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GlycanInsight: an open platform for carbohydrate-binding pocket prediction 
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GlycanInsight is an open platform for carbohydrate-binding pocket 
prediction and characterization. To provide insight into carbohydrate-protein 
interaction, it predicts carbohydrate-binding pockets on a protein structure, 
analyzes pocket characteristics, and suggests putative binding ligands. On 
the benchmark dataset of experimental structures, GlycanInsight achieves a 
high Matthews correlation coeffi  cient of 0.63, outperforming existing tools, 
and maintains robust performance on AlphaFold2-predicted structures. By 
integrating precise prediction with automated structural annotation and 
ligand retrieval, GlycanInsight facilitates mechanistic studies and rational 
design of glycan-targeted therapeutics. The platform is freely accessible at 
http://www.glycaninsight.cn/.
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open platform for carbohydrate-
binding pocket prediction and characterization†

Qinyu Chu,‡abcd Xinheng He,‡cd Xinyi Tan,‡c Zhiyong Gu,acd Yin Luo,c Zifu Huang,c

Mingyue Zheng *acd and Xi Cheng *bcd

Carbohydrate–protein interactions underlie key physiological and pathological processes, yet identification

of glycan-binding sites remains challenging due to the complexity of glycans and a lack of dedicated

computational tools. We present GlycanInsight, a deep learning-based open platform that predicts

carbohydrate-binding pockets on protein structures. On the benchmark dataset of experimental

structures, GlycanInsight achieves a high Matthews correlation coefficient (MCC) of 0.63, outperforming

existing tools, and maintains robust performance on AlphaFold2-predicted structures (MCC = 0.53).

GlycanInsight clusters predicted residues into three-dimensional carbohydrate-binding pockets for

detailed structural inspection, quantitatively analyzes pocket characteristics, searches for other proteins

with similar pockets, and suggests putative binding ligands for the predicted pockets. By integrating

precise prediction with automated structural annotation and ligand retrieval, GlycanInsight facilitates

mechanistic studies and rational design of glycan-targeted therapeutics. The platform is freely accessible

at https://www.glycaninsight.cn/.
Introduction

As a substance generally covering living cells in all organisms,
carbohydrates (or glycans) interact with diverse protein families
to regulate various biological and pathological processes.1,2

Understanding how carbohydrates bind to and act on the
protein therapeutic targets is of great signicance for glyco-
science and clinic translation.3 In these applications, precise
knowledge of carbohydrate-binding pockets on the proteins is
required. However, experimental identication of carbohydrate-
binding pockets is time-consuming and expensive, due to the
complexity and exibility of carbohydrates.4 Hence, the devel-
opment of a reliable carbohydrate-binding pocket predictor is
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important in understanding the carbohydrate–protein
interactions.

However, few computational methods have been developed
for predicting carbohydrate-binding pockets, and only a few are
available as publicly accessible tools, including StackCBPred and
PeSTo-Carbs.5,6 StackCBPred uses a support vector machine
model to learn from small datasets, and identies carbohydrate-
binding residues directly from protein sequences. This method
utilizes a stacking-based approach with machine learning algo-
rithms to enhance prediction accuracy, particularly by address-
ing the imbalance commonly found in datasets where non-
binding residues vastly outnumber binding residues. PeSTo-
Carbs is an extension of PeSTo (Protein Structure Transformer)7

trained to predict protein–carbohydrate-interacting interfaces.
PeSTo is a parameter-free geometric deep learning model, which
has exhibited exceptional performance in predicting protein–
protein binding interfaces.7 As a carbohydrate-version of PeSTo,
PeSTo-Carbs achieved a Matthews correlation coefficient (MCC)
value of 0.475 for carbohydrate-binding interface prediction on
an extensive test data set of 343 subunits.6 In previous work, we
have developed DeepGlycanSite, a deep learning-based model
capable of accurately predicting carbohydrate-binding residues
with the target protein structure.8 Incorporating geometric and
evolutionary features of proteins into a deep equivariant graph
neural network with the transformer architecture, Deep-
GlycanSite has achieved state-of-the-art performance on binding
residue prediction for diverse carbohydrates.8 Although its
source code is freely available, the application of DeepGlycanSite
still requires knowledge and skills in computer science.
© 2025 The Author(s). Published by the Royal Society of Chemistry
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The developments in glycoscience suffer from a lack of open,
effective and easy-to-use computational tools. Here, we present
GlycanInsight, a user-friendly open platform encapsulating
DeepGlycanSite for carbohydrate-binding residue prediction.
GlycanInsight allows users to employ an experimental structure
(or a computational model) of a protein to predict the
carbohydrate-binding residues, and clusters predicted residues
into three-dimensional pockets for detailed structural inspec-
tion. Notably, it quantitatively analyzes pocket characteristics,
searches for other proteins with similar pockets and suggests
putative binding ligands, including carbohydrates and chem-
ical compounds.
Experimental
Online platform implementation

