
Registered charity number: 207890

As featured in:

See Samira Siahrostami, 
Chem. Sci., 2025, 16, 15926. 

Showcasing research from Professor Samira Siahrostami’s 
laboratory, Department of Chemistry, Simon Fraser University, 
British Columbia, Canada.

Selectivity trends in two-electron oxygen reduction: insights from 
two-dimensional materials 

This work explores selectivity trends in the two-electron oxygen 
reduction reaction (2e-ORR) across a broad set of two-dimensional 
(2D) materials. By systematically analysing active sites and 
employing the descriptor ΔΔG, the study reveals how structural 
and electronic features govern selectivity toward hydrogen 
peroxide production. The fi ndings highlight that not all catalytically 
active sites exhibit high selectivity, underscoring the importance 
of distinguishing activity from product preference. These insights 
provide valuable design principles for identifying and engineering 
2D catalysts optimized for effi  cient 2e-ORR.

Image reproduced by permission of Samira Siahrostami from 
Chem. Sci., 2025, 16, 15926.

rsc.li/chemical-science



Chemical
Science

EDGE ARTICLE

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

1 
 2

02
5.

 D
ow

nl
oa

de
d 

on
 0

7/
11

/2
5 

15
:0

2:
30

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
View Journal  | View Issue
Selectivity trends
Department of Chemistry, Simon Fraser Un

B.C. V5A 1S6, Canada. E-mail: ssiahros@sf

Cite this: Chem. Sci., 2025, 16, 15926

All publication charges for this article
have been paid for by the Royal Society
of Chemistry

Received 3rd July 2025
Accepted 4th August 2025

DOI: 10.1039/d5sc04904k

rsc.li/chemical-science

15926 | Chem. Sci., 2025, 16, 15926–
in two-electron oxygen
reduction: insights from two-dimensional materials

Samira Siahrostami *

Advancing the discovery of novel materials for electrosynthesis of hydrogen peroxide (H2O2) via the two-

electron oxygen reduction reaction (2e-ORR) while rationalizing and quantifying selectivity trends has been

an ambitious objective. A recently introduced selectivity descriptor, DDG, published in Chem Catal. 2023,

3(3), 100568, utilizes thermodynamic analysis of adsorption free energies of key ORR intermediates

(DGOOH* and DGO*) along with the free energy of H2O2 to quantify selectivity and establish trends. This

model has been successfully applied to a large database of binary alloys, demonstrating strong potential

for predicting selective materials Angew. Chem. Int. Ed. 2024, 63, e202404677. In this study, we

systematically explore a diverse range of active sites in carbon-based structures, boron nitrides, and

single atom catalysts, emerging classes of materials for 2e-ORR. We assess the effectiveness of DDG in

capturing selectivity trends and distinguishing sites that are both catalytically active and highly selective.

Our findings highlight that not all active sites in carbon-based materials reported with high activity

inherently exhibit high selectivity, with only a small fraction meeting both criteria. This work highlights

the importance of DDG as a predictive tool, providing valuable insights for designing selective and active

two-dimensional materials.
Introduction

The two-electron oxygen reduction reaction (2e-ORR) has
attracted signicant attention in both experimental and
computational research due to its ability to produce hydrogen
peroxide (H2O2) via the electrochemical reduction of oxygen
without a need for energy input. H2O2 is a versatile chemical
with a wide range of applications in energy and environmental
sectors, including electronics, metallurgy, pulp and paper
bleaching, textiles, propylene oxide production, detergents,
wastewater treatment, and sanitation. Furthermore, H2O2 holds
potential for use in energy storage systems, particularly in
conjunction with renewable energy sources. As a powerful
oxidizing agent, H2O2 offers advantages such as superior
performance over chlorine in water treatment, as it breaks down
into harmless water and oxygen, leaving no toxic byproducts.1

The main industrial method for H2O2 production, the
anthraquinone process, meets current global demand but its
energy-intensive multi-step process requires high energy input,
as well as costly noble metal catalysts.1 Additionally, the process
generates large amounts of waste, including toxic organic
solvents. Furthermore, the produced H2O2 must undergo puri-
cation, storage, and transportation, all of which contribute to
its high cost and environmental footprint.1 These challenges
have sparked considerable interest in direct hydrogen peroxide
iversity, 8888 University Drive, Burnaby,

u.ca

15934
synthesis (DHSP) via electrochemical methods.2,3 This approach
could enable H2O2 production under ambient conditions, using
renewable energy sources rather than fossil fuels, and green
reactants like water and air, instead of the toxic anthraquinone
derivatives. As a result, there is growing research into new
materials that can efficiently catalyze the 2e-ORR for this
purpose.

