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Solid electrolyte membrane reactors (SEMRs) can be operated at high temperatures with distinct reaction
kinetics, or at lower temperatures (300-500 °C) for industrially relevant energy applications (such as
solid oxide fuel/electrolysis cells, direct carbon fuel cells, and metal-air batteries), chemical (such as

alkane dehydrogenation, C-C coupling, and NH3 synthesis), environmental (De-NO,, CO, utilization, and
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Accepted 17th February 2025 separation), as well as their combined (one-step coupled CO,/H,O co-electrolysis and methanation

reaction, power and chemical cogeneration) applications. SEMRs can efficiently integrate electrical,
chemical, and thermal energy sectors, thereby circumventing thermodynamic constraints and
production separation issues. They offer a promising way to achieve carbon neutrality and improve
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chemical manufacturing processes. This review thoroughly examines SEMRs utilizing various ionic
conductors, namely O, H*, and hybrid types, with operations in different reactor/cell architectures
(such as panel, tubular, single chamber, and porous electrolytes). The reactors operate in various modes
including pumping, extraction, reversible, or electrical promoting modes, providing multiple
functionalities. The discussion extends to examining critical materials for solid-state cells and catalysts
essential for specific technologically important reactions, focusing on electrochemical performance,
conversion efficiency, and selectivity. The review also serves as a first attempt to address the potential of
process-intensified SEMRs through the integration of photo/solar, thermoelectric, and plasma energy
and explores the unique phenomenon of electrochemical promotion of catalysis (EPOC) in membrane
reactors. The ultimate goal is to offer insight into ongoing critical scientific and technical challenges like
durability and operational cost hindering the widespread industrial implementation of SEMRs while
exploring the opportunities in this rapidly growing research domain. Although still in an early stage with
limited demonstrations and applications, advances in materials, catalysis science, solid-state ionics, and
reactor design, as well as process intensification and/or system integration will fill the gaps in current
high temperature operation of SEMRs and industrially relevant applications like sustainable clean
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chemical production, efficient energy conversion/storage, as well as environmental enhancement.

1. Introduction

Environmental issues such as carbon emissions from fossil
fuel-based energy production necessitate efficient energy
conversion and use of clean energy sources. Intelligent process
innovations will be important to achieve these goals. Electrifi-
cation through ‘green’ electricity from renewable sources (e.g.,
wind and solar) linked to electrochemical processes is
becoming economically attractive with a major potential to
lower key greenhouse gas CO, and CH, emissions and even
convert them to valuable chemicals and fuels.*”® Likewise, direct
conversion of carbon-based fuel into electricity employing the
electrochemical reaction path can lead to reduced CO, emis-
sions.* In parallel, chemical synthesis can also more smartly
supply reaction energy through electrochemistry using ‘green
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electrons’.>” In some cases, this has been prompted by new
regulations that encourage electricity and electrode/catalyst use.
For example, the emerging power-to-X conversion relies mostly
on renewable power, where the X stands for H,, CO, NH;, CH,,
CH;0H, C,H,, etc., or, liquid fuels such as methanol and
ethanol from abundant small molecules, such as H,O, CO,, N,
and CH,, and also depends on the choice of reaction and
reactor operation as well as their thermodynamics.*** Farr and
Vayenas first realized this concept in 1980 by producing NO
from NH; feedstock in a solid oxide fuel cell (SOFC) using
a noble-metal catalyst.'® Electrification as such has already been
applied in chemical industries, e.g., in chloralkali industries,
and similar success stories could be envisioned assuming that
cheap renewable power would be abundantly available in the
future.>***

To realize both efficient energy conversion and storage,
reliable electrochemical technology is needed, in which
a tailored combination and coupling of consumption and
production of electrical, chemical, and thermal energy is
preferred.”® Moreover, these technologies should be capable of
directly coupling electrical and chemical processes to make
their industrial use attractive. Furthermore, other benefits of
the electrochemical process are as follows.>*

(i) Avoiding the reverse reaction balance limitation since the
reactants are fed separately, not competing for the same cata-
Iytic sites, and have no thermodynamic limitation, which leads
to efficient usage of reactants since they can be recirculated.