The platform is based on Bootstrap and Django. On the fron-
tend, Bootstrap is used as the main framework, offering
responsive design and a rich component library to ensure the
aesthetics and adaptability of the user interface. Django serves
as the backend framework, providing secure and highly scalable
server-side support. The NGL9,10 framework is used to render
and interactively display protein structures in the web browser.
The RCSB dashboard11 provides comprehensive access to
biomolecular databases, enabling users to obtain, download,
and analyze the required data within a single platform.
Workow overview

On the main page of GlycanInsight, users can submit jobs
without a login requirement. To perform the carbohydrate-
binding pocket prediction of a protein, GlycanInsight needs
the structure of the query protein. There are three ways for users
to provide the protein information: (1) entering an existing PDB
ID from the Protein Data Bank, (2) uploading their own PDB
les, or (3) entering an existing UniProt ID from the AlphaFold
protein structure database.12,13Given the input protein structure
information, DeepGlycanSite is utilized by default to calculate
the carbohydrate-binding probability of each residue.8 Glyca-
nInsight can also consider chemical information of a carbohy-
drate by employing DeepGlycanSite+Ligand instead of
DeepGlycanSite. A URL is assigned to each submission so the
user can access the results or track the processing status. The
web server uses NGL Viewer9,10 to present the predicted
carbohydrate-binding residues in a molecular viewer, and
employs RCSB dashboard11 to show carbohydrate-binding
probability values for all protein residues. The evolutionary
conservation of each protein residue is estimated based on the
UniRef50 sequence database (release 2021_03) using HMMER
3.3.2, which includes the Easel tools.14–17 All predicted
carbohydrate-binding residues are clustered into pockets using
DBSCAN.18 For each predicted carbohydrate-binding pocket,
ProBiS19,20 is used to search for similar ligand-binding pockets
and corresponding ligands in a combined dataset consisting of
the DeepGlycanSite dataset and the PDBbind database.8,21 A link
is provided to download a compressed le containing protein
© 2025 The Author(s). Published by the Royal Society of Chemistry
and pocket PDB les, visualization scripts and a list of predic-
tion results.

Similar binding pocket search

DeepGlycanSite is a residue-centric prediction model, which
predicts the carbohydrate-binding probability of each residue.
GlycanInsight clusters the DeepGlycanSite-predicted
carbohydrate-binding residues into pockets using DBSCAN,
which separates areas of high density from areas of low
density.18 Residues with carbohydrate-binding probability
values larger than 0.5 are selected for pocket clustering. The
center-of-mass distances among selected residues are calcu-
lated. Moreover, only heavy atoms are considered in the calcu-
lation. Two selected residues are clustered as one pocket when
their pairwise distance is less than 8 Å.

We constructed a dataset of 44 703 ligand-binding pockets for
similar binding pocket search. We used 8102 carbohydrate-
binding proteins from the DeepGlycanSite dataset8 and 17 696
ligand-binding proteins from the PDBbind database21 to extract
ligand-binding pockets. A residue was classied as part of
a ligand-binding pocket if the minimum distance between any of
its heavy atoms and any heavy atom of the ligand was less than 4
Å. To dene the solvent-accessible surface of these pockets,
a probe with a radius of 1.4 Å was rolled over protein atoms
represented as van der Waals spheres. Residues situated within 4
Å beneath this surface were then included in the analysis. These
pockets were modeled as protein graphs, composed of vertices
and edges that encapsulate both geometrical and physicochem-
ical surface properties.20,22 This representation was designed to
capture potential interactions between the protein and its
ligands. To make binding ligand suggestions, we employed the
ProBiS algorithm, which facilitates local, surface-oriented
comparisons of protein graphs. Using a fast maximum clique
algorithm, ProBiS identies all possible similar regions between
two proteins.23 It operates independently of their fold or
sequence. Each identied maximum clique, dened by its rota-
tional and translational variations, represents a rigid local
similarity and is used to superimpose the protein structures.
Subsequently, local backbone alignment of the superimposed
structures is performed to uncover additional similarities that
may have been overlooked by the maximum clique approach.

