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elective synthesis of all-carbon
tetra-substituted alkenes via Z-selective alkyne
difunctionalization†

Prashant S. Shinde,‡a Valmik S. Shinde‡ab and Magnus Rueping *a

We report a Ni-catalyzed cascade reaction leading to the arylation of an alkyne-induced acyl migration and

the formation of all-carbon tetra-substituted alkenes in good yields with exclusive Z-selectivity. This

transformation involves the generation of a nucleophilic vinyl-Ni species through regioselective syn-aryl

nickelation of the alkynes, followed by an intramolecular acyl migration. The steric and electronic

properties of the phosphine ligands are crucial for achieving high regio- and stereocontrol in this

migratory carbo-acylation process. The synthetic utility of the resulting Z-tetra-substituted alkenes is

also demonstrated.
All-carbon tetrasubstituted olens bearing four different
carbon-based groups are ubiquitous motifs present in
numerous natural products and have various applications from
medicinal to materials chemistry (Fig. 1).1–9 Due to their broad
applications, signicant research efforts are focused on devel-
oping general protocols for the challenging stereoselective
synthesis, particularly for acyclic structures.8,10–16 While strat-
egies exist for synthesizing stereo dened E-alkenes, their
thermodynamically less stable Z-isomers remain considerably
more challenging. Achieving Z-alkenes with four distinct
carbon-based substituents and an adjacent reactive function-
ality remains a formidable challenge.

Classical methods for forming carbon–carbon double bonds
include carbonyl olenations such as the Wittig reaction and its
variants (e.g., Julia, Peterson, McMurry, and Horner–Wads-
worth–Emmons reactions), as well as metathesis reactions,
elimination processes, and additions to triple bonds
(Fig. 2a).17–20 Thesemethods are effective for producing di- or tri-
substituted alkenes; however, they typically yield mixtures of
stereoisomers when applied to tetrasubstituted alkenes.11

Additionally, their efficiency diminishes when faced with the
high steric demands of tetra-substituted alkenes, making the
selective synthesis of these structures a key area of research,
particularly over the past years. An alternative approach involves
the stereoselective insertion of two carbon-based groups across
a C–C triple bond, either in a stepwise manner or through
lah University of Science and Technology
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multicomponent strategies, offering a promising route for the
synthesis of complex alkenyl products.21–28 However, a major
limitation in these transformations is the challenge of achieving
regioselectivity, especially with alkynes that have substituents of
similar steric or electronic properties. Therefore, developing
a general method that enables the synthesis of highly substituted
alkene with precise regio- and stereocontrol is crucial for
expanding their synthetic utility. A commonly employed method
for synthesizing tetrasubstituted alkenes, particularly those with
four distinct functional groups, involves the carbometalation of
internal alkynes to generate trisubstituted alkenyl metal
Fig. 1 Current applications for all-carbon tetra-substituted alkenes.
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Fig. 2 (a) Synthetic strategies for multi-substituted alkenes; (b) nickel-catalyzed stereoselective synthesis of all-carbon tetra-substituted
alkenes via Z-selective alkyne difunctionalization
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nucleophiles. These intermediates then react with different
electrophiles, oen through transition metal-catalyzed cross-
coupling processes.21,25–42 Intramolecular capture, particularly
in the form of arylative cyclization, occurs readily, facilitating the
formation of cyclic scaffolds with good efficiency.43–47 Prompted
by these reports and by our continuing research interests in
nickel-catalyzed transformations,48–52 we envisioned that by
using alkyne-tethered phenolic ester substrate, regioselective syn-
aryl nickelation of an alkyne would generate nucleophilic vinyl Ni
[II] species that may undergo nucleophilic addition to the
carbonyl carbon of tethered ester group (Fig. 2b).47,53,54 We
anticipated that the careful choice of bulkier ligands55–66 could
assist in the C–O bond cleavage of the intermediate which would
result in subsequent intramolecular acyl group migration67 and
formation of tetrasubstituted alkene products in a stereoselective
manner (Fig. 2b). Herein, we describe the successful develop-
ment of a nickel-catalyzed tandem alkyne hydroarylation acyla-
tion strategy, which proceeds with complete Z-selectivity and
high regioselectivity to produce a variety of tetra-substituted
6274 | Chem. Sci., 2025, 16, 6273–6281
alkene products in good-to-excellent yields. The key to the
success of this method is the use of Ni-catalysts with bulky
monodentate phosphine ligands.