(ii) Electrochemical cells often result in natural product
separation due to the use of a membrane that keeps reactants
and products generated at the cathode and anode separately.
For example, in water electrolysis, the reaction products H, and
O, already appear at the opposite electrode sides of the
membrane, and one of the products may be mixed with steam
but it can be easily purified/recovered through condensation.

(iii) Electrochemical methods enable bond-formation steps
using electricity, which offers an alternative/controllable and
safe driving force namely voltage that can enable operation at
lower temperature and pressure out of reach by the conven-
tional catalytic process such as the thermal catalysis process.
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(iv) Through intentional specific potential adjustment, the
selectivity and conversion rate of the reaction are well control-
lable when combined with a proper choice of electrode catalyst.

Among the electrification technologies, fuel cells, and their
reverse process, electrolysis cells, possess a unique capability of
reversible operation, i.e., directly converting the chemical
energy in fuels such as hydrogen and hydrocarbons to elec-
tricity, or in the electrolysis mode storing the energy from
renewable electricity in chemicals, characterizing by high effi-
ciency and large-scale capability since no intermediate process
such as combustion/mechanical conversion process is involved.
Among the different types of fuel cells, the solid oxide cell (SOC)
operates at elevated temperatures as an all-solid-state cell
showing the highest priority for such a purpose, also because of
fuel flexibility.**"” In the all-solid-state form, there is no need for
liquid cell materials to avoid corrosion and easy separation on
the opposite electrode. Elevated temperature operation also
brings multiple advantages vs. low temperature reaction:**® (i)
significantly improved reaction kinetics by improving exchange
current density (j,) at a high temperature which is essential for
a high reaction conversion rate, leading to considerably
improved technological electrical/energy efficiency; the total
energy efficiency can be further improved to use highly valuable
heat energy under fuel cell conditions and joule heat in the
electrolysis mode; (ii) much reduced reliance on rare precious
metal catalysts/active components; (iii) fuel flexibility, avoiding
highly pure hydrogen needed in polymer exchange membrane
fuel cells under close to room temperature operational condi-
tions; a flexible bridge from current fossil fuel to future
hydrogen economy can therefore be expected; (iv) reduced
electrical energy consumption under solid oxide electrolysis
operational conditions; moreover, by utilizing waste heat from
different sources, the electrolysis process can be tuned into
a chemical-electricity co-generation mode, significantly
enhancing the energy utilization efficiency and realizing alter-
native purposes; (v) achieving homogeneous distribution of the
reactant in the form of ions such as 0>~ and H' from the
electrolyte lattice instead of O, or H, molecules direct contact-
ing to the catalytic reaction under ideal conditions (such as
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temperature), debarring undesired side reactions such as over-
oxidation of CH, activation products, improving the reaction
selectivity and yields, holding economic and environmental
significance; (vi) the same device can be reversibly operated in
the fuel cell or electrolysis cell mode, which enables quick
deployment of current joint fossil fuel and renewable power
sources.

2. Fundamentals of SEMRs

Solid electrolyte membrane reactor (SEMR) development has
advanced considerably in recent years and continues to prog-
ress rapidly due to the abovementioned characteristics.”® A
general diagram of a SEMR is shown in Fig. 1. The reactor has
two chambers that are separated by a gas-tight membrane in
most cases, but sometimes a porous membrane is also applied.
The membrane is made of a solid oxide material that is capable
of transporting O~ or H" at elevated temperatures (typically
873-1273 K but extended to 573-1273 K with the evolution of
cell materials and fabrication technology). The SOC can be
operated in either SOFC or SOEC mode, depending on whether
a current/potential is applied or not or it is operated using
various ionic conductors like alkali ions and CO;>~ etc.2*?' In
fuel cell mode, fuel conversion takes place simultaneously with
the power generation, whereas in the electrolysis mode, addi-
tional energy like electricity is supplied to the system to sustain
nonspontaneous reactions. In other words, the same unit can
make fuel or value-added chemicals through electrolysis during
periods of excess power production like abundant solar energy
storage in the form of electricity during the daytime, and then
convert the fuel back to electricity when the grid needs to
support the large electricity requirement. One of the unique
characteristics of SEMR is its possibility to operate under
transient load conditions over a broad range of feed gas
compositions while maintaining faradaic efficiency of nearly
100%, which renders this particularly suitable in future
scenarios of intermittent availability of renewables.”” The
transfer of O /H" through the solid membrane is essential for
the function of SEMRs, generating a flux of ions to balance the
electrons which are transferred through the external circuit,

Reactant: H,/H, 0/CO,/CO/CH,/N,/NOx/Alkane
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Fig.1 The working principle of a SEMR for versatile energy, chemical, and environmental applications.
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and either oxidize or reduce the reactant to produce fuels or
value-added chemicals.