Datasets

The T145 test dataset involves 145 carbohydrate–protein
complexes. In this dataset, any protein with more than 95%
sequence identity to the training (or validation) sets was
excluded.8 We also employed AlphaFold2 13 and AlphaFold2
Multimer24 to predict protein structures based on the protein
sequences of T145.8 The top ve ranked conformation models
for each protein were selected to construct an independent
testing set T145AF2, consisting of 145 unique proteins and 725
apo structure models.

Evaluation metrics

There are mainly three metrics used to evaluate carbohydrate-
binding pocket detection algorithms. The metrics are the
Chem. Sci., 2025, 16, 10264–10272 | 10265
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Matthews correlation coefficient (MCC), precision and balanced
accuracy. For a given protein, the carbohydrate-binding resi-
dues are positives, while the others are negatives. Correctly
predicted carbohydrate-binding residues are true positives (TP).
Correctly predicted non-carbohydrate-binding residues are true
negatives (TN). Incorrectly predicted carbohydrate-binding
residues are false positives (FP). Incorrectly predicted non-
carbohydrate-binding residues are false negatives (FN).

The MCC is dened in eqn (1):

MCC ¼ ðTP� TN� FP� FNÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðTPþ FPÞ � ðTPþ FNÞ � ðTNþ FPÞ � ðTNþ FNÞp
(1)

The MCC ranges from −1 to 1. A small value of −1 indicates
that no carbohydrate-binding residue is correctly predicted;
a large value of 1 indicates that all carbohydrate-binding resi-
dues are correctly predicted.

The precision is dened in eqn (2):

Precision ¼ TP

TPþ FP
(2)

The balanced accuracy is dened in eqn (3):

Balanced accuracy ¼ 1

2

�
TP

TPþ FN
þ TN

TNþ FP

�
(3)
Fig. 1 Overall view of GlycanInsight workflow. For input, users can subm
carbohydrate-binding pockets. They can also submit a carbohydrate i
computing, the platform predicts carbohydrate-binding residues and clu
pocket search and putative ligand suggestion. For output, predicted ca
annotations, similar pockets, and suggested ligands are presented in an

10266 | Chem. Sci., 2025, 16, 10264–10272
Results and discussion
GlycanInsight workow

As shown in Fig. 1, users can either upload a three-dimensional
structure in the PDB format or provide a PDB ID of a protein, in
which case GlycanInsight will retrieve the corresponding PDB
le from the PDB database. When no experimental structure is
available, users can provide a UniProt ID of a protein, in which
case GlycanInsight will retrieve the corresponding AlphaFold2-
predicted structure from the AlphaFold protein structure data-
base. Users can also specify a carbohydrate ligand for the query
protein by uploading a chemical structure le in SDF, PDB or
MOL2 format. The two-dimensional chemical structure infor-
mation of the carbohydrate ligand will be extracted from the le
for prediction.

GlycanInsight uses DeepGlycanSite to predict the
carbohydrate-binding probabilities for all protein residues.
When provided with a le containing the two-dimensional
carbohydrate structure, the platform employs the ligand-
specic DeepGlycanSite+Ligand model to incorporate query
ligand information. Residues with predicted probabilities larger
than 0.5 are identied to bind carbohydrates. To provide a more
intuitive insight into these residues, GlycanInsight converts
residue-centric predictions to a pocket-centric perspective. To
quantitatively characterize each pocket, the platform calculates
its geometric center and estimates evolutionary conservation.
Assuming similar pockets bind similar ligands, GlycanInsight
compares predicted pockets with the reported protein–ligand
complexes in the PDB database. All complexes with high
alignment scores (indicating similarity to predicted pockets) are
it a protein structure in PDB format, a UniProt ID, or a PDB ID to predict
n SDF, PDB or MOL2 formats to offer extra ligand information. For
sters them into three-dimensional pockets for characterization, similar
rbohydrate-binding pockets, geometry and evolutionary conservation
interactive graphical interface and are available for download.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Table 1 Carbohydrate-binding pocket prediction on the T145
dataseta