A major challenge in catalyst development for DHSP is
creating cost-effective, durable materials that maximize both
activity and selectivity for the 2e-ORR pathway, while mini-
mizing competition with four electron oxygen reduction (4e-
ORR) pathway.4 Selectivity refers to the catalyst's preference
for a particular reaction pathway, while activity refers to the rate
at which the catalyst facilitates the desired 2e-ORR pathway.
Computational tools, particularly density functional theory
(DFT) combined with the computational hydrogen electrode
(CHE) model5 and thermodynamic analysis, have proven
invaluable in understanding the mechanisms of both 2e-ORR
and 4e-ORR, guiding the design of more active catalysts.6

Based on the computational understanding, adsorption free
energy of OOH*, has been proposed as a descriptor to capture
and predict trends in catalytic activity toward 2e-ORR6–8 based of
which the state-of-the-art Hg-based alloys4,9 were discovered.
This descriptor-based analysis which is based on thermody-
namics of the reaction (dealing with adsorption energy of ORR
intermediates as activity descriptors) has proven to be essential
in understanding the activity trends and providing guidelines
© 2025 The Author(s). Published by the Royal Society of Chemistry
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for targeted materials with high activity toward electrosynthesis
of H2O2 thus far.10–18

Using this approach, various classes of materials—including
carbon-based materials,10,19–27 metal oxides,28,29 and metal
suldes30—have been extensively studied as potential electro-
catalysts for the 2e-ORR. Among these, carbon-based materials
have attracted signicant interest due to their cost-
effectiveness, safety, ease of synthesis, tunability, and wide
availability.10,13,17,19–25,31–34 Additionally, their structural versa-
tility allows for the incorporation of heteroatoms (such as
nitrogen, sulfur, and boron), which can modulate electronic
properties and enhance catalytic activity. Various studies have
also highlighted the role of defect, edge sites, surface func-
tionalization and transition metal doping in optimizing carbon-
based materials selectivity and activity for 2e-ORR.12,35,36

Various computational studies have demonstrated that
thermodynamic analysis and the CHE approach are valuable
tools for understanding activity trends and guiding the identi-
cation and design of novel materials for the 2e-ORR.6,22,37–39 On
the other hand, selectivity in the 2e-ORR presents a signicant
challenge. Highly selective materials tend to bind O2 weakly,
preserving the O–O bond and preventing its cleavage upon
formation of OOH*, which enhances H2O2 production.
However, this weak binding also results in low catalytic activity.
It is well known that maximizing selectivity oen comes at the
expense of activity, creating a trade-off between the two prop-
erties. To overcome this negative correlation, it is essential to
identify materials that can bind O2 and the associated OOH*

intermediate with sufficient strength while still avoiding bond
cleavage. This requires strategies such as optimizing the
geometric arrangements of surface atoms—for example,
through the use of isolated active sites4—or by breaking the
scaling relationship between adsorbed OOH* and O*, although
achieving the latter has proven to be extremely challenging.
Furthermore, the absence of a robust metric for quantifying
selectivity has hindered the ability to rationalize trends and
identify materials that exhibit both high selectivity and catalytic
activity. Recently, the introduction of the thermodynamic
parameter DDG has addressed this gap by enabling the quan-
tication of selectivity based on the predicted adsorption free
energies of ORR intermediates (DGOOH* and DGO*) and the free
energy of H2O2, as demonstrated in the study by Siahrostami
et al.37 This parameter was systematically examined across
a broad spectrum of binary alloys, revealing that only a limited
number of single-site binary alloys reported for high activity
also exhibit high selectivity for 2e-ORR.40 These selective single-
site alloys achieved high 2e-ORR performance through the
ensemble effect, effectively overcoming the limitations imposed
by the scaling relationship between DGOOH* and DGO*,
a phenomenon well captured by DDG.

