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Unveiling the migration reactivity of bicyclic diaziridines: 
enantioselective synthesis of chiral pyrazolines
Zhili Liu,a Lichao Ning,a Bingqian Yang,a Kaixuan Wang,a Lili Lin,*a and Xiaoming Feng*a

The ring-opening/cyclization represents a classic reactivity of bicyclic diaziridines. In this study, an unprecedented ring-
opening/migration cascade process was discovered in the reaction between bicyclic diaziridines and donor-acceptor (D-A) 
cyclopropanes. By employing a chiral N,N'-dioxide/scandium(III) complex as the catalyst, a diverse array of chiral dihydro-
1H-pyrazoles with a stereocenter in the side chain were efficiently synthesized featuring excellent ee values. Control 
experiments indicated that the substitution on the D-A cyclopropane is of critical importance in determining the cyclization 
or migration process. When combined with DFT calculations, a plausible reaction mechanism was proposed, which involves 
a key transition state. The work presents a novel method for accessing pyrazolines but also broadens the scope of diaziridine 
chemistry. 

Introduction
Bicyclic diaziridines, specifically 1,5-diazabicyclo[3.1.0]hexanes, 
are a distinct class of diaziridine compounds. These nitrogen - 
rich molecules contain a strained cis N,N- disubstituted 
diaziridine moiety.1 Due to this inherent structural trait, they 
are inclined to undergo ring opening, which can occur through 
either selective C–N or N–N cleavage (Scheme 1a). The C–N 
cleavage pathway, which results in the formation of 1,3 - dipole 
azomethine imine intermediates,2 is well documented. These 
intermediates readily participate in annulation reactions with 
dipolarophiles. In 2020, our group disclosed an asymmetric (3 + 
2) annulation reaction between diaziridines and chalcones, 
which was facilitated by a scandium(III) catalyst.3 More recently, 
in 2025, Guo and Xie put forward a copper(II) - catalyzed 
asymmetric (3+3) annulation of diaziridines and oxiranes.4 On 
the other hand, N–N cleavage paves the way for the creation of 
nitrogen - containing medium - sized rings. A notable example 
is Doyle’s group’s work in 2019. They reported a highly 
stereoselective formal [3 + 3] desymmetrization cycloaddition 
of diaziridines with enol diazo compounds to form bridged 
dinitrogen heterocycles through a chiral copper catalysis.5

On the other hand, pyrazolines featuring a chiral center on 
the side chain are ubiquitous in bioactive molecules (Scheme 
1b).6 Current methodologies for the asymmetric synthesis of 
pyrazolines primarily rely on two strategies (Scheme 1c): (1) 
organocatalytic cycloadditions between hydrazines/diazo 
compounds and α,β-unsaturated carbonyl compounds;7 (2) 
Bolm's formal [4+1] cycloaddition of azoalkenes and sulfur 
ylides promoted by a chiral copper/BINAP complex.8
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Scheme 1 Enantioselective reactions of diaziridines and representative pyrazoline- 
incorporated derivatives.
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However, both approaches exclusively install the chiral center 
within the pyrazoline ring system. Given the prevalence of side-
chain chirality in pharmacologically relevant pyrazolines, the 
development of efficient synthetic methods to access such 
scaffolds remains an unmet challenge and a compelling area of 
research. 

Herein, we report an unprecedented migration reactivity 
of 1,5-diaza-bicyclo[3.1.0]hexanes in the reaction with D-A 
cyclopropanes9 catalyzed by a chiral scandium catalyst (Scheme 
1d). This protocol provides an efficient approach to access chiral 
3-disubstituted pyrazolines featuring a chiral center on the side 
chain.

