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based classification of 2D-IR
liquid biopsies enables stratification of melanoma
relapse risk†

Kelly Brown, a Amy Farmer,a Sabina Gurung,a Matthew J. Baker,b Ruth Boardc

and Neil T. Hunt *a

Non-linear laser spectroscopy methods such as two-dimensional infrared (2D-IR) produce large,

information-rich datasets, while developments in laser technology have brought substantial increases in

data collection rates. This combination of data depth and quantity creates the opportunity to unite

advanced data science approaches, such as Machine Learning (ML), with 2D-IR to reveal insights that

surpass those from established data interpretation methods. To demonstrate this, we show that ML and

2D-IR spectroscopy can classify blood serum samples collected from patients with melanoma according

to diagnostically-relevant groupings. Using just 20 mL samples, 2D-IR measures ‘protein amide I

fingerprints’, which reflect the protein profile of blood serum. A hyphenated Partial Least Squares-

Support Vector Machine (PLS-SVM) model was able to classify 2D-protein fingerprints taken from 40

patients with melanoma according to the presence, absence or later development of metastatic disease.

Area under the receiver operating characteristic curve (AUROC) values of 0.75 and 0.86 were obtained

when identifying samples from patients who were radiologically cancer free and with metastatic disease

respectively. The model was also able to classify (AUROC = 0.80) samples from a third group of patients

who were radiologically cancer-free at the point of testing but would go on to develop metastatic

disease within five years. This ability to identify post-treatment patients at higher risk of relapse from

a spectroscopic measurement of biofluid protein content shows the potential for hybrid 2D-IR-ML

analyses and raises the prospect of a new route to an optical blood-based test capable of risk

stratification for melanoma patients.
Introduction

Non-linear spectroscopy methods based on ultrafast lasers,
such as two-dimensional infrared (2D-IR) spectroscopy, are
capable of measuring large, information-rich datasets from
a given molecular sample.1 Applications of 2D-IR methods have
revealed considerable new insights into molecular structure,2

dynamics,3–5 intermolecular interactions6,7 and reactions.8–14

The information density of 2D-IR arises from the ability to
spread the vibrational spectrum of a molecule over a second
frequency dimension, somewhat akin to 2D-NMR, along with
the introduction of a time-resolved axis that reports on ultrafast
dynamics. 2D-IR has found considerable applications to
proteins where its sensitivity to intramolecular vibrational
cal Research Institute, University of York,

ty of Central Lancashire, UK

hing Hospitals NHS Trust, Preston, UK.

tion (ESI) available. See DOI:

404
couplings and energy transfer leads to a protein amide I band
shape that is highly susceptible to changes in protein secondary
structure and dynamics, including subtle effects such as those
resulting from ligand binding.15–28 Taken together with the close
biological link between a protein's structure and its function,
this means that the amide I 2D-IR spectrum of a protein can be
considered to be a unique, label-free, ngerprint of its solution-
phase structure.

In parallel with progress in 2D-IR interpretation, the last
decade has also seen considerable advances in measurement
technology, with high pulse repetition-rate lasers and mid-IR
pulse shaping meaning that a 2D-IR spectrum now takes just
seconds or minutes to acquire.29–33

This combination of information density and data abun-
dance makes 2D-IR a promising candidate for combination
with data science approaches such as machine learning (ML) to
maximise the insight obtained from experimental datasets. The
possibility of linking ML with 2D-IR has been assessed using
simulated data, showing the potential for models to learn
spectral signatures of dynamic proteins.34,35 Experimental
applications of ML to 2D-IR have also shown the ability to
© 2025 The Author(s). Published by the Royal Society of Chemistry
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classify spectra of small, purpose-designed sets of chemically
distinct samples.25

An important barrier for hybrid 2D-IR-ML approaches to
cross however is to provide insights from experimental data that
could not be achieved with traditional spectroscopic analyses.
The ability to approach problems that are intractable by other
means would open the door to many new applications in
protein analysis ranging from structure interpretation and
intermolecular interactions to biomedical analysis.36 To explore
this, we have linked 2D-IR protein ngerprints and ML to
classify blood serum samples collected from patients with
melanoma according to their protein prole.