Building upon this prior study, herein we extend the scope of
analysis to systematically examine a wide range of active sites in
carbon-based structures as well as other two-dimensional
materials, including boron nitride and silicon carbide, for the
two-electron oxygen reduction reaction (2e-ORR). What distin-
guishes this work is the comprehensive mapping of both
activity and selectivity across diverse material classes using the
© 2025 The Author(s). Published by the Royal Society of Chemistry
DDG descriptor. We critically assess the efficacy of DDG not only
in capturing selectivity trends, but also in pinpointing active
sites that achieve the rare combination of high catalytic activity
and high selectivity for 2e-ORR.

Importantly, our study reveals that many active sites previ-
ously reported as highly active do not inherently display favor-
able selectivity, challenging assumptions oen made in the
eld. We demonstrate that only a small subset of these sites
achieves both high activity and high selectivity, underscoring
the importance of dual-criterion screening for rational catalyst
design. This work, therefore, provides a deeper mechanistic
understanding and a more rigorous framework for identifying
promising 2e-ORR catalysts, particularly among low-cost and
earth-abundant two-dimensional materials that have attracted
signicant attention for sustainable H2O2 electrosynthesis.

Computational details

The simulations were carried out using the Atomic Simulation
Environment (ASE),41 with electronic structure calculations
performed using the QUANTUM ESPRESSO42 package. Plane-
wave basis sets were used to expand the electronic wave-
functions with a cutoff energy of 500 eV, while the electron
density was represented on a grid with a cutoff of 5000 eV. Core
electrons were modeled using ultraso pseudopotentials. The
BEEF-vdW exchange-correlation functional43,44 was employed,
as it has been shown to accurately capture both chemisorption
and physisorption properties, particularly on graphene and
other two-dimensional materials. All structures were modeled
as single-layer graphene slabs with supercells ranging from 4 ×

4 to 8 × 8 in lateral dimensions. The Brillouin zone was
sampled using Monkhorst–Pack grids of (4 × 4 × 1) and (2 × 2
× 1), and a vacuum spacing of approximately 20 Å was added to
prevent interactions between periodic images. The computa-
tional hydrogen electrode (CHE) approach was used to relate the
chemical potential of a proton–electron pair to that of gas-phase
H2 at an electrode potential Uelec = 0.0 V vs. the reversible
hydrogen electrode (RHE). The effect of electrode potential on
the free energy of reaction intermediates was accounted for by
shiing the electron energy by –eUelec, where e is the charge and
Uelec is the applied potential. The calculated zero-point energy
(ZPE) and entropy (TS) corrections at standard conditions (T =

298.15 K, p = 1 bar) for O*, *OH and *OOH are listed in the
Supplementary Note 1.

Results and discussion

Various types of active sites on carbon-based materials have
been extensively studied, including heteroatom doping, metal
doping, oxygen functional groups, defects, and edge
sites.10,19–21,32–34 These structural modications have been
computationally investigated to unravel catalytic activity and
selectivity for the 2e-ORR and among these strategies, many
have been experimentally validated as active and selective.20,31,32

For example, studies on oxygen functional groups in partially or
fully oxidized carbon structures, such as graphene oxides, have
demonstrated that ether, epoxy, and carboxyl groups at carbon
Chem. Sci., 2025, 16, 15926–15934 | 15927
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Fig. 2 Free energy diagram for 2e-ORR, illustrating the catalytic
activity (h2e-ORR) and selectivity (DDG) descriptors. Vertical black solid
lines represent the steps of coupled proton–electron transfer. Black,
red, and blue dotted lines represent the adsorption energy of the
OOH* intermediate for an ideal 2e-ORR catalyst, the free energy of
H2O2 in aqueous solution, and the adsorption energy of O* for an ideal
4e-ORR catalyst, respectively.
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edge sites play a crucial role in promoting H2O2 produc-
tion.16,17,45,46 Additionally, heteroatom doping (e.g., nitrogen,
and boron) has been shown tomodulate the electronic structure
and inuence both activity and selectivity, while metal doping
can introduce localized active centers that further optimize
performance.19,20,32,47