The increasing availability and affordability of renewable
energy, mostly from solar and wind sources, has a large impact
on the industrial process and transport sectors, which makes
electrification and de-carbonization of the chemical industry
reasonable and affordable.® In this context, advanced technol-
ogies for energy storage, transportation, and direct conversion
of electricity into chemical products are required. SOCs or
SEMRSs, enabling interconversion between chemical energy and
electrical energy, can be therefore seamlessly integrated to
overcome the challenges associated with the intermittent
nature of renewable energy, combined with downstream
chemical processes to produce various liquid fuels, rendering it
a highly capable all-rounder.>>**

The SOC is more than a simple power source or electrolysis
device. The high operation temperature together with the closed
electrode chamber with the catalyst turns the SOC into an ideal
chemical reactor or SEMR. Various reaction parameters, such as
gas atmosphere, conversion, and selectivity can easily be tuned
by adjusting the operational mode, temperature, potential bias,
and so on. This provides an attractive advantage compared to
thermal and other conversion reactors. Moreover, such
a unique characteristic may encourage the possibility of

Fig. 2 A schematic illustration of outlining the focus of this work.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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chemical-electrical coupling in SEMRs and open alternative
avenues toward electrocatalytic synthesis of chemicals at higher
temperatures.” SEMRs have been employed in many important
chemical processes,***"***” as follows:

(1) Highly efficient generation of green hydrogen through
water electrolysis using renewable power sources or electricity
through fuel oxidation

(2) Direct splitting of CO, to produce CO fuel and O, for de-
carbonization and neutrality purposes space exploration

(3) Combining H,O0 electrolysis or H,0/CO, co-electrolysis to
yield advanced alkanes

(4) Steam or dry-reforming or partial oxidation of hydrocar-
bons to form compositionally well-controllable syngas

(5) Oxidative coupling of methane (OCM) to form alkanes,
olefins and even arenes

(6) Ammonia NH;/oxynitride
technology

(7) Oxidative and non-oxidative dehydrogenation of alkanes,
olefins and even arenes

(8) Gas separation for a highly purified gas product

(9) Power and chemical co-generation

(10) High temperature metal-air batteries

(11) Direct carbon fuel cells

synthesis and de-NO,

Chem. Sci., 2025, 16, 6620-6687 | 6623
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(12) Many other integrated processes such as combined
electrolysis with F-T synthesis in one step or one device...

Even though the water electrolysis cell using a SEMR was
reported already in 1968,?® limited interest was shown due to
the insufficient performance. However, since the pioneering
work in 1979,* there has been huge research progress on
SEMRs for versatile chemical processes. Many excellent studies,
review papers, and monographs that report, discuss, and
analyze the applications and understand SEMR processes were
reported. A broad range of aspects concerning fundamental
operating principles and the applications of these solid-state
electrolytes and these types of reactors in heterogeneous catal-
ysis and chemical cogeneration (chemical products and energy)
have well been documented.**** However, most of the previous
work focus on particular aspects of the fields like CO,, H,O, and
H,0/CO, co-electrolysis**** methane coupling to produce C,
hydrocarbon®**33%37-3% or two wide coverage,””**** and needed
significant literature update®-**** since considerable progress
has been made in the last decades with the positive evolution of
the key electrolyte material,>*>*® and catalyst/electrode
components,*” the cell geometries from typical construction
from SOC with dense electrolyte and porous anode and cathode
(alternative functional layer on/in electrode even porous elec-
trolyte based),**** never mentioned the progress in the system
combined operation and coupling/integration.*** Therefore,
a timely and comprehensive review of the solid electrolyte
membrane is needed.