We began our study by reacting 2-hexynyl phenol ester 1a,
synthesized in two steps from 2-iodophenol, with phenyl
boronic acid 2a using various nickel catalysts in acetonitrile at
90 °C (Table 1). Notably, when using Ni(acac)2$4H2O in
combination with the bidentate phosphine ligand 1,2-bis(di-
phenylphosphino)ethane (L1), the desired alkene product 3a
was obtained with high stereoselectivity, achieving a 57% yield
(Table 1, entry 1). Analysis of the puried reactionmixture by 1H
NMR spectroscopy conrmed the formation of the expected
tetrasubstituted alkene 3a with excellent Z-selectivity. The
choice of the ligand had a signicant effect on the reactivity and
selectivity of the transformation.68–71 Systematic studies of
various bidentate and monodentate ligands revealed that the
use of bulkier monodentate ligands afforded better yield and
selectivity (Table 1, entries 1–7). Among the ligands tested,
triisopropylphosphine ligand (L7) demonstrated the highest
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Table 1 Optimization of nickel-catalyzed aryl-acylation of alkynesa

Entry Ni-catalyst Solvent L Yieldb,c (%) Z : E

1 Ni(acac)2$4H2O MeCN L1 57 99 : 1
2 Ni(acac)2$4H2O MeCN L2 52 99 : 1
3 Ni(acac)2$4H2O MeCN L3 39 95 : 5
4 Ni(acac)2$4H2O MeCN L4 52 96 : 4
5 Ni(acac)2$4H2O MeCN L5 80 99 : 1
6 Ni(acac)2$4H2O MeCN L6 87 99 : 1
7 Ni(acac)2$4H2O MeCN L7 90c 99 : 1
8 Ni(OAc)2$4H2O MeCN L7 84 99 : 1
9 Ni(ClO4)2$6H2O MeCN L7 57 98 : 2
10 NiBr2$3H2O MeCN L7 62 98 : 2
11 Ni(COD)2 MeCN L7 86 98 : 2
12 Ni(acac)2$4H2O Dioxane L7 66 99 : 1
13 Ni(acac)2$4H2O THF L7 62 99 : 1
14 Ni(acac)2$4H2O MeCN : 2-Me THF L7 78 99 : 1
15 Ni(acac)2$4H2O,

K2CO3, CsCO3

MeCN L7 0 NA

a All reaction were carried out on a 0.2 mmol scale. b Yield determined by GC using dodecane as an internal standard. c Isolated yield.
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reactivity and was selected for further investigation due to its
cleaner reaction prole and excellent Z-selectivity (99 : 1)
(Table 1, entry 7). We also evaluated various commercially
available Ni-salts in combination with ligand L7, which yielded
comparable reactivity (entries 8–11). However, using Ni(0) in
place of Ni(II) led to slightly reduced reactivity and selectivity
(entry 11). Acetonitrile (MeCN) emerged as the optimal solvent
among those tested (entries 12–14). Control experiments
conrmed that both the Ni complex and ligand were crucial for
the reaction's success. Reducing the catalyst loading to 5 mol%
had a detrimental effect on the reaction, resulting in lower
yields and longer reaction times. The use of bases, typically used
for coupling reactions, resulted in no product formation as the
substrate is prone to ester hydrolysis (entry 15). Changing the
substrate to the corresponding acetylated phenol resulted in the
© 2025 The Author(s). Published by the Royal Society of Chemistry
formation of the corresponding benzofurane product (vide
infra).

With the optimized conditions established, we next explored
the scope of the aryl acylation reaction of alkynes. We began by
examining the suitability of various aryl boronic acids (2) as
coupling partners (Fig. 3). Generally, the steric and electronic
properties of the phenyl ring in para- and meta-substituted aryl
boronic acids did not signicantly inuence the reaction yield.
Both electron-rich and electron-decient aryl boronic acids,
featuring substituents such as methyl, t-butyl, halogen, tri-
uoromethyl, o-phenoxy, and cyano-groups, successfully reac-
ted with o-hexynyl phenol ester 1a, producing the
corresponding rearranged products 3 in good yields (3a–3l). In
most cases, boronic acids bearing electron-donating groups
(e.g., 3j) resulted in slightly higher yields compared to those
Chem. Sci., 2025, 16, 6273–6281 | 6275
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Fig. 3 Scope of Ni-catalyzed aryl-acylation of alkynes using boronic acids.
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with electron-withdrawing groups (e.g., 3k). Additionally,
hetero-aromatic boronic acids proved compatible with this
reaction, delivering a lower yield of the desired product (3l). We
then explored the generality of this Ni-catalyzed aryl acylation
reaction with 2-alkynyl phenol esters 1, featuring various ester
groups in (Fig. 4). Variations in the ester group on the phenol
did not signicantly impact the reaction efficiency. The reaction
conditions were well-tolerated with a range of ester groups,
including strained cyclopropyl (3n), 4-methyl (3m), naphthyl
(3o), p-chloro (3p), o-bromo (3q), pentauoro (3r), electron-
donating groups such as methoxy (3s) and N,N-dimethylamine
(3t), as well as electron-withdrawing groups like nitro (3v).
Additionally, heteroatomic thiophene-containing esters (3w)
were also compatible. Notably, the reaction was not restricted to
simple esters; phosphoryl esters also yielded the desired
product, albeit as a Z/E mixture (77 : 23) (3x). Next, we investi-
gated the reaction scope with variations in the alkyne side chain
(R2). When 2-alkynyl phenol ester 1 containing a shorter alkyl
chain substituent on the alkynyl moiety was employed, the
reaction afforded a single isomer, yielding 76% of the corre-
sponding tetrasubstituted alkene (3y) as a white solid. The
6276 | Chem. Sci., 2025, 16, 6273–6281
structure of (3y) was unambiguously conrmed through X-ray
crystallographic analysis (CCDC: 2110836).

