). (g) The relationship between the feature value of Nd-up-R2 and SHAP values of
Nd-up-R2 in XGBR*CO and XGBCactivity. The (h) mean ICOHP and (i) COHP between the Cu atoms in the R1 region andmetal atoms in the R2 region
(with different values of Nd-up-R2).
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stabilizes the *CHO and simultaneously weakens the binding
strength of *CO, resulting in the breaking of the scaling rela-
tionship between DE*CO and DE*CHO on pure metal surfaces and
potentially high activity of MS-HEAs for the CO2RR.

Nevertheless, these active sites exhibit low selectivity towards
the CO2RR, due to the preference of *H adsorption. Our results
show that most of the studied active sites possess a more
negative *H adsorption energy than that on a pure Cu55 cluster
(Fig. 3a). The stronger *H binding strength indicates that these
sites will be more easily covered by *H intermediates as
compared to Cu.27,30,49 This facilitates the competing HER or
blocks the related active sites, both of which lowers the reaction
rate of the CO2RR. Using a dataset of over 488 250 sites with
© 2025 The Author(s). Published by the Royal Society of Chemistry
selectivity labels (where the sites with *H binding strength
weaker than Cu were labeled as 1, and otherwise were labeled as
0) and 5 key structural features, the trained classication model
exhibited high accuracy for AUC values reaching 0.988 (Fig. 3b).
Similar to the binding strength of *CHO, the mean Nd-up of the
hollow site (Nd-up-H1) is also the determining factor for the DE*H
(Fig. S16), as well as the selectivity (Fig. 3c), where a larger value
of Nd-up-H1 usually leads to stronger *H-binding strength and
lower CO2RR selectivity (Fig. 3d). Therefore, a high number of
unpaired d electrons facilitates the activity but lowers the
selectivity of the CO2RR, suggesting an activity–selectivity
tradeoff in the HEAs that results in the low overall performance
for the CO2RR.
Chem. Sci.

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5sc05762k


Fig. 3 (a) Distributions of the difference between the ML-predicted DE*H values of all MS-HEAs and DE*H values on a pure Cu55 cluster. (b)
Receiver operating characteristic (ROC) curve and normalized confusionmatrix of XGBCselectivity for model evaluation. (c) SHAP summary plots of
every feature in XGBCselectivity. The color of each dot represents the feature value. The bidirectional arrows at the top of the figure show the
relationship between the SHAP values and selectivity. (d) The relationship between the feature value of Nd-up-H1 and SHAP values of Nd-up-H1 in
XGBR*H and XGBCselectivity. The ratios of active sites (Pactivity, Pselectivity, and Pperformance) in FeCoNiCuMo MS-HEAs with various key feature values
of (e) Nd-up-B1 or (f) Nd-up-H1.
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To provide a more intuitive picture of the above phenom-
enon, we calculated the ratios of active sites with high-activity
(Pactivity), high-selectivity (Pselectivity), and high-performance
(with high-activity and high-selectivity, Pperformance) with the
variation of the key features (Nd-up-B1 and Nd-up-H1 for the
activity and selectivity, respectively). The ratio is dened as

P ¼ Nhigh

Ntotal
; where Nhigh denotes the number of active sites with

high activity, selectivity, or performance and Ntotal denotes the
total number of active sites under specic situations. A general
tendency can be observed from Fig. 3e and f, where Pactivity
increases, while Pselectivity decreases with the increase in Nd-up-B1

and Nd-up-H1. As a result, Pperformance constantly remains at a low
level. These ndings highlight the activity–selectivity tradeoff in
HEAs, which likely explains the current lack of experimental
reports on HEAs for the CO2RR, despite extensive research on
their potential for electrocatalysis.

The structure–activity–selectivity relationship was further
explored, to determine which sites of (FeCoNiCuMo)55 HEAs
can achieve high activity and selectivity for the CO2RR. To this
end, the sum of the SHAP values of the key features was adopted
as the descriptor. Accordingly, two descriptors, labeled as
SHAPactivity and SHAPselectivity, were constructed for the activity
and selectivity evaluation, respectively, where the positive value
corresponds to high activity or selectivity. Our results show that
Chem. Sci.
these two descriptors can provide accurate classication of the
activity and selectivity of the active sites, where the values on the
main diagonal of the confusion matrix are as high as 0.93/0.97
and 0.99/0.94 for the activity and selectivity, respectively (Fig. 4a
and b). By combining SHAPselectivity and SHAPactivity, the proba-
bility density distribution of different types of sites is obtained,
where the sites with high-activity and low-selectivity were found
to be dominant (Fig. 4c).