Web server MCC Precision Balanced accuracy

StackCBPred 0.02 � 0.09*** 0.05 � 0.03*** 0.53 � 0.10***
GRaSP-web 0.17 � 0.46*** 0.31 � 0.32*** 0.63 � 0.15***
Fpocket 0.19 � 0.32*** 0.19 � 0.28*** 0.62 � 0.20***
PeSTo-Carbs 0.34 � 0.26*** 0.27 � 0.21*** 0.77 � 0.18*
PrankWeb 3 0.37 � 0.28*** 0.25 � 0.19*** 0.83 � 0.16
GlycanInsight 0.63 � 0.29 0.63 � 0.31 0.83 � 0.16

a Data represent means ± standard deviation. The two-tailed Mann–
Whitney U test is used to determine the statistical difference between
GlycanInsight and an alternative web server. *** indicates P is less
than 0.001. * indicates P is less than 0.1.
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listed, and their ligands are suggested as putative ligands for
predicted pockets.

GlycanInsight provides a graphical user interface for inter-
active inspection of all results. It enables users to display pre-
dicted results through both structural and sequence
Table 2 Carbohydrate-binding pocket prediction on the T145AF2
dataseta

Web server MCC Precision Balanced accuracy

StackCBPred 0.02 � 0.09*** 0.05 � 0.03*** 0.53 � 0.10***
GRaSP-web 0.03 � 0.35*** 0.18 � 0.23*** 0.55 � 0.07***
Fpocket −0.07 � 0.50*** 0.13 � 0.19*** 0.57 � 0.12***
PeSTo-Carbs 0.31 � 0.25*** 0.25 � 0.19*** 0.73 � 0.17***
PrankWeb 3 0.13 � 0.24*** 0.13 � 0.12*** 0.62 � 0.12***
GlycanInsight 0.53 � 0.28 0.48 � 0.28 0.82 � 0.15

a Data represent means ± standard deviation. The two-tailed Mann–
Whitney U test is used to determine the statistical difference between
GlycanInsight and an alternative web server. *** indicates P is less
than 0.001.

Fig. 2 Saccharide-binding pocket prediction of different approaches fo
Carbs (cyan) and PrankWeb 3 (pink) weremapped on the given protein str
predicted protein models are shown on the bottom. Saccharides are
glucosamine-binding lectin (PDB ID: 6stn), a chondroitin sulfate unit-bind

© 2025 The Author(s). Published by the Royal Society of Chemistry
perspectives. It also provides detailed information of predicted
carbohydrate-binding pockets and putative binding ligands. In
addition to its online visualization tools, the system also
provides the option to export results as a PyMOL script for off-
line exploration. Users can download all prediction, analysis,
and visualization results from the dedicated output page.
Prediction performance

We compared the prediction performance of GlycanInsight with
ve competing tools, using an independent dataset T145 of 145
different carbohydrate-binding proteins with experimental
structures.8 StackCBPred and PeSTo-Carbs are the only acces-
sible carbohydrate-binding pocket prediction web servers.
PrankWeb 3 25 and GRaSP-web26 are two state-of-the-art web
servers for ligand-binding pocket prediction. Fpocket27 is a long-
standing web server for ligand-binding pocket prediction. The
metrics of MCC, precision and balanced accuracy were used to
measure the predictive performance of the assessed web
servers. As shown in Table 1, GlycanInsight clearly out-
performed the other ve web servers. It achieved the average
MCC and precision more than 0.6, whereas the competitors had
the average MCC and precision less than 0.4.

