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egradable vinyl copolymers via
enforced regular sequence distribution from
automated radical ring opening polymerisation

Mengyuan Wen, WeiNian Wong and Tanja Junkers *

A method based on continuous Bayesian optimization of monomer feed in a semi-batch copolymerization

is demonstrated that allows countering the composition drift in copolymerizations stemming from

disparate reactivity ratios. The method requires online monitoring of the reaction, but requires no prior

kinetic knowledge on the copolymerization or any modelling of the polymerizations, making this the first

method generally applicable to any copolymerization system to achieve this aim. Copolymerizations

between acrylates, methacrylates and styrene are demonstrated to achieve perfectly statistical and

homogeneous distributions, and the radical ring opening copolymerisation between a cyclic ketene

acetal and methyl methacrylate is showcased as an example of a challenging copolymerization where

countering the composition drift results in a completely degradable material, paving a pathway to new

sustainable polymers in the future. Next to perfect regulation of the sequence distribution in these

copolymers, we also demonstrate how the method can be applied to create non-natural composition

drifts in polymers at will.
Introduction

The constant increase in the use of polymer materials made
from vinyl monomers is constantly worsening issues associated
with plastic pollution.1 This class of polymers is particularly
environmentally unfriendly as chain propagation of these
monomers leads to stable all-carbon backbones that are espe-
cially persistent in nature.2 While these backbones provide
materials with high toughness, durability and specic bene-
cial properties, their stability typically outlasts their desired life
cycle by far, leading to accumulation of plastic waste in the
water, soil and animal bodies.3 To mitigate the growing accu-
mulation of plastic waste, biodegradable polymers, such as
poly(lactic acid) (PLA), polycaprolactone (PCL), and poly(glycolic
acid) (PGA), have been developed as alternatives to the
conventional vinyl polymers.4 These materials, synthesized via
ring-opening polymerization (ROP), aim to address plastic
pollution by shortening the life cycle of plastics via either
recycling or degradation, followed by bio-assimilation by
microbes.5 However, such aliphatic polyesters with high ester
content synthesized via ROP are associated with limitations in
their physical properties,6 making them more susceptible to
bre damage and thermal degradation during extrusion and
injection molding.7 Therefore, maintaining a low oxygen
content in polyesters is crucial to improve the performance of
biodegradable polyesters.
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As an alternative to classical ring opening polymerization,
radical ring opening polymerization (RROP) has regained
popularity in recent years to synthesize biodegradable poly-
mers. This subset of ROP utilizes cyclic monomers containing
a vinyl or exo-methylene group, such as cyclic ketene acetals
(CKAs),8–12 thionolactones,13 and a range of macrocyclic
monomers.14–16 These monomers can perform a b-scission ring-
opening reaction to incorporate heteroatoms and functional
groups onto the main polymer chain upon radical initiation via
a radical polymerization (RP) mechanism (Scheme S1).8,17 RROP
combines the advantages of RP and ROP, enabling a low
concentration incorporation of degradable ester bonds in
polymer chains by a relatively mild, simple and efficient reac-
tion mechanism.18 The unique feature of RROP hereby allows
the mixing of polyester units into classical vinyl polymers, thus
creating materials that are particularly degradable while largely
retaining the properties of their parent vinyl polymers. Among
cyclic monomers, CKAs have been the most extensively studied
class in RROP since the 1980s, with pioneering work by Bailey19

and Endo.20 CKAs' ability to copolymerize with conventional
vinyl monomers facilitates the synthesis of a variety of func-
tional macromolecules for diverse applications.21,22 However,
the application of CKAs is oen deterred by their limitation of
incorporation into the copolymer backbone, both due to the
inherent low reactivity and to the competition between their
ring-opening and ring-retaining reactions, which likewise limit
the number of ester groups being incorporated into the back-
bone.17 One CKA that performs well with respect to ring-
opening in polymerization is 5,6-benzo-2-methylene-1,3-
© 2025 The Author(s). Published by the Royal Society of Chemistry
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dioxepane (BMDO), rst introduced by Bailey and coworkers in
1982,23 which undergoes 100% ring-opening due to radical
stabilization by its phenyl ring.22 Despite its advantages, the low
reactivity ratio of BMDO and most CKAs compared to conven-
tional vinyl monomers induces (with the notable serendipitous
exception of vinyl ethers)24 a signicant composition dri
during copolymerization and compositional heterogenicity in
the copolymers, which severely limits their degradability.25 In
consequence, BMDO (and most other CKAs) copolymerization
have rather niche applications, and other, more reactive cyclic
monomers dominate current research. However, if this hurdle
is overcome, then monomers such as BMDO will be the ideal
candidates for biodegradable polymer design.