Human serum is a protein-rich uid, containing around
70 mg mL−1 proteins composed mainly of serum albumin (35–
50 mg mL−1) and the globulins (25–35 mg mL−1).37 The latter
group is comprised of more than 50 individual types of protein,
present at concentrations ranging from milligrams to less than
micrograms per millilitre. The types and concentrations of
proteins present in blood serum samples respond sensitively to
metabolic processes37 and, of relevance to this study, the
protein prole can also be a marker for disease.38–40

The range and varying abundance of constituent proteins
also mean that measuring the serum protein prole quickly and
directly is challenging. Infrared (IR) absorption spectroscopy
studies have highlighted changes in protein signatures in
samples from cancer patients,41 but a combination of a lack of
resolution and confounding absorptions from water hinder
direct interpretation of protein signals.42 Despite this, studies
using sample drying or background subtraction methods have
shown that IR signatures of blood serum samples can be used to
detect cancers and have reported changes in the protein region
of the spectrum, but detailed analysis was restricted to bands
assigned to non-proteinaceous species.41–49 In contrast to IR
absorption, 2D-IR not only spreads the protein signature over
two spectral dimensions, increasing resolution, but also
suppresses the background water absorption27 allowing a more
direct and detailed measurement of changes in serum protein
proles without sample manipulation or background
subtraction.

Here, we apply 2D-IR and ML to the problem of melanoma
risk stratication. Melanoma is the h most common cancer
in the UK, with incidences rising worldwide. A major challenge
in treatment planning for melanoma patients is the accurate
assessment of the post-operative risk of relapse. Patients at high
risk of developing melanoma metastasis (relapse) aer surgery
can reduce the risk and increase their distant melanoma-free
survival through adjuvant treatment.50–53 Whilst adjuvant ther-
apies, both immunotherapy and BRAF-targeted treatments,
reduce the recurrence risk, more work is required to distinguish
patients needing treatment from those cured by surgery alone.54

This is important to healthcare providers in terms of reducing
treatment burden and the high price of drugs, but vital to
patients who could avoid treatment toxicities if adjuvant
therapy is not required. Furthermore, melanoma patients at
high risk of relapse undergo regular radiological imaging for
ve years post-surgery, irrespective of adjuvant therapy.55 This
exposes patients to serial radiation, which increases the risk of
© 2025 The Author(s). Published by the Royal Society of Chemistry
cancer. The ability to identify patients with high-risk disease
through alternative methods would therefore improve follow up
stratication.

The diagnostic process to establish a patient's risk of relapse
currently depends simply on the stage of the melanoma. A
liquid biopsy, using biouids to identify at-risk patients would
therefore provide a step-change in early detection, leading to
lifesaving and prolonging treatment whilst avoiding treatment
toxicities in others. Our results show that a hybrid 2D-IR-ML
approach is capable of differentiating serum samples accord-
ing to diagnostically relevant groups. The considerable overlap
of the spectra in these groups means that such an outcome
would be extremely difficult without the application of ML tools
and so highlights the potential of such methods. Although
exploratory, our results also suggest that optical tools based on
advanced spectroscopies and ML could have a role to play in
future diagnostic approaches.
Experimental
2D-IR spectroscopy

The two-dimensional infrared (2D-IR) spectrometer featured
two Yb-based amplied lasers (Pharos 20 W and Pharos 10 W,
Light Conversion) synchronized by a common oscillator.56 Each
laser was used to pump an optical parametric amplier (OPA,
Orpheus Mid-IR, Light Conversion) equipped with difference
frequency generation to produce independently tuneable sour-
ces of pump and probe pulses respectively for 2D-IR
spectroscopy.

For the experiments described below, the output of both
OPAs was centred at 1650 cm−1, resonant with the protein
amide I mode. The OPAs produced usable bandwidths of
>200 cm−1 with energies of 2.5 and 1.5 mJ per pulse, respectively,
at a pulse repetition rate of 50 kHz.