On the contrary, active sites with high activity and selectivity
are very rare, supporting the activity–selectivity tradeoff and
poor performance for the CO2RR of (FeCoNiCuMo)55 HEAs once
again. Furthermore, the local environments with excellent
performance were extracted, and were dened as (M1M2M3)penta
or (M1M2M3)hex. Specically, M1, M2, andM3 are the three metal
atoms of a hollow site in MS-HEA, while other atoms are
random (Fig. 4d). The 8 local environments with the highest
Pperformance were selected due to their ability to maintain high-
performance while the surrounding atoms change. Our results
show that (CuMoCu)penta, (MoMoNi)penta, (CuMoCu)hex,
(MoMoNi)hex, (NiMoMo)hex, (CuFeCu)hex, (CuFeCu)penta, and
(MoMoCu)penta are promising local structures for the CO2RR
(Fig. 4e). In particular, 75% of the active sites that contain
a (CuMoCu)penta center are expected to exhibit excellent
performance. This can be well understood from the aforemen-
tioned feature analysis. Specically, the large Nd-up of Mo
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 Density distribution of (a) SHAPactivity and (b) SHAPselectivity for high-activity (high-selectivity)/low-activity (low-selectivity) MS-HEAs with
a true label. The red dashed line denotes the boundary between high-activity (high-selectivity) and low-activity (low-selectivity) from the
descriptors. (c) The density distribution of SHAPactivity and SHAPselectivity for all FeCoNiCuMo MS-HEAs. (d) The distribution of Pactivity, Pselectivity,
and Pperformance for different local environments ((M1M2M3)penta/hex). (e) Violin diagrams of SHAPactivity and SHAPselectivity for the top 8 local
environments ((M1M2M3)penta/hex).
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enhances the *CHO binding strength, and the small Nd-up of Cu
atoms leads to the low mean Nd-up of the active center to weaken
the *H binding strength, leading to the excellent performance.

The feasibility of the constructed structure–activity–selectivity
relationship in other HEAs was further evaluated. Specically,
the performance of two representative HEAs, i.e., AgCuAuPdPt18

and PtMoPdRhNi10 that have been experimentally proven to be
promising catalysts for the CO2RR and HER, respectively, were
systematically explored. Using (AgCuAuPdPt)55 and
(PtMoPdRhNi)55 clusters as models, and SHAPactivity and
SHAPselectivity as the descriptors, the probability density distri-
bution of activity and selectivity was predicted (Fig. 5a and b).
The aforementioned activity–selectivity tradeoff still exists in
these two systems, where a large portion of active sites exhibits
high activity but low selectivity for the CO2RR. Nevertheless,
(AgCuAuPdPt)55 possesses a considerable number of sites with
high activity and selectivity (Fig. 5a), in agreement with the
experimentally reported satisfactory performance in the
CO2RR.18 On the contrary, almost no active site lies in the region
that meets the requirement of high catalytic performance for
(PtMoPdRhNi)55 (Fig. 5b), in accordance with its high HER
activity.10

The structure–activity–selectivity relationship was further
adopted to other reported HEAs, including FeCoNiCuAl,19

CoMnNiCuZn,20 CoCuNiZnSn,27 CoCuGaNiZn,30 FeCoNiRuMn,12

RuRhPdPtIr,50 NiFeCoMoW,51 PtCoNiMoRh,52 PtRuFeCoNi,53

PtPdRuMoNi,54 IrRuRhMoW,14 PtCoNiRuIr,55 NiFeCrVTi,56 and
© 2025 The Author(s). Published by the Royal Society of Chemistry
NiCoFePtRh.11 Surprisingly, our model provides a satisfactory
description of the performance variation of these systems, sup-
porting the reliability of the proposed models (Fig. S17 and S18).
Specically, for the reported HEAs with a high CO2RR perfor-
mance, including FeCoNiCuAl,19 CoMnNiCuZn,20CoCuNiZnSn,27

and CoCuGaNiZn,30 there is a relatively high ratio of active sites
with high-performance (Pperformance = 0.12–0.18) as compared to
others with a high HER activity (Pperformance = 0–0.05) (Fig. 5c).
Therefore, the constructed structure–activity–selectivity rela-
tionship deciphers the universal rule of the CO2RR over HEAs.