Composition dri results from a disparate reactivity ratio of
the comonomers involved in a copolymerization. The statistical
distribution of monomer composition can be quantitatively
described by using the Mayo–Lewis equation based on the
terminal model, as shown in Fig. 1B, which depicts the relative
rate of consumption of monomer 1 and 2 (d[M1] and d[M2])
regarding their reactivity ratio r1 and r2, dened by the propa-
gation kinetics (eqn S(3)). In its mole fraction form, the mole
fraction of monomer 1 in the copolymer (F1 in Fig. 1B) is
determined with the molar feed of monomers (f1 and f2 in
Fig. 1B) and the reactivity ratios of monomers (r1 and r2), as
described in Fig. 1A.26,27 In the case of the copolymerization
betweenMMA and BMDO, shown in Fig. 1C, a 20-fold difference
Fig. 1 (A) The Mayo-Lewis equation and (B) the definition of the molar
ratio of monomers in copolymer andmolar feed of monomers. (C) The
copolymerization reaction of interest in this project. (D) Illustration of
the monomer distribution along the synthesized polymer chains
without copolymer control and (E) illustration of the targeted uniform
monomer distribution within copolymers under the control of the
automated dosing platform discussed here.

© 2025 The Author(s). Published by the Royal Society of Chemistry
in their reactivity ratios is present (rMMA = 10.05 and rBMDO =

0.50, see Fig. S9); thus, MMA depletes at a much faster rate and
produces a divergent comonomer statistical distribution
between different copolymer chains, as shown in Fig. 1D. With
this distribution, some chains will be fully degradable, and
some will be practically non-degradable, removing the advan-
tage that such RROP copolymers in principle possess. To ach-
ieve a homogeneous degradation, it is important to develop
a uniform sequence distribution in the synthesized copolymer
chains. The way to achieve this is to counter the composition
dri that is naturally occurring by controlled dosing of the more
reactive monomer into the system at an optimized rate during
polymerization. This in turn keeps the monomer feed (fMMA)
constant throughout the reaction, resulting in a constant
copolymer composition (FMMA) and hence sequence regulation
as shown in Fig. 1E. As pointed out, such homogeneous
statistical distribution is of great importance for the degrad-
ability of the synthesized copolymers as the entire polymer can
then be readily degraded to oligomers on the nanoscale upon
hydrolysis, eliminating the possibilities to generate micro-
plastics. Indeed various methods have been established to
control copolymer composition in solution and emulsion
copolymerization through manipulation of monomer feed
composition to attain a uniformmonomer distribution, such as
in semi-batch reactors and continuous stirred tank reactors
(CSTRs).28

Semi-batch starved feed reactors managed to mitigate
composition dri by feeding either only the more reactive
monomer or both monomers into the reactor to maintain
a constant molar ratio or concentration ratio of M1 and M2.29

For example, Georgiou et al. employed the comonomer starved
feed strategy in the synthesis of degradable diblock copolymers
via RROP based polymerization induced self-assembly (PISA)
using thionolactone dibenzo-oxepane-5-thione (DOT).30 Such
a method builds upon a pre-calculation of the feeding prole,
which demands high accuracy in the mathematical modelling
of mass balances, polymer balances, reaction volume, and
additional ingredient balances.31 Due to the non-linearity of the
copolymerization prole that arises from gelation, cage effects,
and changes in volumetric dynamics and reaction
kinetics,29,31,32 advanced models were developed in engineering
process control to mitigate composition dri.33–35 For example,
Rusil et al. developed an approach to regulate monomer
composition distribution of poly(N-vinylimidazole) using the
feeding ratio predicted by an optimal monomer addition prole
by modelling the individual rate of conversion of monomers.36