In this study, we compiled a database by conducting and
gathering a variety of DFT calculations for DGOOH*, DGO* and
DGOH* on two dimensional materials mostly graphene and
boron nitride. We then analyze these data to systematically
evaluate the impact of these various active sites and gain deeper
insights into the underlying selectivity trends for 2e-ORR. Fig. 1
presents the schematics of some of the active sites examined in
this study which encompass various types and quantities of N-
doping, defects, N-doped defects, and metal-doped graphene
(M = Cu, Mo, Pt, Fe, Ag). They also include other heteroatom
dopants (P, S, F, Al, B, Cl, Si), various amount of BN co-doping,
metal-doped BN (M = Ru, Co, Pt, Ag, Ni, Fe, Pd, Rh, Cu, Os, Mo,
Ir), and oxygen functional groups. The calculated and compiled
adsorption energy values for ORR intermediates, along with the
corresponding references, are provided in SI Tables S1–S4.

As mentioned above, a major challenge in catalyst design for
2e-ORR lies in balancing activity and selectivity. The previous
study on binary metal alloys shows that overcoming the
inherent scaling relationship between OOH* and O* is crucial
for developing highly selective and active catalysts.40 An ideal
catalyst should exhibit both high selectivity and activity. The
catalytic activity of the 2e-ORR is assessed by calculating the
overpotential (h) based on DGOOH*. The h value is calculated
using the equation jDGOOH* – 4.22 eVj/e, where 4.22 eV repre-
sents the OOH* binding energy of an ideal catalyst with zero
overpotential. A lower h indicates higher catalytic activity
(Fig. 2).
Fig. 1 Schematics of the active sites examined in this study as well as tho
2e-ORR. The corresponding calculated and compiled adsorption energy
Tables S1–S4.

15928 | Chem. Sci., 2025, 16, 15926–15934
To predict the selectivity toward H2O2, we utilized the ther-
modynamic descriptor DDG.37 This descriptor is derived from
DGOOH* and DGO*, condensing the selectivity prediction into
a single metric (eqn (1)–(3)). The DDG value is calculated as the
difference between G1 and G2, which represent the free energy
differences between OOH* and its further reduced products,
H2O2 or O* + H2O, respectively. Maximum selectivity for the 2e-
ORR is achieved when DDG approaches zero (Fig. 2).

G1 = DGH2O2
− DGOOH* (1)
se reported in the literature for their high activity and selectivity toward
values for ORR intermediates and relevant references are included in

© 2025 The Author(s). Published by the Royal Society of Chemistry
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G2 = DGO*+H2O
− DGOOH* (2)

DDG = G1 − G2 (3)

Substituting G1 and G2 in eqn (3) results in:

DDG = DGH2O2
− DGO*+H2O

(4)

For over a decade, DGOOH* has been widely used as
a descriptor for both the activity and selectivity of catalysts
toward the 2e-ORR.37 However, recent studies by Siahrostami
et al. have shown that DGOOH* offers only a qualitative indica-
tion of selectivity and is insufficient for reliably capturing
selectivity trends across different catalysts.37,40 For instance,
relying solely on DGOOH* as a descriptor of selectivity would
categorize all catalysts with DGOOH* ∼ 4.22 eV as selective for
H2O2 production, but this approach overlooks important trends
in selectivity.37,40 Moreover, these studies have shown that
selectivity, as quantied by DDG, is not dependent on DGOOH*

but rather on DGO*, which plays a crucial role in the O–O bond
dissociation process.37,40 It is worth noting that although
DGOOH* is included in the denitions of both G1 (eqn (1)) and G2

(eqn (2)), it naturally cancels out in the derivation of DDG (eqn
(4)), highlighting that DGO* has a more direct and signicant
inuence on selectivity.37 The application of DDG is especially
valuable when screening large datasets where traditional
scaling relations break down.40 As such, DDG offers a more
robust and comprehensive selectivity metric that compensates
for the limitations of DGOOH* and better captures the inuence
of key intermediates on catalytic selectivity.