Structure-based binding pocket prediction requires a protein
structure. Although the number of experimentally determined
protein structures continues to escalate, it still trails behind the
number of recognized protein sequences.28 Recent breakthroughs
in protein structure prediction, particularly the emergence of
AlphaFold2 and the AlphaFold protein structure database,12,13,24

have paved the way for applying structure-based approaches to
proteins without experimentally determined structures. This
development motivated us to adopt the predicted protein struc-
tures in GlycanInsight, allowing users to enter a UniProt ID as the
input.We used an AlphaFold2-predicted protein structure dataset
r three representatives. Predictions of GlycanInsight (yellow), PeSTo-
uctures. Experimental structures are shown on the top and AlphaFold2-
displayed as sticks to indicate the true binding sites of a N-acetyl-
ing lyase (PDB ID: 7eiq) and a sialoglycan-binding siglec (PDB ID: 6x3q).

Chem. Sci., 2025, 16, 10264–10272 | 10267
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(T145AF2) to compare GlycanInsight with ve competing web
servers on carbohydrate-binding pocket prediction. These pre-
dicted protein structures were generated based on the protein
sequences of T145. As shown in Table 2, GlycanInsight still ach-
ieved the average MCC of 0.53 and the average precision of 0.45,
remarkably outperforming the other web servers. PeSTo-Carbs
had the average MCC of 0.31 and the average precision of 0.24.
PrankWeb 3 and the other web servers had the average MCC and
precision less than 0.2.

We further analyzed the capabilities of GlycanInsight, PeSTo-
Carbs and PrankWeb 3 in predicting binding pockets for
different carbohydrates. Fig. 2 displays the prediction results for
a N-acetyl-glucosamine-binding (i.e. monosaccharide-binding)
lectin,29 a chondroitin sulfate unit-binding (i.e. disaccharide-
binding) lyase,30 and a sialoglycan-binding (i.e. oligosaccharide-
binding) siglec.31 GlycanInsight effectively identied the
Fig. 3 User-friendly graphical interface of GlycanInsight. (a) An interactivemo
protein. The predicted pocket is displayed as a surface and sticks. Users can r
information of the predicted pocket. The center coordinates of the pocket a
probabilities and conservation scores. (c) Sequence annotations of the predic
for each residue. Conservation scores of residues are represented by transpa
(d) Putative binding ligands are suggested for the predicted pocket, which a

10268 | Chem. Sci., 2025, 16, 10264–10272
monosaccharide-, disaccharide- and oligosaccharide-binding
pockets on both experimental and AlphaFold2-predicted
protein structures, highlighting its generalized applicability. In
contrast, PeSTo-Carbs showed an MCC value of 0.39 in a mono-
saccharide-binding pocket prediction case, but had MCC values
less than 0.2 in all the other cases. PrankWeb 3 had MCC values
less than 0.2 in all cases.
Case study

We demonstrated the functionality of GlycanInsight with a well-
known carbohydrate-binding protein, i.e. galectin-3. Galectin-3
is a b-galactoside-binding lectin, regulating cell migration,
immune response and tissue remodelling.32–35 Due to its
important biological functions, galectin-3 has been employed
as a diagnostic marker and therapeutic target in clinical appli-
cations.34,36 To predict without experimental protein structure,
lecular viewer of the predicted carbohydrate-binding pocket on the query
otate, zoom, and toggle individual residues. (b) Geometry and composition
re presented. Residues in the pocket are listed with carbohydrate-binding
ted pocket. A blue bar chart indicates the carbohydrate-binding probability
rency of red color, withmore conserved residues appearing as deeper red.
re presented with their chemical structures and scores.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Table 3 Proteins containing similar pocket (with an alignment score
more than 5.00) as the predicted-carbohydrate-binding pockets of
human galectin-3

Index Protein name Best alignment score PDB ID

1 Galectin-9 8.27 3wv6
2 Galectin-7 8.22 2gal
3 Galectin-1 8.12 6e20
4 Galectin-4 8.10 5duw
5 Porcine adenovirus

4 ber protein
8.05 2wsv

6 Cyclocybe cylindracea
galectin

8.00 3wg3

7 Galectin-8 7.98 3vkl
8 Chicken GRIFIN 7.95 5nle
9 Tl-gal 7.93 5glz
10 Xenopus laevis galectin-Ib 7.81 3wud
11 Galectin-2 7.77 5ews
12 Caenorhabditis elegans

galectin LEC-6
7.75 3vv1

13 Congerin II 7.73 1wld
14 Galectin-5 7.65 5jpg
15 Congerin I 7.64 1c1l
16 S-LAC lectin 7.63 1hlc
17 Xenopus laevis galectin-Va 7.27 3wuc
18 Galectin-10 7.00 6l6a
19 Galectin-13 6.84 6a63
20 Fungal lectin CGL3 6.73 2r0h
21 Galectin-11 6.22 6n3r
22 Galectin-16 6.17 6ljr
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a user can start a new prediction job by choosing “UniProt ID”
tab. A user can enter the UniProt ID of P17931 for the human
galectin-3, click “Search” button, choose “AlphaFoldDB –