With the assistance of the constructed structure–activity–
selectivity relation, a high-throughput screening of promising
HEAs for the CO2RR was performed. The candidates were 26 334
HEAs via the possible combination of 22 elements (Fig. 5d).
Although the combinations are complex, the descriptors are
transferable because the features are based on fundamental
atom properties rather than specic elemental composition
information. With the assistance of the SHAPactivity and
SHAPselectivity, all the high-performance sites of the 26 334 HEAs
were efficiently evaluated, and the top 10 HEAs with the highest
Pperformance were selected as excellent catalysts for the CO2RR
(Fig. 5e), including AgCuZnCdTa, AgCuZnMnCd, AgCuZnCrCd,
AgCuZnVCd, AgCuZnNbCd, AgCuZnCdW, AgCuNiZnCd,
CuPdZnCdTa, AgPdZnCdTa, and AgCuPdZnCd (Fig. S19).
Clearly, the high-activity ratios (Pactivity = 0.72–0.96) and the
high-selectivity ratios (Pselectivity = 0.52–0.77) of these promising
HEAs reached a balance, leading to a signicantly higher
Chem. Sci.
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Fig. 5 Density distribution of SHAPactivity and SHAPselectivity for all MS-HEAs in (a) AgCuAuPdPt and (b) PtMoPdRhNi HEAs. (c) The ratios of active
sites with high-activity (Pactivity), high-selectivity (Pselectivity), and high-performance (Pperformance) in reported HEAs. (d) All possible five-element
combinations of 22metal atoms. (e) The distribution of Pactivity, Pselectivity, and Pperformance for all possible five-element combinations. (f) The ratios
of active sites for the top 10 high-performance HEAs.
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Pperformance (0.51–0.72) than the reported HEAs (0.12–0.18)
(Fig. 5f). Therefore, these HEAs are expected to exhibit excellent
overall performance for the CO2RR.
Conclusions

We have deciphered the structure–activity–selectivity relation-
ship of attractive but complicated HEA catalysts for the CO2RR,
with the assistance of a ML workow and DFT computations. A
systematic and deep analysis of the adsorption properties of
*CO, *CHO, and *H across 488 250 different sites of
(FeCoNiCuMo)55 HEA clusters uncovered the activity–selectivity
tradeoff of HEAs for the CO2RR. This originates from the posi-
tive effect of unpaired d electrons of coordination atoms on
enhancing the binding strength of *CHO and *H intermediates.
Therefore, most sites are expected to possess high activity by
breaking the scaling relation, but low selectivity exists due to the
preference for *H adsorption. This degrades the overall
performance of HEAs for the CO2RR and rationalizes the
current situation in this eld, i.e., there are rare experimental
reports on HEAs for the CO2RR despite the abundance of
research into electrocatalysis.

Using the sum of the SHAP values of key features as the
descriptors for activity and selectivity, the activity–selectivity
tradeoff in (FeCoNiCuMo)55 HEAs is intuitively presented.
Moreover, the diversity in the structure and components of the
active sites enables the proposed descriptors to be generally
applicable to other HEAs, where the reliability is supported by
Chem. Sci.
the accurate description of the performance variation of reported
HEAs. On this basis, rapid screening among 26 334 types of HEAs
was performed, where AgCuZnCdTa, AgCuZnMnCd,
AgCuZnCrCd, AgCuZnVCd, AgCuZnNbCd, AgCuZnCdW, AgCu-
NiZnCd, CuPdZnCdTa, AgPdZnCdTa, and AgCuPdZnCd were
selected as the top 10 promising catalysts to achieve a balance
between activity and selectivity for the CO2RR. These predictions
are expected to guide experimental research to realize superior
performance of HEAs in the CO2RR. Overall, our research, based
on quantitative descriptors, deciphers the structure–activity–
selectivity of HEAs for the CO2RR, provides insights into related
phenomenon and guidelines for the design of promising HEAs,
and also provides a useful method for the exploration of the
structure–performance relationship of complicated systems.
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Supplementary information: details of the ML workow to
investigate the structure–performance relation; the number of
MS-HEAs and all adsorption sites; ML-predicted DE*CO/DE*CHO/
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M2−n bonds; and the density distribution of SHAPactivity and
SHAPselectivity for reported/predicted HEAs. See DOI: https://
doi.org/10.1039/d5sc05762k.
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