Membrane reactors operating at low temperatures (300 °C)
will not be discussed in this article. The focus will be on
membrane reactors operating at a temperature between 300 and
800 °C because the majority of industrially important catalytic
processes occur in this temperature range with favorable reac-
tion thermodynamics and kinetics. The present work refers to
SEMR-related scientific fields such as electrochemistry, mate-
rials science and technology, chemical reaction engineering,
solid-state physics, and heterogeneous catalysis as well as
calculation/quantum chemistry. The aim of the present review
is not only to provide a survey of relevant studies but also to
present the characteristic features, methods, and techniques
used in this class of reactors. Hence a classification of SEMRs
based on different ionic conductors (0*>~, H', mixed O*>~ and
H", carbonate ionic composite conductor) and working modes
(fuel cell or electrolysis, pumping or extracting mode) is pre-
sented, with case study demonstrations (Fig. 2). Discussion is
moved from the typical reactions based on different ionic
conductors to SEMRs with featured multi-functionality and/or
specific geometrics. A particular section on the use of SEMR for
gas separation is also highlighted using the specific properties
of the solid electrolyte materials. The system and device inte-
gration or coupling or process intensification with SEMRs is
also included. In addition, a typical phenomenon or an addi-
tional functionality regarding SEMRs, ie., electrochemical
promotion of catalysis (EPOC) effect is also included to high-
light the fundamentals of accelerated reaction rate under the
electrical/thermal coupling conditions. Finally, the conclusion
and future outlook of this interesting yet important field are

6624 | Chem. Sci, 2025, 16, 6620-6687
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made and recommendation of those reactors for industrial
application purposes is suggested.

3. Advances and challenges of SEMRs
with various ionic conductors

Similar to the SOC, the types and compositions of the ionically
conductive electrolytes in the SEMRs play key roles in reactor
temperature, electrode/catalyst materials, detailed reactor clas-
sification, as well as reactor thermodynamics and kinetics. To
ensure high faradaic efficiency, the ionic transport number of
electrolytes should be close to unity and remain stable under
operational conditions such as a harsh reducing atmosphere
and high applied voltage, under which a number of electrolyte
materials, such as the partially electron-conductive doped ceria
electrolyte, cannot be employed even in a low temperature
range. Currently, the typical oxygen ionic conductor is still the
state-of-the-art yttrium-stabilized zirconia (YSZ). However, the
high activation energy of ionic conduction requires an oper-
ating temperature above 700 °C. High temperature results in
high reaction kinetics and favorable thermodynamics in the
electrolysis mode. However, it also results in a deep reaction to
produce untargeted chemicals, and the quick degradation of
reactor performance due to cell component instability, incom-
patibility, and mechanical property issues. To reduce the
reactor temperature, LaGaOj; electrolytes typically doped with
strontium and magnesium (denoted as LSGM), proton
conductive BaCeOs, and BaZrO; perovskite oxide and their solid
solution state are developed. Particularly, proton conduction
not only reduces the reactor temperature but also widely
expands the reactor diversity, with the non-oxidative dehydro-
genation of alkanes to olefins as a typical example.> In addi-
tion, the mixed conduction of the Ba(Zr,Ce)O; material is also
used for functional purposes,* like coke removal*” and double-
chamber hybrid electrolysis.*® In this section, the discussion
will be on SEMRs with different ionic conductors and opera-
tional modes, like pumping and extractor modes.>” A typical
example will be given to show the advances.

3.1 SEMRs with oxygen ionic conductors

3.1.1 Oxygen extraction/electrolysis reactors. In the
extractor mode, the oxygen atom in the gaseous oxygen-con-
taining reactants such as H,0 and CO, will be extracted leaving
behind valuable H,, CO, their mixed compounds like syngas, as
well as the upgraded electrochemical products like CHy,
CH,;0H, and NH;. From the aspect of cell voltage, a potential or
additional electrical energy is required and applied to the
reactor to decompose the aforementioned chemicals, which
leads to the storage of electrical energy in chemical molecules.
Among these, green H, electrolysis products from water using
renewable electricity are now considered as a key strategy to
reduce carbon emissions, while CO from CO, is also considered
important for carbon-neutral cycling or feedstock for chemical
industry. A mixture of H,/CO is a typical composition for syngas,
which is also an important feedstock for fuel upgradation for
the production of specialty and commodity chemicals, like