P17931” and then click “Download” button to retrieve the pre-
dicted structure of the galectin-3. Aer clicking “Submission”
button, the prediction and analysis processes are initiated and
take a few minutes. When these processes are completed,
results are displayed on the output page.

As shown in Fig. 3a–d, the output page of GlycanInsight is
split into a visualization part and three results sections. The
visualization part contains a molecular viewer that displays the
protein structure in a cartoon representation and exhibits the
predicted carbohydrate-binding pockets as surface and sticks
(Fig. 3a). The viewer enables users to interactively inspect
pockets within the protein structure in detail.

The “Pocket Prediction” section shows quantitative char-
acteristics of the predicted carbohydrate-binding pockets,
including geometrical location, residue composition,
carbohydrate-binding probability and evolutionary conserva-
tion (Fig. 3b). This section is interactively coupled with the
molecular viewer. Users can choose to inspect a pocket in the
molecular viewer window by choosing the pocket ID in this
section. For each predicted pocket, its geometrical center
coordinates are calculated, and the residues in composition
are listed, along with residue IDs, residue names,
carbohydrate-binding probabilities and evolutionary conser-
vation scores. GlycanInsight denes a residue with
carbohydrate-binding probability greater than 0.5 as a carbo-
hydrate-binding one, and considers a residue with evolu-
tionary conservation score greater than 0.5 to be a conserved
one. In this case, nine residues (R144, H158, N160, R162, V172,
N174, W181, E184 and R186) are predicted to form a carbohy-
drate-binding pocket. This predicted pocket highly overlaps
with known carbohydrate-recognition domains of galectin-
3,37,38 consisting of R144, H158, N160, R162, E165, N174, W181,
E184 and R186 (Fig. S1†). And most of them exhibited
conservation scores greater than 0.5, suggesting a highly
conserved carbohydrate-binding motif of galectin-3 (Fig. 3b).
GlycanInsight can identify multiple carbohydrate-binding
pockets for a single protein, thereby facilitating identica-
tion of secondary binding pockets. For example, a-amylases
randomly cleave a-glucans and possess several secondary
binding pockets to enhance their cleavage efficiency.39,40 More
than one substrate bond is cleaved in a single enzyme–
substrate encounter.41,42 For the Porcine pancreatic a-amylase
(UniProt ID: P00690), GlycanInsight identied one catalytic
pocket and four secondary carbohydrate-binding pockets,
consistent with experimental observations (Fig. S1 and Table
S1†).43–45 These secondary binding pockets may assist the
catalytic pocket in binding helical amylose chains.

The “Sequence Analysis” section presents the amino acid
sequence view of the predictions, including carbohydrate-
binding probability and evolutionary conservation score for
each residue (Fig. 3c). Carbohydrate-binding probability is dis-
played as a column chart. The evolutionary conservation scores
are represented by the transparency of red squares. This dual
© 2025 The Author(s). Published by the Royal Society of Chemistry
visualization enables intuitive interpretation of the predicted
carbohydrate-binding residues.