2D-IR data collection was via a 2DQuick spectrometer (Pha-
setech) employing the pump–probe beam geometry and a mid-
IR pulse shaper to generate and control the time delay (s)
between the pair of “pump” pulses.57,58 Signal detection was via
64-element HgCdTe array detector using the ZZZZ (parallel)
polarization geometry, which maximises signal intensity. Each
sample was measured at waiting time (Tw) values of 250 fs and 5
ps, yielding both the protein signal (Tw = 250 fs) and a small
thermal signal from H2O (Tw = 5 ps) that was used for signal
pre-processing and standardisation via previously published
methods.27,59,60 For a given value of Tw, s was scanned in steps of
24 fs to a maximum delay time of 3 ps, applying a rotating frame
frequency of 1208 cm−1. Each 2D-IR plot represents the average
of 500 spectra, repeated 3 times.
Patient samples

Samples were sourced from the study Spectroscopic Diagnosis
of Melanoma, REC reference number 15/LO/1312, approved by
London-Brent. Samples were collected from patients with
a conrmed diagnosis of melanoma. Blood samples were ano-
nymised and serum extracted via centrifugation. Aer extrac-
tion, serum was stored at −80 °C. Non-identiable clinical and
Chem. Sci., 2025, 16, 8394–8404 | 8395
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demographic data were obtained in-line with the study
protocol.

The serum samples were representative of three patient
groups: the control group, where aer surgery the patient did
not present with a subsequent cancer diagnosis. The metastatic
group where the presence of metastatic disease was already
conrmed at the time the blood sample was obtained, and the
developed metastasis group, where patients were radiologically
cancer free following surgery but went on to develop metastatic
disease within the ve-year follow-up period. The sample cohort
analysed consisted of 40 individual patients; 8 control, 21
metastatic and 11 developed metastasis. A breakdown of the
relevant patient metadata for each class is given in Table S1.†

Sample measurement

For each sample, 20 mL of defrosted serum was placed between
two CaF2 windows, without the inclusion of a spacer. The
pathlength of the cell was adjusted so that the absorbance of the
dH–O–H + ylibr combination band of water located at ∼2130 cm−1

was equal to ∼0.1, corresponding to a sample thickness of
∼2.75 mm.27

Each patient sample was measured in triplicate, generating
three spectra per patient. To account for potential variations in
instrument performance with time, control group spectra were
collected during each measurement set, resulting in the
measurement of 16 control samples, with each of the 8 indi-
vidual control patients' serum measured twice. Overall, this
resulted in the collection of 144 spectra. 48 spectra in the control
group, 63 in the metastatic group and 33 in the developed
metastasis group.

Data pre-processing

Aer 2D-IR measurements, spectral pre-processing was per-
formed using the previously published workow,59 utilising
custom R scripts. In brief, this involves using the thermal water
response at Tw = 5 ps to perform baseline correction and signal
normalisation.59,60 This normalisation procedure corrects for
pathlength variations and instrument variability between
measurements. Savitsky–Golay smoothing was also applied. All
spectra were processed in unison and with the same pre-
processing parameters to ensure no spectral processing varia-
tions would be introduced.

Algorithm training and cross validation

Machine learning models were developed utilising the Caret and
pROC packages in R to identify the unique spectral ngerprint
associated with samples from each of the three classes: control,
metastatic and developed metastasis. This model was then used to
classify spectra from a blind set of patient samples. The predic-
tive classication model used a nested cross-validation (CV)
framework that incorporated partial least squares (PLS) for
dimensionality reduction and a support vector machine (SVM)
for classication, a general schematic of theML process is shown
in Fig. S1.† A 3-fold outer CV was implemented using unique
patient identiers, with training and test splits generated to
maintain class balance across the folds. For each outer fold, the
8396 | Chem. Sci., 2025, 16, 8394–8404
training data was further partitioned in the inner loop for
hyperparameter tuning, which employed a 3-fold CV within the
training data. At all stages, the dataset was rigorously stratied
based on sample ID to ensure that no replicate spectra from the
same patient appeared in both testing and training sets.

PLS was employed to address the high dimensionality of the
spectral dataset by projecting the scaled and mean centred
spectral data onto a lower-dimensional latent variable (LV)
space while maximising covariance with the class labels. PLS
was applied independently to each training and test split to
extract 15 LVs representing the most informative spectral
features. During execution of the nested CV, the overlap within
the feature space between the training and testing PLS LV scores
was assessed by comparing the distribution of PLS scores for
the training and test sets in each outer fold. This evaluation
conrmed that the test and training sets within each outer-fold
produced scores of similar magnitudes, validating the suit-
ability of this approach within the nested CV PLS-SVM model
(Fig. S2†). The extracted LV scores were then used as input
features for training the SVM models with a radial basis func-
tion (RBF) kernel. Hyperparameters for the cost parameter (C)
and sigma were optimised using a grid search strategy with area
under the one-vs.-all receiver operating characteristic curve
(AUROC) of the validation sets used to guide parameter
selection.