What all available methods have in common is that they require
comprehensive kinetic studies, which are usually time-
consuming and experiment-specic. The change in reactivities
of comonomers corresponding to different reaction conditions,
such as monomer concentration, initiator concentration,
solvents, and reaction temperature, further aggravates the
problem.37 Thus, such strategies might be applicable to some
industrial settings where a specic reaction is repeated inde-
nitely, yet they all fail when generality and exibility are
required. This project thus aims to replace the need for such
complex kinetic studies with a combination of automation,
Chem. Sci., 2025, 16, 19624–19631 | 19625
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machine learning (ML) and real-time monitoring techniques.
To the best of our knowledge, we herein present the rst
successful attempt at generalization of the methodology in
composition dri control of copolymerization in which no prior
knowledge of the reactivity and the specic reaction conditions
of the polymerization is required. This will not only provide
faster solutions to the issues discussed above, but also open
pathways to new biodegradable materials at scale.

ML-based strategies have been widely adopted recently to
overcome “the curse of high dimensionality” in the scientic
factorial design of experiments (DoE) and industrial chemical
process optimization.38 Different from traditional statistical
modelling, ML allows machines to establish a self-learning
process to model and adjust the internal parameters based on
input values.39 Bayesian optimization (BO) is a benchmarking
ML approach built on a Gaussian Process (GP) model to effi-
ciently solve a bound-constrained single- or multi-objective
optimization using an acquisition function.40 GP models are
based on a regression algorithm derived by calculating the
condence intervals of a probabilistic model, featuring easily
tuneable hyperparameters.39 With its built-in algorithm, BO is
able to optimize experimental parameter(s) iteratively to full
a predetermined objective function, which is usually an
expensive “black-box” function, without the requirement of
prior knowledge.41 Recently, the application of BO has gained
traction in polymer chemistry and materials science. For
example, Weismantel et al. developed a BO based platform for
synthesizing nanoparticles with targeted sizes.42 Rubens and
Junkers developed an automated ow synthesizer to optimize
molecular weight distribution.43 Similarly, Knox et al. success-
fully designed an automated RAFT polymerization ow
synthesizer to maximize monomer conversion while mini-
mizing molar mass dispersity.44 The composition in copoly-
mers, namely poly(MMA-co-styrene), was regulated using BO by
Takatsuka et al.,37 though the comonomers' reactivity ratios are
relatively close to 1, hence not requiring specic optimization as
comonomer and copolymer feed will automatically be close to
identical in such a system.

The self-optimization of BO involves constant updates on the
GP model based on the real-time progress of, in this case,
copolymerization in composition dri control, and exports an
optimized decision based on the updated model. This closed
loop experimentation approach necessitates the integration of
an inline monitoring tool to the setup. The implementation of
inline or online NMR,45 size exclusion chromatography (SEC),46

and Fourier-transform infrared spectroscopy (FTIR)47 has been
widely established in polymer chemistry to monitor a variety of
molecular information in situ. Here, we will show how a statis-
tical copolymer with perfect sequence regulation can be
synthesized by BO-regulated monomer control in an automated
setup integrated with real-time FTIR. Such automation offers
the potential to synthesize degradable copolymers with
perfectly tuneable copolymer composition, architecture, and
degradability performance at will, without the need for rede-
signing monomer structures to achieve specic reactivities. As
we will show, the method is broadly applicable and
19626 | Chem. Sci., 2025, 16, 19624–19631
generalizable and even allows for the synthesis of articial
composition dris which would not occur in any natural
copolymerization.
Results and discussion
Reactor design