To employ DDG as a descriptor for uncovering selectivity
trends in two-dimensional materials, we begin by analyzing the
scaling relations within our dataset (Fig. 3a–d). As anticipated,
the points are dispersed across all three scaling plots (Fig. 3a–c),
suggesting no meaningful scaling behavior when considering
various two-dimensional catalysts. The correlation is stronger in
Fig. 3b for DGOOH* vs. DGOH*, where both intermediates are
expected to form single bonds to the active sites. The deviations
indicate cases where the OOH* intermediate adopts a bidentate
coordination or dissociates into OH* + O.

The weaker correlations observed in Fig. 3a and c result from
the generally lower correlation between oxygen species such as
O* and OH* or O* and OOH*, which arises from differences in
the bond orders they form with the active site. These weak
correlations, however, have been proven advantageous for
selectivity toward the 2e-ORR, as they provide more exibility in
identifying catalysts that are not only active but also selective for
the 2e-ORR.40 This is because, as discussed above, under the
thermodynamic denition (eqn (1)–(4)), 2e-ORR selectivity,
DDG, is determined by the DGO* (eqn (4)), while 2e-ORR activity
is governed by the DGOOH*.

Fig. 3d displays G1 and G2 as a function of DGOH*. The
difference between G1 and G2 for each data point refers to DDG
(eqn (3)), a quantitative measure for 2e-ORR selectivity. A
smaller DDG value corresponds to a higher 2e-ORR selectivity,
with the maximum selectivity being achieved when DDG is zero.
© 2025 The Author(s). Published by the Royal Society of Chemistry
We note the scaling relationships in Fig. 3, such as those
between *OH and *OOH or *OH and *O, are subject to inherent
uncertainties arising from both the choice of exchange-
correlation functional (BEEF-vdW) and the statistical scatter
of the data. BEEF-vdW provides an internal estimate of func-
tional uncertainty (0.2–0.3 eV for systems where dispersion
interactions are signicant and not fully captured43), which we
have used to compute condence intervals for these correla-
tions. Accordingly, the trend lines shown in Fig. 3 represent
correlations between binding energies of key ORR intermedi-
ates with linear regression ts, while the shaded bands indicate
the 95% condence intervals derived from the ensemble of
BEEF-vdW functionals in both X and Y binding energy values.
These intervals reect the expected spread in adsorption ener-
gies due to exchange-correlation functional uncertainty and
provide a more realistic representation of the reliability of the
predicted trends.

Fig. 4a displays the DDG values as a function of DGOH* for
various active sites in two-dimensional structures examined in
this study, providing insight into the identication of active
sites that are both active and selective for 2e-ORR. The black
vertical dashed line represents the DGOH* = 1.0 eV (corre-
sponding to DGOOH* = 4.22 eV) of an active catalyst for the 2e-
ORR with 2e-ORR overpotential (h2e-ORR) equal to zero. Active
sites closer to the vertical dashed line indicate high 2e-ORR
activity with a lower overpotential (gray arrows). The hori-
zontal green dashed line indicates the DDG = 0.65 eV which is
the value reported for PtHg4 catalyst,40 serving as a benchmark
for selective catalysts. Catalysts with DDG = 0.0 are considered
to have maximum selectivity. The green arrow in this gure
highlights a direction of increasing the 2e-ORR selectivity.

Fig. 4b combines both catalytic activity and selectivity, eval-
uated through h2e-ORR and DDG, respectively. The optimal
catalytic activity and selectivity are achieved when h2e-ORR is
0.0 V and DDG is 0.0 eV. Similar to Fig. 4a, the horizontal green
dashed line represents the DDG value for the PtHg4 catalyst,
which serves as the threshold for selective catalysts. We also
relaxed the stringent criterion for h2e-ORR, increasing the over-
potential threshold from 0.0 V to 0.20 V. The green-shaded area
in Fig. 4b can be considered the “holy grail” for achieving both
high selectivity and activity toward 2e-ORR.