For each outer fold, the nal SVM model was trained on the
full training set with the optimal hyperparameters obtained
from the inner loop. Model performance was assessed using the
independent test set using Cohen's kappa, sensitivity, speci-
city and AUROC parameters. Probabilistic predictions were
recorded to facilitate post hoc analysis and visualisation of class
separations. Variable importance in projection (VIP) scores were
calculated for each PLS LV to assess their contribution to the
model. VIP scores were computed by weighting each compo-
nent's contribution to the explained variance of the PLS model.
The use of the nested CV approach allowed for unbiased esti-
mates of generalisation performance but also ensured model
tuning and evaluation were conducted on strictly independent
datasets. By employing a stratied, hierarchical framework, we
mitigate the risk of overtting, especially given the imbalanced
dataset.

Results and discussion
2D-IR spectra

The 2D-IR spectra of the collected serum samples in the amide I
region (Fig. 1(a–c)) show a band shape that is consistent with
previous studies using commercial, pooled serum.25–27,60 A clear
negative band (red) is present on the spectrum diagonal near
1660 cm−1 which is assigned largely to the amide I v = 0–1
transition of the predominant a-helix-rich human serum
albumin protein. The positive (blue) peak due to the accompa-
nying, anharmonically-shied, v = 1–2 transition is located
near a probe frequency of 1640 cm−1.27 The 2D peak shapes are
asymmetric, extending in a teardrop shape towards pump
frequencies of 1630–1640 cm−1 as a result of contributions from
the globulin protein family, which contain a greater fraction of
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 Average 2D-IR spectra obtained with Tw = 250 fs for each of the different patient classification groups (a) control (Cont, 48 spectra), (b)
developed metastasis (Dev, 33 spectra) and (c) metastatic (Met, 63 spectra). Difference spectra determined for subtraction of the averaged
spectra of the three classes from each other are shown in panels (d) metastatic – control, (e) developed metastasis – control and (f) metastatic –
developed metastasis. (g) to (i) show the difference spectra from (d)–(f) expanded by the multiplication factor shown.
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b-sheet structures compared to serum albumin.27 Although
descriptive assignments of the features are possible, it is
important to note that these spectra represent an additive
prole arising from the amide I bands of all proteins present in
the sample, scaled by their respective concentrations, and so are
more effectively thought of as a ngerprint of the protein prole
for each patient sample. As such, variations in amide I peak
shape or intensity between patient groups could reveal differ-
ences in protein prole (types, concentrations, structures, post-
translational modications, aggregation), potentially arising
from disease states or progression. Realistic assessments of the
sensitivity of 2D-IR to proteins in H2O-rich media suggest that
the 2D-IR protein ngerprint should be sensitive to uctuations
in the contributions of around 10–12 of the most abundant
proteins by concentration.44,59
© 2025 The Author(s). Published by the Royal Society of Chemistry
The spectra in Fig. 1(a)–(c) show averaged results encom-
passing all of the spectra measured from patients in each of the
three groups (control (a), developed metastasis (b) and metastatic
(c)). The spectra are broadly similar, as would be expected given
the general similarities of human protein proles, though some
small differences are apparent in the amplitude and shape of
the amide I bands in Fig. 1(a–c). Difference spectra (Fig. 1(d–f))
produced via subtraction of the spectra in Fig. 1(a–c) from one
another show that the spectral changes between classes only
appear clearly following magnication (Fig. 1(g–i)), revealing
the subtle distinctions between the patient groups. This broad
consistency between samples conrms the effectiveness of the
data pre-processing strategy. It is encouraging to note that the
changes displayed in Fig. 1(g–i) focus not only on the a-helix
region of the spectrum, near 1660 cm−1, but also in the b-sheet
region near 1630–1640 cm−1. This rstly suggests that the
Chem. Sci., 2025, 16, 8394–8404 | 8397
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changes between samples are localised on the protein portion
of the response, rather than spectral noise for example.
Secondly, it suggests that there may be changes in both albumin
and globulin content that can be used to differentiate spectra of
the three sample groups.