An automated semi-batch dosing system regulated by a BO
algorithm is employed to mitigate composition dri (see Fig. 2).
A batch reactor, preloaded with a mixture of BMDO, MMA and
dicumyl peroxide (DCP) in anisole, is prepared under an argon
atmosphere to prevent BMDO hydrolysis. Throughout the
experiment, both the reactor and MMA dosing vials are
degassed with argon via a balloon to avoid possible impact from
unexpected leakage. The molar ratio of charged BMDO and
MMA is adjusted to achieve an initial target fMMA of 0.3, 0.5, and
0.7 (Table 1). In our setup, two pumps are connected to the
reactor, one controlling the MMA dosing rate, the other
continuously circulating a portion of the reactor content
through an inline FTIR system for real-time molar ratio moni-
toring. The BO algorithm dynamically adjusts the MMA dosing
rate based on monomer molar feed to obtain a constant
monomer feed at any given time fMMA,t. The FTIR peaks used to
monitor the molar feed of MMA (1628–1644 cm−1) and BMDO
(1672–1680 cm−1) are shown in Fig. 3 with enlarged exact peak
ranges. In the reaction with an initial fMMA = 0.5, the vinyl peak
integration area of MMA gradually diminishes to zero over ve
hours, whereas the vinyl peak integration area of BMDO
decreases at a much slower rate (XMMA = 100%, XBMDO = 10%).
To minimize the impact made by the dead volume, the FTIR
loop tubing volume is kept as small as possible (264 mL). To
minimize the delay in real-time monitoring, a one-minute
pause is applied aer each dosing to allow for averaging
measurements. To ensure the accuracy of peak integration area
calculation, the ve latest FTIR scans are collected every minute
by setting the ow rate of the FTIR loop as 1.32 mL min−1 (5 ×

264 mL). fMMA,t is determined by averaging the vinyl peak inte-
gration area of MMA (�AMMA) and BMDO (�ABMDO) based on the
Beer–Lambert law, that the FTIR adsorption is correlated with
the concentration of monomers.

The operation of the BO algorithm necessities a set of
training data to establish the rst model. In this project, the BO
algorithm initializes its learning model with four sets of pre-
dened training data, obtained fromMMA dosing rates of 0, 20,
25, and 30 mL min−1. Although BO algorithms are usually
trained with random data, these initial dosing rates are selected
to keep the initial training dosing of MMA at a lower level while
maintaining a relatively broad parameter space in the training
data. At an earlier stage of this project, ten sets of data instead of
four were used; however, it was found that four sets of initial
points are sufficient to generate a good initial model. Each
input generates a fMMA output in real time, which is compared
to the target fMMA,target using an objective function. The gap, the
absolute difference between fMMA,t and fMMA,target is described in
eqn (1).

gap = jfMMA,t − fMMA,targetj (1)
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 Schematic overview of the used experimental setup, featuring amain reactor compartment connected to an automatedmonomer dosing
control pump, regulated by the feedback from real-time FTIR. The system uses a Bayesian self-learning algorithm to achieve a constant feed
control over time.

Table 1 An overview of themolar ratio of monomers and the initiator during the copolymerization between BMDO andMMA to control different
target fMMA

Target fMMA nMMA/mol nBMDO/mol nDCP/mol cMMA/mol L−1 cBMDO/mol L−1 fMMA SD (fMMA)

0.3 1.69 × 10−3 3.95 × 10−3 1.13 × 10−3 1.65 3.85 0.339 2.5 × 10−2

0.5 3.78 × 10−3 3.78 × 10−3 1.51 × 10−4 2.62 2.62 0.507 9.7 × 10−3

0.7 1.13 × 10−2 4.56 × 10−3 3.04 × 10−3 2.29 1.50 0.709 6.5 × 10−3

Fig. 3 FTIR absorption ranges selected for monitoring the monomer
molar ratio in BMDO/MMA radical copolymerization starting at 1 : 1
molar ratio in 50% wt anisole at 110 °C over 5 hours resulting in 100%
MMA conversion and 10% BMDO conversion.
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It is important to note that while in this example we inte-
grated the characteristic peak areas, thus directly obtaining the
true fMMA, for the experiment it is not important that the peak
areas actually represent the true monomer feed ratio, as long as
the change in areas is correlated with the change in the feed
ratio and the initial feed ratio at the start of the experiment is
known. This simplies the approach largely, as a clear separa-
tion of vibrational bands may not always be given for specic
copolymerization systems.