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Table 1 Comparison of different electrochemical/photocatalytic CO, utilization/conversion technologies

SEMRs In aqueous electrolytes Photocatalytic reduction
Energy consumption Low High Low, sustainable
Conversion rates Quick Voltage dependent Slow rate
Slow rate

Product selectivity
Others

Sole product CO

High faradaic efficiency
Good stability

High energy efficiency

alkanes, alkenes, and their oxygenated derivatives. There are
already commercial plants that produce H, in the electrolysis,
although most of them are based on low temperature processes
with alkaline solutions or PEM systems.*® Meanwhile, SEMR
plants with SOECs have attracted increased attention because of
their high efficiency in converting electricity into fuels and
chemicals using renewable electrical energy and quick devel-
opment of materials, cell structure, cell fabrication technology
evolution as well as increased capability to operate SOC devices
reversibly with a good round-trip efficiency.***® Such reactors
can use high operating temperatures to maximize electrical
energy efficiency. In the SOEC, the oxygen ions are transported
from the cathode across the electrolyte membrane to the anode,
where they can be again used for other purposes, like hydro-
carbon fuel auto-thermal reforming or partial oxidation.
However, we would prefer to describe this kind of process as
oxygen-pumping mode. At the cathode side, where the elec-
trolysis reaction occurs, 0>~ is electrochemically extracted from
gaseous oxygen-containing molecules under an externally
applied potential.**

3.1.1.1 Water electrolysis for green hydrogen production. In
terms of excellent electrical efficiency and decoupling direct
reaction process by electrolyte, and direct adaptation of SOC
devices with improved reliability®>** and efficiency,® green
hydrogen generation based on SOECs is already entering the
market. There are already a lot of excellent experimental studies
and reviews to cover information on SOECs including steam
electrolysis thermodynamics, SOEC electrolyte/electrode mate-
rial/catalyst development, electrode structure design, cell
fabrication technology, reaction kinetics/mechanism, as well as
cell durability for long-term operation.®***>¢%%-7* The longest
steam electrolysis operational time based on SOEC is 23 000 h
(reaching the targeted period) using Ni-GDC/6Sc1CeSZ/GDC/
LSCF cells with a voltage degradation rate of 0.57%/1000 h
based on a 45 cm” cell study at 0.9 A cm 2% The current
research interests focus on the performance and durability
improvement for commercial applications including the anode
Ni-based cermet electrode's redox and poisoning issue and the
anode/electrolyte interface delamination issue® due to the high
oxygen concentration and aggregation in this area. Strategies
such as the application of mixed ionically and electronically
conductive electrode materials,** especially for materials with
high oxygen capacity,”>”® and modification of cell electrode
microstructure, like using transitional functional layers™ or

© 2025 The Author(s). Published by the Royal Society of Chemistry

Rich products like CO/CH,/CH;0H/C,HsOH...

Poor energy efficiency Poor energy efficiency
Low yield Insufficient stability
Insufficient stability

straight pores’ and the smart strategy of reversible operation
between fuel cells and electrolysis mode” have been proposed
to alleviate these issues.