Although we can extract these subtle changes through aver-
aging of all spectra from a given group and careful spectral
subtraction, visual classication on a per-sample basis would be
challenging and unreliable, a fact that would be further
complicated by patient-to-patient and sample-to-sample varia-
tion as protein levels respond to many everyday factors. The
overlapping spectral features, combined with variations in peak
intensity and shape, create an intricate pattern that does not
lend itself to straightforward interpretation, as demonstrated by
the application of PCA or PLS analyses (Fig. S3†). However, ML
models offer a solution via the ability to identify patterns within
complex datasets. By training models on a range of spectral
data, the ability to detect subtle spectral variations can be
developed, potentially enhancing classication accuracy. Our
aim was thus to exploit ML methods to leverage the nuanced
spectral information, improving diagnostic reliability that
could ultimately reveal markers of disease progression or risk
from the serum protein prole.
Machine learning development

A number of ML methods were tested to address the challenges
of classifying 2D-IR spectra of serum samples according to their
diagnostic groups. 2D-IR spectra of the amide I region (1600–
1700 cm−1) contain some 2624 pixels, not all of which contain
information that will be useful for classication. As a result,
hyphenated ML approaches exploiting partial least squares
(PLS) to perform dimensionality reduction of the data were
employed. The initial attempt used PLS-Discriminant Analysis
(PLS-DA). This supervised technique combines PLS dimen-
sionality reduction with classication by identifying latent
variables (LV) that maximise group separation while minimis-
ing noise from irrelevant spectral features.25,61 PLS-DA is
particularly well suited toward high dimensionality data such,
as 2D-IR spectra where co-linearity among variables can
Table 1 Summary of model performance metrics of all PLS-X models a
folds of the nested CV

Model Parameter

k-Nearest centroid (kNC) AUROC
Sensitivity
Specicity

Random Forest (RF) AUROC
Sensitivity
Specicity

Support vector machine (SVM) AUROC
Sensitivity
Specicity

8398 | Chem. Sci., 2025, 16, 8394–8404
complicate analysis. While PLS-DA showed some ability to
separate the three sample groups, its overall classication
performance was limited, though sufficient clustering in some
LVs suggested that more advanced machine learning strategies
could improve the classication accuracy (Fig. S4†).

Subsequently, more powerful classication approaches such
as k-Nearest Centroid (kNC), Random Forest (RF) and Support
Vector Machines (SVM) were evaluated due to their proven
efficacy for high-dimensional dataset classications.62–67 All
three hyphenated models (with PLS) were implemented using
the nested CV approach described in the experimental section.
The performance of each model was assessed using the stan-
dard evaluation metrics of AUROC, sensitivity and specicity.
Each of these metrics provide unique insights into the model's
classication performance. AUROC evaluates the model's
ability to distinguish between classes, with values closer to unity
indicating better discriminating power. Sensitivity assesses the
ability to identify true positives correctly, which is crucial for
detecting subtle spectral differences, while specicity evaluates
the ability to identify true negatives correctly, reecting the
model's robustness in minimising false positives.

The performance of the three models is summarised in
Table 1, where classication performance of the control, devel-
oped metastasis andmetastatic groups is shown. The kNC model
demonstrated moderate improvements in sensitivity and
AUROC compared to PLS-DA for the developed metastasis and
metastatic groups, although its performance for the control
group remained limited. The RF model further improved
AUROC and specicity, particularly for themetastatic group, but
its sensitivity for the control and developed metastasis groups
remained below commonly accepted performance standards.

The SVM model emerged as the most effective approach,
achieving the highest AUROC values across all groups (0.75,
0.80 and 0.86 for control, developed metastasis and metastatic,
respectively). PLS-SVM also achieved a balance between sensi-
tivity and specicity, with notable improvements in sensitivity
for the control and developed metastasis groups. These results
therefore show that SVM offers the most promising approach
for addressing the classication challenges posed by the 2D-IR
dataset.
ssessed. All metrics reported are the average obtained across 3 outer

Sample group

Control Developed metastasis Metastatic

0.53 0.66 0.73
0.53 0.56 0.93
0.78 0.96 0.71
0.63 0.70 0.81
0.36 0.50 0.93
0.82 0.90 0.69
0.75 0.80 0.86
0.69 0.72 0.70
0.76 0.89 0.88