During each iteration of ow rate optimization, an optimized
dosing rate is generated based on the current GP model,
resulting in a new fMMA result. The newly obtained (dosing rate,
gap) pair is incorporated into the GP model and further
© 2025 The Author(s). Published by the Royal Society of Chemistry
processed by an acquisition function (the Monte Carlo Expected
Improvement function) to explore the space to minimize the
outcome of the objective function, creating a self-learning loop
throughout the course of polymerization. To prevent uncon-
trolled increases in MMA concentration within the reactor,
multiple experiments with different MMA dosing rate bound-
aries are conducted (20–40, 20–60, 20–100, 20–120, and 20–200
mL min−1). Due to the pump's minimum dosing rate of 20 mL
min−1, the lower boundary is set at 20 mL min−1 by adding an
additional IF condition in the guiding Python script to allow the
dosing rate to be set to 0 when the real-time fMMA exceeds target
fMMA (Fig. S5). It is further observed that the increases in fMMA

become too sharp, i.e., a larger standard deviation in control,
when the upper limit of the boundary is set over 100 mL min−1.
Therefore, the upper limit of the boundary is set as 60 mL min−1

to ensure a stable and exible regulation of the increase in fMMA.
Consequently, the boundary of the MMA dosing rate is con-
strained within the range of 20 to 60 mL min−1. The details of
the reactor setup can be found in the SI (see Fig. S1 and S2).
f control

The effectiveness of the automated dosing platform across
different copolymerization systems is demonstrated in Fig. 4A
for the copolymerization between BMDO and MMA in anisole,
initiated by DCP at 110 °C, with an initial fMMA = 0.5. In the
uncontrolled system, fMMA drops from 0.5 to 0.09 over 100
minutes, representing the natural composition dri for this
monomer pair at the given temperature. However, with the
automated dosing control turned on, fMMA is successfully
maintained at an average of 0.507 with a standard deviation of
0.0967 (see Table 1 and S2). Fig. 4B illustrates the change in
fMMA over 180 minutes for copolymerization targeting different
Chem. Sci., 2025, 16, 19624–19631 | 19627
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Fig. 4 The change in fMMA without dosing control and its stabilized dosing control at fMMA = 0.5 in the BMDO/MMA system at 110 °C with
a starting concentration of cBMDO = cMMA = 2.62 M in 50% wt anisole is demonstrated in (A). (B) The fMMA change in the BA/MMA system at 60 °C
with a starting concentration of cBMDO = cMMA = 2.85 M in 50% wt toluene. (C) The control in the styrene/BA system at 60 °C with a starting
concentration of cBA = cStyrene = 2.14 M. (D) The control of fMMA at 0.3, 0.5, and 0.7 in the BMDO/MMA system. (E and F) The control of fMMA and
fstyrene at 0.2, 0.35, 0.5, 0.65, and 0.8 in MMA/BA and BA/styrene systems.
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fMMA (0.3, 0.5, and 0.7), each corresponding to an ideal initial
FMMA of 0.71, 0.88, or 0.95 respectively, which can be translated
to a molar composition of MMA to BMDO of approximately 2.5 :
1, 7.4 : 1, or 20 : 1. The yielded copolymers are further charac-
terized with SEC and NMR (see Fig. S10 and S11). While the
dosing control itself does not require prior kinetic knowledge,
the relationship between the monomer feed fMMA and the
copolymer composition FMMA is obviously only established via
the Mayo–Lewis equation. Thus, from the reaction carried out
in the absence of dosing, we determined the reactivity ratios
(rBMDO = 10.05 and rMMA = 0.50; see Fig. S8 and S9) in agree-
ment with the literature. From this knowledge, it is possible to
target specic FMMA.