Before initiating the research using bicyclic diaziridines and 
D-A cyclopropanes as substrates, a (3+3) annulation is predicted. 
Our initial investigation using cyclopropane ester and 6- 
methoxyl-1,5-diazabicyclo-[3.1.0]hexane indeed afforded a 
(3+3) adduct in the presence of Sc(OTf)3 as the catalyst, which 
is consistent with the (3+3) addition reaction reported by 
Ivanova and Trushkov for cyclopropane esters reacting with 
diaziridines under Ni(ClO₄)₂ catalysis.10 However, when the 
ester group on the D-A cyclopropanes was simply changed to a 
ketone group, the unexpected 1,3-disubstituted pyrazoline was 
obtained as the product (Scheme 2). Notably, a benzyl group 
migration process occurred instead of cycloaddition.11 Although 
the yield is low, this presents an opportunity to develop an 
efficient synthetic method for chiral diaziridines featuring a 
chiral center on the side chain.
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Results and discussion 
Then, the optimization of reaction conditions was conducted (Table 
1). Investigation of metal salts by complexing with chiral L-pipecolic 
acid-derived N,N'-dioxide L3-PiPr3 revealed that numerous metal 
salts, including Mg(OTf)2, MgCl2 and Ni(OTf)2, were ineffective for the 
reaction.12 Both yield and enantioselectivity remained low (Table 1, 
entries 1-3). Notably, rare-earth metal salts Y(OTf)3, La(OTf)3 
improved the enantioselectivity (Table 1, entries 4-5). Specifically, 
Sc(OTf)3 afforded 91% ee despite a modest yield of 27% (Table 1, 
entry 6). Ligand screening demonstrated both chiral skeleton and 
amide substituent significantly impacted enantioselectivity. L-
Proline-derived L3-PrPr3 reduced enantioselectivity to 73% ee (Table 
1, entry 7), while the L-Ramipril-derived L3-RaPr3 caused a drastic 
decrease to below 10% ee (Table 1, entry 8). Removal of the para-
substituent on the amide benzene ring led to a reduction in 

enantioselectivity to 55% ee (Table 1, entry 9).Switching the solvent 
from 1,2-dichloroethane to 1,1,2,2-tetrachloroethane (TCE) and 
increasing the loading of 1a to 2.2 equivalents, improved the yield 
from 27% to 46% (Table 1, entry 10). The addition of MgCl₂ further 
enhanced the yield to 63% 

Table 1 Optimization of reaction conditions.a 

+

Metal salt/Ligand
(1:1, 10 mol%)

2a 3aa

DCE, 60 °C

1a

Ph
COPh
COPh N

N
Ph

COPh

COPhN
N

Ph

Ph

N N

N N

n n

N H
O O

H N

O O

Ar Ar N H
O O

H N

O O

Ar ArL3-PrPr3: Ar = 2,4,6-iPr3C6H2, n = 1
L3-PiPr2: Ar = 2,6-iPr2C6H3, n = 2
L3-PiPr3: Ar = 2,4,6-iPr3C6H2, n = 2

L3-RaPr3: Ar = 2,4,6-iPr2C6H2

COPh

COPhN
N

Ph

Partial byproducts

OPh
Ph

COPh

by1

by2

 
metal salt ligand Add. Yield ee/%

1 Mg(OTf)2 L3-PiPr3 - 15 14
2 MgCl2 L3-PiPr3 - 12 15
3 Ni(OTf)2 L3-PiPr3 - 13 11
4 Y(OTf)3 L3-PiPr3 - 26 53
4 La(OTf)3 L3-PiPr3 - 18 49
5 Sc(OTf)3 L3-PiPr3 - 27 91
6 Sc(OTf)3 L3-PrPr3 - 26 73
8 Sc(OTf)3 L3-RaPr3 - 22 8
9 Sc(OTf)3 L3-PiPr2 - 22 55

10 b Sc(OTf)3 L3-PiPr3 - 42 92
11 b  Sc(OTf)3  L3-PiPr3 MgCl2 63 92

a The reactions were performed with metal salt/ligand (1:1, 10 mol%), 1a (0.2 
mmol), 2a (0.1 mmol), in 1,2-dichloroethane (1.0 mL) at 60 °C for 36 h. 
Isolated yield. The ee was determined by UPCC analysis on a chiral stationary 
phase. b 1,1,2,2-Tetrachloroethane (1.0 mL) as the solvent,1a (2.2 equiv.). 

while maintaining 92% ee (Table 1, entry 11). Further yield 
improvement was hindered by the formation of numerous 
byproducts, including those from benzyl group cleavage and the self-
cyclization of D-A cyclopropanes. 