© 2025 The Author(s). Published by the Royal Society of Chemistry
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PLS-SVM model performance

To gain a deeper understanding of the classication perfor-
mance of the PLS-SVM model, the average performance across
the three outer folds of the nested CV model is presented in
Fig. 2. The individual fold performances are also provided in the
ESI (Fig. S5–S7†). The average confusion matrix (Fig. 2(a))
demonstrates that the PLS-SVM model is able to differentiate
between samples from the three patient groups. Correct
predictions, shown along the matrix diagonal, clearly dominate
while misclassications are relatively evenly distributed across
the three groups. The even distribution of misclassications
also indicates that the model does not exhibit a systematic bias
toward any particular class. Instead, the errors appear to stem
from the natural variability in the dataset rather than model-
specic shortcomings. The latter observation is consistent
with spectral variations between the groups that are over-
lapping, as indicated by PCA and PLS analyses. Note that the
total number of samples listed in the matrix reect just the
portion of the data set that appears in the outer fold test set.

The ROC curves (Fig. 2(b)) for each sample group further
demonstrate the discriminative power of the PLS-SVM model,
with AUROC values of 0.75, 0.80, and 0.86 for the control,
developed metastasis, and metastatic groups, respectively. These
Fig. 2 Average performance metric outputs across outer folds for test
samples, (a) average confusionmatrix, (b) average ROC curves for each
class: control (green), developed metastasis (gold) and metastatic
(pink) (c) prediction probability box plots across all outer folds for each
class, with jitter points added showing each individual probability value
and range. Clear separation of the target category from the others
show the model's confidence in producing a classification.

© 2025 The Author(s). Published by the Royal Society of Chemistry
values show that the model effectively separates the classes,
particularly for the metastatic group, where the highest AUROC
value reects superior classication performance. The shape of
the ROC curves for all groups, with an upward trajectory
towards the top le corner of the plot, indicates high sensitivity
and specicity across the range of classication thresholds.
This progression highlights the ability of the model to classify
true positives correctly while minimising false positives. The
model achieves balanced sensitivity and specicity values
across all groups (Table 1), with sensitivity values ranging from
0.69 for the control group to 0.72 for the developed metastasis
group. Specicity values are higher, peaking at 0.89 for the
developed metastasis group. These results indicate that the
model is capable of correctly identifying true positives but also
robust in minimising false positives. The Kappa value of 0.523
reects a more moderate agreement between predicted and
actual classications but is still consistent with reliable
performance of the model.

While the PLS-SVM model clearly captures the underlying
patterns in the data, the inherent overlap in spectral features
would be expected to impose a limitation on classication
accuracy for this relatively small experimental dataset. This can
be assessed via probability box plots (Fig. 2(c)), which provide
a quantitative measure of predictive condence returned by the
model for each sample. These plots show that for each of the
three groups there is a signicant clustering of high probabili-
ties for the correct class, showing that the model maintains
strong condence in its predictive ability. However, the box
plots also illustrate the challenge posed by the overlapping
spectral features, which results in a relatively wide distribution
of probabilities showing lower condence in some of the
predictions. For example, the control group exhibits a broad
distribution of predicted probabilities, with signicant overlap
into the developed metastasis and metastatic regions. Similarly,
the developed metastasis group demonstrates a range of proba-
bilities, perhaps reecting its intermediate nature between the
other two groups and so the potential for shared spectral
characteristics with the control and metastatic classes. These
overlapping distributions align with the misclassications
observed in the confusion matrix and highlight the presence of
some uncertainty in distinguishing between groups but overall,
the performance is strong, and uncertainties would be expected
to be reduced with the addition of more data to the model.