3.1.1.2 CO, utilization. Similar to steam electrolysis, exten-
sive studies on the efficient reduction and conversion of CO,
using SOECs were reported in the literature.” These include,
e.g., the pioneering work on CO, electrolysis with SOECs for use
on Mars to produce O, for life-support.”” As a notorious green-
house gas, its utilization and conversion to valuable chemicals
are considered the most crucial approach to realizing carbon
neutrality.>® In this context, the industrial generation of carbon-
based molecules—such as drugs, commodities, and polymers,
in addition to chemical fuels—from CO, is subject to intense
research using different conversion technologies including
SEMRSs, electrochemical reduction in aqueous solution, and
photocatalytic reduction (Table 1), among which electro-
chemical reduction using SEMRs shows the most promising
characteristics like low energy consumption, quick reaction,
high Faraday efficiency, and energy efficiency, even though its
product is only CO because of the thermodynamic limita-
tion.””® CO, reduction in the cathode of an O-SOEC generally
follows three steps:**** (1) adsorption of CO, on the surface of
the electrocatalyst with lattice oxygen ions and formation of
carbonate species or with an oxygen vacancy to form bicar-
bonate intermediates, (2) decomposition of the intermediates
by electrons in sequence, which is normally considered as the
overall rate-determining step, and (3) desorption of the CO
molecule. However, the exact reduction process is highly
dependent on the applied catalyst, for example, for a ceria-
based cathode electrocatalyst, Ce*"’*" participates in all the
elementary steps of CO, reduction.®® Generally, CO is the ther-
modynamically favored product for CO, reduction at elevated
temperatures. Recently, there has also been interest in adopting
PCECs for CO, reduction, in which CO, acts as the precursor to
react with H' or H, at the electrode/electrolyte interface yielded
by steam electrolysis at the cathode and transported through
the electrolyte layer. Under such conditions, CO, could be
electrochemically or thermally activated at the cathode to
produce CO or upgrade to interesting low-carbon hydrocarbon
fuels.®® It should be mentioned that different from H,O split-
ting, CO, reduction should overcome a larger energy barrier
(750 kJ mol™ ) because of the large C=O binding energy.
Moreover, CO, is a linear molecule; combined with its larger
molecular volume, its diffusion, adsorption, and activation
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attract particular attention and require higher energy input and
higher reduction temperature. Therefore, direct CO, electro-
reduction in SOECs normally works above 700 °C. Under such
harsh conditions, only stabilized zirconia and doped LaGaOj;
can be used, while ceria is normally used as a functional layer to
overcome chemical compatibility, and electrode active species
to increase the triple-phase boundary to improve reaction
kinetics.