The “Suggested Ligands” section lists putative binding
ligands for the predicted carbohydrate-binding pockets
(Fig. 3d). Assuming similar binding pockets tend to bind to
similar ligands, GlycanInsight suggests which ligand has the
potential to bind to a predicted carbohydrate-binding pocket,
via comparing each predicted pocket with the known ligand-
binding pocket. A table is provided for all ligand candidates.
It includes ligand chemical structure diagrams, alignment
scores between a predicted pocket and a known binding
pocket, PDB ID and name of a protein containing the known
binding pocket. In this case study, a total of 157 reported
ligand-binding pockets were identied to be similar to the
predicted carbohydrate-binding pocket of the galectin-3 (Table
S2†). This result reveals that more than 20 proteins share
conserved carbohydrate-binding functional motifs with
galectin-3 (Table 3). Such carbohydrate-binding motifs can
interact with various saccharides, including 7 mono-
saccharides, 17 disaccharides and 20 oligosaccharides (Table
S3†). In particular, lactose (Gal(b1-4)Glc) binds to ten proteins,
whereas LacNAc (Gal(b1-4)GlcNAc) interacts with six proteins
(Table S3†). In addition to typical saccharides, 25 carbohydrate-
based ligand candidates of galectin-3 are also indicated,
including two galectin-1 inhibitors, three galectin-7 inhibitors,
three galectin-8 inhibitors, and one galectin-9 inhibitor (Table
S4†). And 20 reported galectin-3 inhibitors were also listed,
Chem. Sci., 2025, 16, 10264–10272 | 10269
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including one with clinical trials (Table S4†). Olitigaltin is an
inhaled small molecule inhibitor of galectin-3 with a clinical
trial phase II for idiopathic pulmonary brosis and COVID-
19.46–49 These ndings provide valuable ligand information
complementing the carbohydrate-binding pocket analysis for
biological study and drug development of galectin-3. See more
example cases in the ESI (Fig. S3–S5†). While GlycanInsight
enhances the prediction of carbohydrate-binding pockets, its
functionalities of similar pocket search and ligand suggestion
rely on two key factors: (1) the completeness of the reference
pocket-ligand database and (2) the parameter settings (e.g., the
alignment score threshold). Users are advised to interpret
results in the context of these dependencies, and future
updates will prioritize expanding the reference database and
introducing user-customizable parameters. All results can be
downloaded by clicking the “Download Files” section tab. A
PyMol script is also provided for offline inspection of results.
Conclusions

GlycanInsight provides free access to an easy-to-use online
service for carbohydrate-binding pocket prediction, inspection
and analysis. It is capable of predicting binding pockets for
diverse carbohydrates, outperforming alternative web servers.
To offer more insights into carbohydrate-binding pockets, Gly-
canInsight not only provides a graphical user interface for
visualizing prediction results, but also performs evolutionary
conservation calculation and makes potential binding-ligand
suggestion. Knowledge of carbohydrate binding enables
research ranging from function annotation to rational drug
design. We believe that GlycanInsight can provide valuable
insights for glycoscience and carbohydrate-based drug
development.
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G. Gyémánt, R. Haser, N. Aghajari and B. Svensson, Roles of
multiple surface sites, long substrate binding cles, and
carbohydrate binding modules in the action of amylolytic
enzymes on polysaccharide substrates, Biocatal.
Biotransform., 2008, 26, 59–67.

43 F. Payan and M. X. Qian, Crystal structure of the pig
pancreatic a-amylase complexed with malto-
oligosaccharides, J. Protein Chem., 2003, 22, 275–284.

44 S. B. Larson, J. S. Day and A. McPherson, X-ray
Crystallographic Analyses of Pig Pancreatic a-Amylase with
Limit Dextrin, Oligosaccharide, and a-Cyclodextrin,
Biochemistry, 2010, 49, 3101–3115.

45 M. Machius, L. Vertesy, R. Huber and G. Wiegand,
Carbohydrate and protein-based inhibitors of porcine
pancreatic alpha-amylase: Structure analysis and
10272 | Chem. Sci., 2025, 16, 10264–10272
comparison of their binding characteristics, J. Mol. Biol.,
1996, 260, 409–421.

46 T. Delaine, P. Collins, A. MacKinnon, G. Sharma,
J. Stegmayr, V. K. Rajput, S. Mandal, I. Cumpstey,
A. Larumbe, B. A. Salameh, B. Kahl-Knutsson, H. van
Hattum, M. van Scherpenzeel, R. J. Pieters, T. Sethi,
H. Schambye, S. Oredsson, H. Leffler, H. Blanchard and
U. J. Nilsson, Galectin-3-Binding Glycomimetics that
Strongly Reduce Bleomycin-Induced Lung Fibrosis and
Modulate Intracellular Glycan Recognition, Chembiochem,
2016, 17, 1759–1770.