It is instructive to consider the regions of the 2D-IR response
that the ML model uses to make decisions when classifying
samples. Variable Importance in Projection (VIP) scores show
the contribution of each PLS LV to the model's classication
performance. This not only provides useful spectroscopic
insight but can also be used to assess whether classication was
based on meaningful, biologically relevant spectral features,
rather than random noise and to guard against overtting. The
VIP scores, Fig. 3(a), highlight the importance of the specic
PLS components in distinguishing between the control, devel-
oped metastasis and metastatic groups. Components with VIP
scores greater than unity are considered the most inuential, as
they capture signicant variations in the data and reect the
spectral regions that contribute most to the model. Here we
Chem. Sci., 2025, 16, 8394–8404 | 8399
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Fig. 3 (a) Average variable importance of projection scores across training set of outer folds. VIP scores greater than 1 indicate important latent
variables used in making model predictions. Panels (b) to (d) shows the spectral loadings of the three variables considered to be the most
important, (b) = LV 15, (c) = LV 13, (d) = LV 14. Panels (e–g) reproduce the difference spectra from Fig. 1(g–i) for comparison. Coloured arrows
highlight points of interest as discussed in the text.
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observe that the most important LVs identied are 15, 13 and
14, with LV 15, capturing the most signicant variations. The
corresponding loading plots (Fig. 3(b–d)) illustrate the specic
spectral regions associated with these LVs. The most prominent
features in LV 15 and 13 primarily lie in the region around
1660 cm−1 with additional contributions from the 1640 cm−1

region. LV 14 appears to be dominated by changes in 1625–
1640 cm−1 region. It is noteworthy that, although no direct
correlation between these loadings and the difference spectra
discussed above are expected, or necessary for good model
performance, many of the areas that arise in LVs 13–15 align
with features in the inter-group difference spectra from Fig. 1
(reproduced in Fig. 3(e–g), see coloured arrows). These obser-
vations underline that the PLS loadings are identifying regions
of the 2D-IR spectrum that correspond to the main parts of the
amide I band, as would be expected for a model that is using
spectral information for sample classication. In combination
with the other parameters that are used to assess model
performance this further conrms that the ML approach is
leading to an accurate and robust sample classication output.
Discussion

The use of ML strategies to extract information from 2D-IR
spectra and specically to classify spectra from groups of clin-
ical serum samples is encouraging. While ML approaches have
been used for more straightforward classications of experi-
mental spectra, where clear changes between classes are antici-
pated,25 this represents the rst application to a system where it
was not clear at the outset that differences would be forth-
coming. As such, this provides evidence for the potential of ML
approaches to extract information that might not otherwise be
recoverable. This nding also adds experimental weight to
studies, that have paired ML with simulated 2D-IR data35 and
should serve to motivate work to enlarge experimental datasets
or to explore the use of mixed simulated/experimental strategies.
8400 | Chem. Sci., 2025, 16, 8394–8404
The fact that our 2D-IR-ML method is able to differentiate
spectra obtained from different patient groups based on the
serum protein prole is equally encouraging. The method
requires only small volumes of blood serum, with measurement
times on the order of minutes, while data collection requires no
prior sample manipulation to account for the presence of water,
all of which suggest that 2D-IR-ML methods have the potential
for further development towards applications in biomedical
diagnostics and more generally for solution-phase protein
analysis.

Considering the results of this study in the more specic
context of risk stratication for the treatment of melanoma. A
promising approach to detecting melanoma residual disease
exploits detection of circulating tumour DNA (ctDNA).54,68,69

Presence of ctDNA as a biomarker has been shown to correlate
with relapse risk68 and clinical trials are ongoing, though
quantities of ctDNA in cases of non-metastatic melanoma are
small and so hard to detect.54 Our results show that variations in
the protein prole of the patient's blood serum may offer
another, parallel, route to identifying disease states and pre-
dicting relapse risk. This correlates with observations relating to
other cancers using IR absorption spectroscopy,41–49 but the
addition of superior spectral resolution means that 2D-IR may
offer a useful complementary technology to these tools.