With the optimized conditions established, the substrate scope 
was evaluated (Scheme 3). First, the scope of D-A cyclopropanes was 
investigated via reaction with diaziridine 2a. For ortho-substituted 
phenyl cyclopropyl ketones,13 F or Cl substitution exerted no 
significant effect on yield or enantioselectivity (3ab, 3ac). D-A 
Cyclopropanes bearing electron-withdrawing or electron-donating 
substituents at meta- or para-position of the aryl ring were efficiently 
converted to the corresponding products 3ad-3al with 34-60% yield 
and 89-93% ee. The 2-naphthyl substituted cyclopropyl ketone 
afforded product 3ao in 62% yield with 90% ee. A para-F substituted 
benzoyl group at the 1-position of cyclopropanes showed no obvious 
influence on the reaction (3ap). Notably, the methylphenyl group 
enhanced enantioselectivity to 98% ee (3aq). The absolute 
configuration of 3ah was determined to be (R) by single-crystal X-ray 
diffraction analysis. 14 In addition, bis-ester substituted cyclopropane 
was employed to react with diaziridine 2a under the optimized 
reaction conditions. Cycloaddition product was found in less than 10% 
yield with no migration product detected.
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Scheme 3 Substrate scope. a Unless otherwise noted, all reactions were performed 
with 1 (0.22 mmol), 2 (0.1 mmol), Sc(OTf)3/L3-PiPr3 (1:1, 10 mol%), and MgCl2 (30 
mol%) in 1,1,2,2-tetrachloroethane (1.0 mL) at 60 °C for indicated time. Isolated 
yields of the products. The ee values were determined by chiral UPCC analysis.

Subsequently, the scope of diaziridines was screened. Diaziridines 
bearing electron-withdrawing or electron-donating groups on their 
aryl rings were compatible, furnishing the desired products (3ba-3ka) 
in moderate yields (39-60%) with high enantioselectivities (85-95% 
ee). Efforts to enhance the yield by prolonging the reaction time 
were unsuccessful. The 2-naphthyl-substituted diaziridine 2m was 
also suitable, affording product 3ma in 40% yield with 85% ee. 2,3-
Dimethyl and 2,4-dichloro substituents on the aryl ring of the 
diaziridine were also tolerated under this catalytic system (3la,3na). 
The 2-thienyl-substituted diaziridine substrate 2p underwent 
smooth conversion, delivering 
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(2) Mg(OTf)2 instead of MgCl2
(3) MgI2 instead of MgCl2
(4) CaCl2 instead of MgCl2
(5) without MgCl2, Mg(OTf)2 insteand of Sc(OTf)3

(6) without MgCl2, ScCl3·6H2O insteand of Sc(OTf)3
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12%

39%

22%

15%

n.d.

92%

91%

90%

16%

13%

yield ee

1a + 2a standard conditions 3aa

(c) Investigation of additive roles

(a) Gram-scale synthesis and transformations of product 3ah

Scheme 4 (a) Gram-scale synthesis and transformations of product 3ah; (b) Cross 
experiment; (c) Investigation of additive roles.

the desired product in 54% yield with 92% ee. Diaziridines bearing a 
benzyl group with strong electron-withdrawing substituents, such as 
p-nitro or p-trifluoromethyl group, failed to yield the corresponding 
products.

To demonstrate the synthetic utility of this methodology, a gram-
scale synthesis of 3ah was performed. As illustrated in Scheme 4a, 
8.8 mmol of cyclopropyl ketone 1h reacted smoothly with 4.0 mmol 
diaziridines 2a under standard conditions, affording 1.16 g of 3ah in 
56% yield with 92% ee. Oxidation with DDQ afforded the chiral 
product 4a in 92% yield with 89% ee. Furthermore, pyrazole and 
isoxazole products 5a and 6a were obtained in the presence of 
NH2NH2 and NH2OH in EtOH.