Considerable attention has been paid to the development of
active cathode electrocatalysts to replace Ni, an active but fragile
catalyst.®® Alternative cathodes are related to perovskite
oxides, a series of compositionally and structurally flexible
complex oxides, because of the phase durability and high
resistance toward the thermodynamically favored carbon
deposition issue. However, their bulk CO, reduction activity is
far way inferior to the Ni-based cathode. Therefore, current
efforts focus on modifying the perovskite oxide through doping,
constructing a hybrid catalyst, and optimizing the microstruc-
ture to adjust the electronic structure and increase the electrode
adsorption capability, the active site, and reduce the gas diffu-
sion barrier. For example, Xi et al.*® reported that replacing Mo
with Mg in Sr,FeMoOg_; not only improved the electrode redox
stability but also enhanced the electrolysis efficiency by 100%.
The improved cell performance was ascribed to the reduced
formation energy of oxygen vacancies induced by reduced d-p
band coupling which is believed to be caused by the shortage of
d electrons of the Mg element. In other words, the electronic
structure of the active transition metal is modified by the
doping approach which favors the CO, reduction rate-deter-
mining step, the activation, and the dissociation step. The same
group also demonstrated that a proper increase of the Fe and
Mo ratio in the same Sr,FeMoOg_; double perovskite led to
exceptional CO, reduction activity, comparable to the state-of-
the-art Ni-based electrode. They confirmed that the Fe-ion
oxidation state increases with a slight increase of Fe element
that favors the metal-oxygen hybridization and shifts its bulk O
p band energy toward the Fermi level. Such electronic structure
variation reduces the O-vacancy formation and migration
energy, resulting in more oxygen vacancy defects and favoring O
ion transport, promoting the catalytic reaction kinetics.**
Different from the above cation replacement method, anion
doping is also demonstrated to favor CO, adsorption and acti-
vation. For example, the replacement of O with F ions could
reduce the CO, reduction electrode area polarization resistance
from 1.130 to 0.656 Q cm® at 800 °C.”? Such improved electro-
chemical performance is induced by the increased surface
reaction rate constant and bulk diffusion coefficient by factors
of 2-3 as reflected by the approximately doubly increased CO,
adsorption capability, plus 35-37% oxygen vacancy concentra-
tion. A more interesting work reported adopted a single-site
anchored perovskite electrocatalyst for CO, reduction in SOECs
for the first time.** Through compositional control of the
content of Pd raw materials, Pd single-site perovskite oxide
materials instead of homogeneously doping are formed by
a simple mechanical mixing and pyrolysis. The single site
enables structurally Pd coordinative unsaturation, which results
in plenty of oxygen vacancies. The latter facilitates CO,
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dissociative adsorption, electron transfer, and mass transport,
thus leading to improved CO, electrolysis performance.
Doping generally leads to elevating the elementary reaction
rate of the CO, reduction reaction. However, with the single-
phase perovskite cathode, the final performance is limited by
the bulk properties of perovskite oxide. The low electrical
conductivity under the cathode atmosphere and the limited
surface area and catalytic activity normally lead to insufficient
activity. A common method is to prepare hybrid catalysts for
CO, reduction reactions. For example, a composite material
containing (Lag 755T0.25)0.07Cl0.sMny 503 (LSCM) and Ceg ¢
Mn, ;Fe; 0, (CMF) was prepared using a simple mechanical
mixing method and applied as a cathode on LSGM for CO,
reduction.” The targeted SOECs show excellent CO, reduction
performance of 2.64 A cm > at 1123 K and applied voltages of
1.5 Vin a 50% CO,/50% CO atmosphere, which is the ever-best
single-cell performance reported in the literature. The much-
improved CO, reduction activity is ascribed to the enhanced
CO, adsorption ability, surface oxidant catalytic activity, and
electrocatalytic activity induced by Fe and Mn-doped ceria. It
should be noted that singly doping Mn or Fe into ceria has
limited solid solution capability. On the other hand, co-doping
can unexpectedly increase the solid solution content, up to 40%
in this case, which significantly changes the material's chemical
and physical properties, leading to exceptional performance in
this work. Besides the mechanical mixing to form the hybrid
catalyst, recent self-assembly including exsolution methods also
showed promising performance in SOECs for CO,
reduction.”®*** For example, recent work reported adopting the
self-assembly method to prepare Pr(Ca)Fe(Ni)O;_; perovskite
and Ca,Fe,Os5 brownmillerite dual-phase composite in
a nominal perovskite phase of Pr,,Ca, gFeq gNig,03_s for CO,
reduction.'” The Ca,Fe,Os in the double-phase material with
a large highly ordered oxygen vacancy concentration is used to
adsorb CO, while the perovskite oxide functions as the catalyst
for CO, dissociation. The composite cathode with a synergistic
effect has led to improved CO, reduction performance.
Recently, a redox exsolution strategy has been widely used for
CO, reduction in SOECs. The exsolution led to a well-manipu-
lated nanoscale metal/oxide interface with enriched oxygen
vacancy for CO, high temperature adsorption and conversion.
Xie et al'®' reported that the decomposition of oxide
precursors Ni/Nb, 33(Tio.sMo.2)0.6704 (M = Mn, Cr) yielded redox
MnO, with large oxygen vacancy concentration and Ni/Cu metal
or alloy on ceria/CrO, which are active for CO, reduction. The
strongly anchored functional phase and oxygen vacancy at the
interfaces not only improve the electrolysis performance but
also lead to better durability under the redox cycle and long-
term operation. Another exsolution example is the preparation
of active metal or alloy nanoparticles on phase structural redox
stable perovskite oxides. The metal/oxide interface formed by
exsolving CoFe or RuFe alloy on the parent perovskite oxide can
significantly improve the CO, electrolysis performance through
enhanced adsorption and activation under SOEC condi-
tions.?”**% They also observed in situ the atomic scale exsolu-
tion of metal nanoparticles in the order of Co ions, Fe ions, and
the final CoFe alloy nanoparticles using STEM. Moreover, the
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CO, reduction reaction performance can be retrieved during 12
redox cycles. More recently, considering the sluggish diffusion
process of dopant cations and limited driving force for metal/
alloy nanoparticle exsolution, they proposed to promote the
exsolution of RuFe alloy nanoparticles via repeated redox
operation which enriches the Ru ions underneath the perov-
skite oxide surface. With the repeated redox operation, more
RuFe nanoparticles aggregated and resulted in 74.6% current
density improvement as well as 1000 h durability at 1.2 V and
800 °C. Both the suggested exsolution method and in situ
exsolution process observation are important steps for under-
standing and application of this promising technology. A
similar study demonstrated that the exsolved metal/alloy
nanoparticles on an oxide parent showed higher performance
and electrolysis durability than the infiltrated one with a similar
composition and operational conditions.'*® When used as the
cathode for SOECs, NiFe nanoparticles exsolved (Lagys-
Sro.25)0.95Clo.5F€0.35Ni0.1505_5 (LSCrF as), NiFe infiltrated LSCrF
and the one without any nanoparticles showed the corre-
sponding current densities of 1.15, 0.8 and 0.59 A cm ™ > at 800 ©
C and 1.5 V, and the former showed a degradation rate of
0.012% h™" during a tested period of 260 h while the interme-
diate one degraded in a rate of 0.15% h™" in 26 h due to the
severe agglomeration of the infiltrated nanoalloy, suggesting
the nanoparticle exsolved LSCrF as promising cathode material
for efficient CO, utilization.