One advantage of the 2D-IR ML approach is the detailed
insight that is contained within the regions of the amide I
band that were identied with sample classications. Fig. 3
shows that changes to both the a-helix and b-sheet region were
highlighted by the model as being of importance, suggesting
that the changes could encompass a range of proteins. It is also
noteworthy that some consistency was achieved between ML
output and the difference spectra obtained from the average
signal from each sample class. This suggests that 2D-IR results
may ultimately be able to point towards molecular markers for
disease based on changes in the broad protein prole of serum
samples. As discussed above, these changes may include
© 2025 The Author(s). Published by the Royal Society of Chemistry
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variations in the relative concentrations of some of the major
proteins, but there are also indications from prior 2D-IR
studies of serum that changes in structure, dynamics or
ligand binding can all inuence the amide I prole.15 Equally,
the contribution of post-translational modications to the
amide I band are as yet unexplored. In making a link between
serum spectroscopy and disease, one has to be aware of
potential confounding factors given that serum reports on
many bodily processes,70 but these results offer a rm basis for
follow-up studies. Further experiments using protein libraries
to understand some of the potential spectroscopic contribu-
tions would be instructive. Similarly, combining 2D-IR results
with powerful supporting technologies like proteomics anal-
yses would be of particular value in identifying specic
molecular changes that are leading to the 2D-IR-based classi-
cations. Such a multi-platform approach could add vital new
information relating to understanding the molecular nature of
disease progression.71

One clear result of the study is that there is overlap of
spectral features between the individual sample groups and
that this has proved a challenge for the MLmodel. This overlap
in spectral features was expected given the broad molecular
similarity of patient serum samples, the presumed gradual
progression of disease states and the shared biochemical
markers likely to be present between the groups. For instance,
the differences between control and developed metastasis
samples may stem from subtle changes in protein prole that
are indicative of early-stage disease. However, since the devel-
oped metastasis samples come from different patients at
varying stages of disease progression, these subtle differences
may not be consistently evident across all samples, making it
harder to differentiate them from the control group. This in
essence is the challenge that the 2D-IR-ML approach sought to
overcome, so indications that it may be possible are encour-
aging. The fact that the ML model uses the full 2D-plot also
shows that the information density inherent in the 2D-R
method will be valuable in doing so.72,73 Similarly, patients in
the later stages of developed metastasis may exhibit spectral
proles that resemble those of metastatic disease, further
blurring the distinction between these two groups and
complicating classication. As has been shown to be the case
with ML-based approaches, such problems would benet
considerably from larger studies involving many more samples
and serial samples over time.74,75 Additionally, the provision of
true controls from healthy individuals would provide useful
insights. In this respect, the clear differentiation between the
three patient groups, all of which have had treatment from
melanoma that would be expected to reduce the variation
between them is another positive indicator for the potential of
combined 2D-IR-ML strategies.

Conclusions

Here we present a rst attempt to apply 2D-IR spectroscopy to
the analysis of clinical biouid samples, specically targeting
the classication of patient serum samples from post-treatment
melanoma patients. By leveraging the water suppression
© 2025 The Author(s). Published by the Royal Society of Chemistry
protocol of 2D-IR we were able to obtain high quality spectra of
the protein amide I region, allowing investigation of whether
this response may contain markers for disease progression. By
integrating 2D-IR spectroscopy with ML strategies, we have
developed a model that could successfully classify patient
samples according to three clinically relevant groups: control,
developed metastasis and metastatic, establishing proof of prin-
ciple for the specic application and for future hybrid 2D-IR-
ML-based protein analysis strategies.

Despite the nuanced spectral differences observed, manual
classication was not tractable due to overlapping spectral
features and subtle variations across patient groups. However,
advanced ML strategies, particularly the PLS-SVM model,
proved capable of good classication performance, achieving
AUROC values of 0.75, 0.80, and 0.86 for the control, developed
metastasis and metastatic groups, respectively and demon-
strating robust discriminative power. Balanced sensitivity and
specicity further reinforced the model's reliability in identi-
fying disease states.

These ndings highlight the potential of 2D-IR spectroscopy
combined with ML to contribute to cancer diagnostics. While
the inherent overlap in spectral features imposes some limita-
tions on classication accuracy, the demonstrated ability to
differentiate between patient groups at an accepted level
underscores the feasibility of this approach for clinical appli-
cations. Future work should focus on rening ML strategies,
particularly through the expansion of datasets, including the
addition of non-symptomatic healthy individuals. These could
potentially be enhanced by inclusion of data collected using
different polarisation geometries, which could enhance off-
diagonal regions of the spectrum, though careful consider-
ation of how to combine the datasets would be required.76

Additionally, exploring complementary spectroscopic tech-
niques could enhance classication performance and provide
deeper insights into the biological features of disease progres-
sion leveraged for classication. Ultimately, this study lays
a foundation for the exploration of 2D-IR-ML approaches,
offering a promising tool for harnessing the information
content of 2D datasets.
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