To better visualize the similarities and differences among
the examined two-dimensional catalysts, we generated a bar
chart summarizing all DDG and h2e-ORR (Fig. S1). Fig. 4c high-
lights the most promising two-dimensional structures, dened
as those exhibiting either DDG # 0.65 eV (marked by the red
dashed line) or h2e-ORR # 0.20 V (marked by the black dashed
line). The corresponding atomic structures are displayed in
Fig. 4d. This analysis reveals that, unlike binary alloys, identi-
fying two-dimensional catalysts that are both active and selec-
tive for the 2e-ORR pathway remains highly challenging. In
other words, while it is relatively straightforward to pinpoint
active sites with high 2e-ORR activity (h2e-ORR # 0.20 V, high-
lighted by the pink boxes)—such as single-atom sites of Pt, Pd,
Rh, Co or Fe embedded in two-dimensional substrates—these
sites, when assessed for selectivity, typically favor the 4e-ORR
pathway over the desired 2e-ORR route. This is consistent
Chem. Sci., 2025, 16, 15926–15934 | 15929
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Fig. 3 Correlations between binding energies of key ORR intermediates across our database for two-dimensional materials with linear
regression fits: (a)DGO* vs.DGOH*, (b)DGOOH* vs.DGOH*, (c)DGO* vs.DGOOH*, and (d)G1 andG2 as a function ofDGOH*. Shaded bands around the
regression lines represent 95% confidence intervals, accounting for the estimated uncertainty (∼±0.2–0.3 eV as reported in Ref. 43) in both X and
Y binding energy values. Error bars on data points show the individual uncertainties in each datapoint. This visualization explicitly represents the
propagation of errors in the correlations.
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with various reports, which typically identify these catalysts as
efficient 4e-ORR systems.48–51 Conversely, nearly all active sites
with DDG values lower than that of PtHg4 fail to achieve high 2e-
ORR activity, indicating that low DDG alone is not a sufficient
predictor of catalytic performance for this reaction. This high-
lights the complex interplay between activity and selectivity in
two-dimensional catalysts, where optimizing one property does
not necessarily guarantee improvement in the other. It further
underscores the need for dual-parameter descriptors or design
strategies that can simultaneously balance both activity and
selectivity for efficient 2e-ORR catalysis.

As highlighted in green in Fig. 4c, the only active site iden-
tied that satises both the selectivity and activity criteria is an
N-doped single vacancy defect, illustrated in the inset of Fig. 4b.
This type of defect is quite common and has a low formation
energy, making it highly likely to be present in carbon-based
catalysts.52 We suggest that this could be the active site
responsible for the selective and efficient reduction of oxygen to
H2O2 in metal free N-doped carbon samples.

Notably, recent work by Urrego-Ortiz et al.53 has shown that
standard DFT calculations can introduce errors in estimating
15930 | Chem. Sci., 2025, 16, 15926–15934
the absolute energy of H2O2. In our study, we mitigate this issue
by referencing the experimental free energy of H2O2 in our
thermodynamic analysis. One could reasonably argue that the
computed free energies of *OOH might exhibit similar uncer-
tainties as H2O2. However, our focus is on using relative ener-
gies to capture screening trends across materials, rather than
making absolute quantitative predictions. While uncertainties
inherent to GGA-level functionals such as BEEF-vdW may
inuence absolute values, they have minimal impact on the
comparative trends that form the basis of our descriptor-driven
insights.