To elucidate the reaction mechanism, a cross experiment was 
conducted (Scheme 4b). When 1a was reacted with 2r and 3,3-
dimethyl diaziridine 2i simultaneously, 3ia, 3ra and cross-product 
3aa were isolated, suggesting the involvement of a benzylic 
carbocation intermediate in the reaction pathway. To probe the roles 
of Mg(II) salt and the Sc(III)/L3-PiPr3 complex, several control 
experiments were performed. In the absence of L3-PiPr3, the reaction 
mixture became complex, with only trace amounts of product 
detected. Changing the anion of the additive from Cl− to OTf− or I− 
caused a sharp decline in both yield and ee value (Scheme 4c, entries 
2-3). Switching the additive cation to Ca2+ or Na+ reduced the yield 
but preserved excellent enantioselectivity. Additionally, using ScCl3•
6H2O/L3−PiPr3 as the catalyst afforded the corresponding product 
3aa in only 15% yield with 13% ee. These control experiments 
indicate that magnesium chloride facilitates the formation of 
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Scheme 5 Plausible reaction mechanism. 

intermediate and is critical for achieving high yield and 
enantioselectivity in the reaction.

Furthermore, DFT calculations (Scheme 5) were performed to 
clarify the reaction mechanism. The two enantiomers of compound 
1a coordinate with the catalyst, facilitating a nucleophilic attack by 
the intermediate formed after the combination of ring-opening 
product of 2a with magnesium chloride on the cyclopropane carbon 
atom. This results in the opening of the cyclopropane ring and 
formation of intermediate int-1. The transformation proceeds via 
two possible transition states, ts-R and ts-S. Computational analysis 
indicates that ts-R is 1.2 kcal/mol lower in energy than ts-S. 
Structural analysis attributes this energy difference to significant 
steric hindrance between the phenyl group of the cyclopropane ring 
and the aryl substituent of the ligand’s amide moiety in ts-S. The int-
2 undergoes a proton transfer to form intermediate int-3. Int-3 
undergoes benzyl cation release via transition state ts-2, with an 
associated activation barrier of 27 kcal/mol, identifying this step as 
the rate-determining step of the reaction. We also performed 
calculations on the intermediate leading to the [3+3] cycloaddition 
product. Upon optimization, this intermediate was found to 
spontaneously undergo ring-opening, indicating that it is 
energetically unfavorable and supporting the difficulty of forming the 
[3+3] product under the current conditions. Subsequently, the benzyl 
cation attacks the carbon center of int-4 via transition state ts-3, 
forming intermediate int-5 with an activation barrier of only 5.5 
kcal/mol. A final proton transfer, MgCl2 and catalyst release then 
afford the observed product. 

Conclusions
In summary, we have disclosed a benzyl migration process in 

the reaction of D-A cyclopropanes with 1,5-

diazabicyclo[3.1.0]hexanes. The work not only uncovers a new 
reactivity of diaziridines but also provides a novel method for 
the enantioselective synthesis of chiral pyrazole derivatives 
bearing a chiral center on the side chain. In addition, this study 
expands the frontiers of diaziridine chemistry, thereby opening 
up new avenues for the synthesis of chiral heterocyclic 
compounds and the exploration of cascade reaction 
mechanisms.

Data availability
Further details of experimental procedure, 1H, 13C{1H} and 
19F{1H} NMR, HPLC spectra, SFC spectra, X-ray crystallographic 
data for 3ah complex are available in the ESI.
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spectra, X-ray crystallographic data for 3ah complex are available in the ESI.

Page 7 of 7 Chemical Science

C
he

m
ic

al
S

ci
en

ce
A

cc
ep

te
d

M
an

us
cr

ip
t

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

1 
 2

02
5.

 D
ow

nl
oa

de
d 

on
 1

2/
08

/2
5 

11
:2

4:
03

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
DOI: 10.1039/D5SC04846J

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5sc04846j