One can see in Fig. 4 that fMMA uctuates slightly, exhibiting
a characteristic ‘hill-like’ pattern, increasing with MMA dosing
before gradually decreasing back to the target value. The system
rarely undershoots the target because an IF condition in Python
script is applied to trigger an immediate dosing when the real-
time fMMA is below the target, leading to an averaged fMMA

slightly above the target. The uctuations are more pronounced
for target fMMA = 0.3 compared to 0.5 and 0.7, due to their lower
initial concentration of MMA. In small-scale reactors with low
initial MMA concentrations, even dosing MMA at the lowest
dosing rate (20 mL min−1) can result in signicant uctuations
in fMMA. However, this uctuation can be compensated for by
increasing the overall reaction volume, and by decreasing the
dosing intervals (see Fig. S12). Furthermore, the dosing
frequency is found to be higher in the early stage of copoly-
merization, corresponding to a higher polymerization rate due
to higher overall monomer concentration. Unlike other BO
based optimization studies in polymer chemistry, which
primarily optimize reaction conditions to achieve specic
19628 | Chem. Sci., 2025, 16, 19624–19631
polymer properties, such as molecular weight distributions
(MWD),44,48 this study continuously applies BO throughout the
entire experimentation to maintain a constant composition.
This approach provides more opportunities to apply BO for real-
time polymer optimization in the polymerization process.

To broaden the scope of our system, and to probe the
versatility of the used algorithms, we applied the same meth-
odology in the following section to different copolymerization
systems with disparate reactivity ratios. We namely tested butyl
acrylate-BMDO and styrene-BMDO polymerization and
successfully achieved similarly good comonomer feed regula-
tion to that with MMA (see Fig. S10 and S11). Then, we turned to
non CKA systems, and studied butyl acrylate (BA)-methyl
methacrylate (MMA) (rMMA = 1.87 and rBA = 0.29)49 and styrene-
BA copolymerization (rstyrene = 0.86 and rBA = 0.21).50 A
comparison between the fMMA change over time in a system with
and without dosing control for the BA/MMA copolymerization is
shown in Fig. 4C with an initial fMMA = 0.5 (Table S3). The
copolymerization reactions are conducted with AIBN as initia-
tors in toluene at 60 °C (Tables 1 and S2). In the uncontrolled
system, fMMA decreased from 0.5 to 0.42 over 100 minutes. By
applying the dosing control, fMMA is kept at a mean value of
0.496, with a standard deviation at 0.0053. Fig. 4D presents the
change in fMMA over time for ve target fMMA, 0.2, 0.35, 0.5, 0.65,
and 0.8 in the BA/MMA copolymerization system. Similar to the
BMDO/MMA system, each set of data shows a recurring pattern
of increase and decrease in fMMA, but to a lesser extent, since
reactivity ratios between BA and MMA are less different than
those in the BMDO system. The wave-like pattern in the
composition, especially at lower f, is however, mostly a result of
the applied lab-oriented setup where the lowest possible pump
rate determines the extent of this uctuation and no overall
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 5 Artificial gradient control in copolymerization of BA and MMA
showing different rates of incorporation of MMA into the copolymer at
three different slopes.
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drawback of the methodology. When scaled up and moving to
a owrate regime that allows the pumps to have more vari-
ability, the wave-like pattern almost entirely disappears (see the
SI for details).

The copolymerization between styrene and BA was con-
ducted in toluene at 60 °C with AIBN as the initiator. Fig. 4E
presents a comparison of the change in fstyrene with and without
dosing control, both starting with an initial fstyrene = 0.5. In the
uncontrolled system, fstyrene declined from 0.5 to 0.47 over 100
minutes, whereas fstyrene was kept at an average of 0.503 by
adopting dosing control, with a standard deviation of 0.0031.
The evolution of fstyrene during styrene/BA copolymerization
over 180 minutes is depicted in Fig. 4F, targeting fstyrene = 0.2,
0.35, 0.5, 0.65, and 0.8. The observed fstyrene “bumps” were even
smaller compared to that in BA/MMA copolymerization, again
due to a narrower difference in styrene/BA reactivity ratios.

These results show that the same algorithm can be
successfully applied to a broad variety of copolymerization with
good success, thus allowing the elimination of copolymeriza-
tion gradients in reactions, and allowing the general production
of homogeneously distributed statistical copolymers. For the
BMDO system this means that polymers will be uniformly
biodegradable (for preliminary degradation experiments, see
the SI), yet many other applications can also be envisioned
where such control will prove to be useful.