Reactions of 1, bearing longer alkyl chain, heteroatomic, and
phenyl group substituents on the alkyne moiety, also resulted in
the formation of the corresponding tetra-substituted alkenes
(3z–3ac) in high yields. We also examined substrates with various
substituents on the phenol ring, including phenyl, methyl ester,
uoro, and chloro groups. In all cases, the expected products
were obtained in good to excellent yields (3ad–3ag).

Notably, expanding the scope of the syn-arylative rearrange-
ment to include an amide moiety in place of the ester also
proved successful under standard conditions, yielding the cor-
responding alkene derivative (3ah) in 52%. Furthermore, the
scalability of our protocol was exemplied by the aryl-acylation
of 2-hexynyl phenol ester 1a on a 1.2-gram scale affording 84%
of Z-alkene 3b. We next showcased the synthetic utility of the
products through a series of post-functionalization reactions
(Fig. 5). PTSA-catalyzed dehydrative cyclization of (3b) yielded
the corresponding 2,3-difunctionalized benzofuran47,72,73 4 in
good yield. Treatment of 3b with LiAlH4 led to the selective
reduction of the ketone moiety, providing the reduced product
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 Scope of variation in esters, tethered alkynes, and phenolic groups.

© 2025 The Author(s). Published by the Royal Society of Chemistry Chem. Sci., 2025, 16, 6273–6281 | 6277
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Fig. 5 Chemical transformations of 3b to synthetically valuable building blocks.
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in excellent yield. We then aimed to transform 3b into the
highly functionalized pyrazole structure 6 through a selective
ve-membered ring cyclization using hydrazine hydrate. Addi-
tionally, Pd/C-catalyzed hydrogenation of 3b produced
substituted benzofuran-2-ol 7 in 75% yield. Additionally, we
leveraged the phenol group on 3b as a functional handle, con-
verting it into the corresponding triate 8 in 94% yield. This
triate was subsequently subjected to a Pd-catalyzed oxidative
coupling reaction. Interestingly, an unexpected transformation
occurred and yielded a tetrasubstituted furan 9. The structure of
the furan 9 was conrmed by X-ray crystallographic analysis
(CCDC: 2113670). On the basis of the literature
reports47,53,54,57,74,75 and the experimental results we propose
a catalytic cycle (Fig. 6). Initially, the nickel complex undergoes
a transmetalation with boronic acids 2a to form the aryl-Ni
intermediate A, which regioselectively adds in syn fashion
across the alkyne in 1a to form the alkenyl-Ni species B. The
organo-nickel intermediate B subsequently adds to the carbonyl
carbon of the ester moiety that results in cyclic intermediate C.
6278 | Chem. Sci., 2025, 16, 6273–6281
Finally, the C–O bond cleavage with ring opening leads to the
formation of alkene product 3a with acyl group migration along
with the regeneration of the Ni complex.

In summary, we have developed an unconventional Ni-
catalyzed approach for the synthesis of tetrasubstituted
alkenes from alkynes and boronic acids. This method enables
a one-step difunctionalization of internal alkynes through the
simultaneous addition of both aryl and acyl groups across
triple bonds, providing streamlined access to tetrasubstituted
alkenes with high regio- and stereocontrol; challenging to
achieve with conventional methods. The process exhibits
excellent functional group compatibility and broad synthetic
applicability, even in complex molecular settings. Its practi-
cality is further demonstrated by gram-scale synthesis and
diverse post-functionalization of complex molecules. This
straightforward protocol opens new avenues in multi-
substitution chemistry for acyclic, all-carbon tetrasubstituted
Z-olenic products.
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 6 Plausible mechanism of the Ni-catalyzed aryl-acylation of
alkynes.
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