Lastly, we would like to emphasize that the DDG descriptor is
derived purely from thermodynamic analysis based on the
adsorption free energies of key reaction intermediates involved
in the ORR. By construction, it captures intrinsic selectivity
trends dictated by the relative stabilities of intermediates on the
catalyst surface. However, it does not explicitly account for
external factors such as pH, solvent environment, or tempera-
ture, all of which are known to inuence adsorption energetics
and reaction pathways in aqueous electrocatalysis.
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 (a) Selectivity analysis showing DDG as a function of DGOH* for various investigated active sites in carbon-based materials and two-
dimensional boron nitride. (b) Combined selectivity–activity map, where the highlighted green region indicates the optimal zone for both high
selectivity and catalytic activity. The inset displays the atomic structure and highlights the active site (indicated by red circles) of the only structure
that meets both the high activity and selectivity criteria. Labels a to j correspond to the reported values on various two-dimensional materials in
the literature as reported in the SI. Error bars on data points show the individual uncertainties in each datapoint. (c) Bar chart highlighting themost
promising two-dimensional structures exhibiting either DDG # 0.65 eV (indicated by the red dashed line) or h2e-ORR # 0.20 V (indicated by the
black dashed line). (d) Several examples of the atomic structures highlighted in pink and green in the bar chart. Red oval indicates the active site.

Edge Article Chemical Science

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

1 
 2

02
5.

 D
ow

nl
oa

de
d 

on
 0

7/
11

/2
5 

15
:0

2:
30

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
The pH of the electrolyte affects the chemical potential of
protons and thereby the protonation states and surface
coverage of adsorbed species, which can alter the relative free
energies and shi selectivity patterns.54,55 For example, changes
in pH may modulate the favourability of proton–coupled elec-
tron transfer steps, impacting reaction rates and product
distribution.56 Alternatively, under alkaline conditions, cations
are known to induce a eld effect that particularly inuences
the adsorption energy of the *OOH intermediate.57 Similarly,
the solvent environment, especially water, plays a crucial role
© 2025 The Author(s). Published by the Royal Society of Chemistry
through hydrogen bonding and solvation effects that stabilize
certain intermediates more than others.46 Prior experimental
and theoretical studies have demonstrated that intermediates
such as *OH and *OOH are stabilized by explicit solvation,
which can modify their adsorption energies compared to
vacuum or implicit solvent models.58

Temperature further inuences reaction thermodynamics by
affecting entropy contributions and kinetic barriers, potentially
altering both adsorption strengths and reaction selectivity.59

Together, these factors create a complex, dynamic environment
Chem. Sci., 2025, 16, 15926–15934 | 15931
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that is difficult to fully capture within static DFT calculations
using simplied models.

Therefore, while DDG provides a valuable and computa-
tionally accessible baseline descriptor reecting fundamental
thermodynamic trends, it should be interpreted as part of
a broader mechanistic context. We recommend that its
predictions be complemented by more detailed studies incor-
porating explicit solvent models, pH-dependent proton activi-
ties, and temperature effects, either through computational
approaches such as ab initio molecular dynamics or through
careful experimental validation.

Despite these limitations, the DDG descriptor remains an
essential and practical starting point for screening and rational
design of 2e-ORR electrocatalysts. It offers fundamental
insights into intrinsic selectivity trends that are otherwise
challenging to extract from purely experimental data. As such, it
should continue to be routinely employed within the compu-
tational catalysis community to guide the discovery and opti-
mization of new materials for sustainable electrochemical
applications.
Conclusions

Advancing the discovery of novel materials for the electro-
synthesis of hydrogen peroxide (H2O2) via the two-electron
oxygen reduction reaction (2e-ORR) requires not only identi-
fying catalytically active sites but also rationalizing their selec-
tivity. The recently proposed thermodynamic descriptor, DDG,
based on the adsorption free energies of key ORR intermediates
(DGOOH* and DGO*) and H2O2, offers a valuable framework for
quantifying selectivity and establishing design principles.
While DDG has shown strong predictive power in the context of
metal alloys, its broader applicability to emerging materials
such as carbon-based structures and boron nitrides remains
a key question. In this study, we systematically evaluated
a diverse set of active sites within these classes of materials and
demonstrated that DDG is effective in distinguishing sites that
are both highly selective and catalytically active. Our results
reveal that many sites reported to be active for 2e-ORR do not
necessarily exhibit high selectivity, underscoring the need to
consider both factors simultaneously in catalyst design. Among
the structures investigated, only a small subset of sites—such as
nitrogen-doped single vacancy defects—met both selectivity
and activity criteria, highlighting promising directions for
future development.
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