Gradient f control

With the high success of the automation, we realized that the
methodology not only allows the removal of naturally occurring
composition dris. It can also be used to create articial
composition dris. In radical copolymerization this may not be
desirable, but when combined with reversible deactivation
radical polymerization, such creation of articial dris can be
used to design specic gradient copolymers. Thus, in the last
step we explored whether this platform can be in principle used
to control a non-natural gradient change in the molar compo-
sition of a polymer in BA/MMA copolymerization as a model
case. Experiments are conducted in toluene at 60 °C, starting
with an initial fMMA = 0.5. Unlike previous experiments,
a different objective function is applied to create a constant
changing gradient in fMMA over time by using eqn (2) and (3).

gap = jkMMA,t − kMMA,targetj (2)

kMMA ¼ fMMA;t � fMMA;t0

t� t0
(3)

In which kMMA represents the selected gradient of the change in
fMMA, fMMA,t0 and fMMA,t stands for the fMMA calculated t = t0 and
t, and gap again stands for the variable to be minimized in the
BO. The results for this targeted gradient control are depicted in
Fig. 5.

The gradient in the change of fMMA represents the rate of
incorporation of MMA into the copolymer backbone by
assuming that the rate of MMA incorporation equals the
consumption of MMA. Three rates of incorporation of MMA
targets are tested, each representing an increase of fMMA from
0.5 to 0.6 (target kMMA = 0.001), 0.7 (target kMMA = 0.0015) and
© 2025 The Author(s). Published by the Royal Society of Chemistry
0.8 (target kMMA = 0.002) over three hours. To accommodate the
gradient control, the boundaries of the MMA dosing rate are
expanded to 20–200 mL min−1. During the 180 minute BA/MMA
copolymerization, fMMA exhibits a ‘step-like’ pattern where each
rise corresponds to an intensive MMA dosing phase. The
subsequent decreases further help ne-tune the trajectory of the
fMMA increase to align with the target slope. A larger deviation
from the target slope is observed in the rst 120 minutes of the
experiments, while improved alignment with the linear t is
achieved thereaer due to the self-improvement attribute of the
BO algorithm applied. In any case, the data show nicely that the
MMA content in the polymers increases with time under the
gradient control that is applied, a result that is completely
opposite to the natural composition dri (about a 10% decrease
in MMA content over the course of 100 minutes, see Fig. 4).
Increases in fMMA content by roughly 10, 15 or 20% over 3 h
reaction time are almost effortlessly achieved. Unfortunately,
the real-time conversion of monomers could not be accurately
determined in the present example due to considerable peak
overlaps, hence preventing to date a precise correlation of time
with overall monomer conversion. Nonetheless, the excellent
control that is achieved over the time evolution of the gradient
shows that practically any gradient, no matter how far off from
the natural composition dri can be achieved, thus unlocking
an enormous synthetic potential towards future development of
a multitude of new polymer systems.
Conclusions

With a comparatively simple approach, we achieved the
manipulation of the composition dri that naturally occurs in
most copolymerizations. This allows the synthesis of polymers
with virtually any composition with a steady distribution of
sequences over the entire polymerization. This mitigates the
issue that in most copolymerizations, a change in copolymer
composition occurs over time, compromising the desired
properties of the residual material. This is especially a problem
in sustainable polymer synthesis, where specic degradable
groups are introduced via copolymerization and where
Chem. Sci., 2025, 16, 19624–19631 | 19629
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composition dri causes parts of the obtained polymer to
remain essentially non-degradable. The method we describe is
versatile, allows the variation of the copolymer composition F at
will, and can even be used to create non-native compositions
dris. The latter will be of high signicance in RDRP copoly-
merization as it can be used to create gradient copolymers that
until today have not been available.

Notably, the machine-learning based method we use is not
dependent on any prior kinetic knowledge or complex model-
ling to achieve the desired results, making the method univer-
sally applicable to a broad range of copolymers and
applications. Future work will focus on sustainable polymers
and the exploitation of the non-natural gradients that can be
achieved.
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