47 A. Sethi, S. Sanam, S. Munagalasetty, S. Jayanthi and
M. Alvala, Understanding the role of galectin inhibitors as
potential candidates for SARS-CoV-2 spike protein: in silico
studies, RSC Adv., 2020, 10, 29873–29884.

48 N. Hirani, A. C. MacKinnon, L. Nicol, P. Ford, H. Schambye,
A. Pedersen, U. J. Nilsson, H. Leffler, T. Sethi, S. Tantawi,
L. Gravelle, R. J. Slack, R. Mills, U. Karmakar,
D. Humphries, F. Zetterberg, L. Keeling, L. Paul,
P. L. Molyneaux, F. Li, W. Funston, I. A. Forrest,
A. J. Simpson, M. A. Gibbons and T. M. Maher, Target
inhibition of galectin-3 by inhaled TD139 in patients with
idiopathic pulmonary brosis, Eur. Respir. J., 2021, 57, 1–13.

49 E. E. Gaughan, T. M. Quinn, A. Mills, A. M. Bruce,
J. Antonelli, A. C. MacKinnon, V. Aslanis, F. Li,
R. O'Connor, C. Boz, R. Mills, P. Emanuel, M. Burgess,
G. Rinaldi, A. Valanciute, B. Mills, E. Scholeeld,
G. Hardisty, E. G. Findlay, R. A. Parker, J. Norrie,
J. W. Dear, A. R. Akram, O. Koch, K. Templeton,
D. H. Dockrell, T. S. Walsh, S. Partridge, D. Humphries,
J. Wang-Jairaj, R. J. Slack, H. Schambye, D. Phung,
L. Gravelle, B. Lindmark, M. Shankar-Hari, N. Hirani,
T. Sethi and K. Dhaliwal, An Inhaled Galectin-3 Inhibitor
in COVID-19 Pneumonitis A Phase Ib/IIa Randomized
Controlled Clinical Trial (DEFINE), Am. J. Respir. Crit. Care
Med., 2023, 207, 138–149.
© 2025 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5sc02262b

	GlycanInsight: an open platform for carbohydrate-binding pocket prediction and characterizationElectronic supplementary information (ESI) available:...
	GlycanInsight: an open platform for carbohydrate-binding pocket prediction and characterizationElectronic supplementary information (ESI) available:...
	GlycanInsight: an open platform for carbohydrate-binding pocket prediction and characterizationElectronic supplementary information (ESI) available:...
	GlycanInsight: an open platform for carbohydrate-binding pocket prediction and characterizationElectronic supplementary information (ESI) available:...
	GlycanInsight: an open platform for carbohydrate-binding pocket prediction and characterizationElectronic supplementary information (ESI) available:...
	GlycanInsight: an open platform for carbohydrate-binding pocket prediction and characterizationElectronic supplementary information (ESI) available:...
	GlycanInsight: an open platform for carbohydrate-binding pocket prediction and characterizationElectronic supplementary information (ESI) available:...
	GlycanInsight: an open platform for carbohydrate-binding pocket prediction and characterizationElectronic supplementary information (ESI) available:...

	GlycanInsight: an open platform for carbohydrate-binding pocket prediction and characterizationElectronic supplementary information (ESI) available:...
	GlycanInsight: an open platform for carbohydrate-binding pocket prediction and characterizationElectronic supplementary information (ESI) available:...
	GlycanInsight: an open platform for carbohydrate-binding pocket prediction and characterizationElectronic supplementary information (ESI) available:...
	GlycanInsight: an open platform for carbohydrate-binding pocket prediction and characterizationElectronic supplementary information (ESI) available:...

	GlycanInsight: an open platform for carbohydrate-binding pocket prediction and characterizationElectronic supplementary information (ESI) available:...
	GlycanInsight: an open platform for carbohydrate-binding pocket prediction and characterizationElectronic supplementary information (ESI) available:...
	GlycanInsight: an open platform for carbohydrate-binding pocket prediction and characterizationElectronic supplementary information (ESI) available:...
	GlycanInsight: an open platform for carbohydrate-binding pocket prediction and characterizationElectronic supplementary information (ESI) available:...
	GlycanInsight: an open platform for carbohydrate-binding pocket prediction and characterizationElectronic supplementary information (ESI) available:...