Apart from the development of active and reliable cathode
materials for CO, reduction, electrode microstructure optimi-
zation in SEMRs is also an important approach to improving
cell performance and durability by increasing gas diffusion and
exposing more active sites for CO, reaction.”'*”'*® For example,
microchannel structural cathode-supported SOECs were con-
structed for CO, reduction.*®” The microchannel not only allows
quick CO, gas diffusion, reducing the concentration polariza-
tion but also facilitates high-content catalyst loading and
distribution. The SOEC based on deposited Sr,Fe; sM0, 5065
(SFM) cathode showed an electrode polarization resistance of
0.25 Q cm” and a current density of 1.1 Acm ™ > at 1.5 V in the dry
CO, without safety gas as well as promising stability; these
performances reached the highest level at that time.

Much progress has been made in SOECs for CO, reduction.
However, the research and applications still lag behind steam
electrolysis. Many perovskite oxide cathodes have already
demonstrated comparable performance to the Ni-based cermet
electrode. Moreover, the current CO, reduction in SOECs is still
limited to high-temperature operation (=700 °C), to maintain
sufficient current output, and an intrinsic large electrical input,
which make the conditions severe for system stability for
practical applications. A reduction of the operational tempera-
ture to 300-600 °C will benefit the system stability, involve low
investment, as well as extend the product range, and not just
limit to CO at the elevated temperature.*®

3.1.1.3 CO,/H,0 co-electrolysis

3.1.1.3.1 Compositionally tailor-made syngas by co-electrol-
ysis. Syngas is an important feedstock for various important
industrial applications. Since SOECs can reduce both steam and
CO,, the co-electrolysis of H,O and CO, to obtain syngas has

© 2025 The Author(s). Published by the Royal Society of Chemistry
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received increased attention in recent years.®’®'* Generally,
under the SOEC conditions, both the water splitting and CO,
reduction reaction take place, and the water-splitting rate is
considerably quicker than that of CO, reduction due to the low
activation energy barrier and consequent higher kinetics,"'**"*
which leads to the advantage of low thermo-neutral voltage, i.e.,
lower electrical consumption. For example, Torrell et al.'*® re-
ported that with H, safety gas, the electrolysis current densities
at 1.7 V with pure steam and with H,O : CO, ratios of 1:1 were
750 and 620 mA cm . This suggested that the main reaction in
the mixed gas is steam electrolysis. However, the presence of the
reverse water shift reaction (RWSR): CO, + H, = =CO + H,0
(AH,og = 41 kJ mol ") at the elevated temperature makes the
final gas composition complex. In other words, both the elec-
trochemical and thermal-catalysis processes contribute to the
final products. Workable strategies to improve the individual
CO, electrolysis rate with the H,O/CO, mixed inlet gas are
highly desirable. Either the application of a higher electrical
field"* or improving the operating temperature* was sug-
gested to boost CO, electrolysis performance by considering the
high energy barrier of CO, activation. Differently, recent work
reported that a BaCO; nanoparticle infiltrated Ni-YSZ fuel
electrode improved the electrolysis performances of SOECs with
H,0, CO,, and H,0-CO, inlet gas, respectively, because of the
enhanced surface charge transfer process, while it degrades the
SOFC performance.'? The highest improvement is achieved in
CO, reduction, which largely contributes to the improved
chemical adsorption of CO, with BaCO; infiltration.

Syngas with a controllable (diverse ratio range) or ideal
composition that favors downstream applications like the
Fischer-Tropsch (F-T) process to synthetic fuel production at
an H,/CO ratio of 2 : 1 is preferred. To reduce the RWSR process,
co-electrolysis without safety gases like H, and CO is preferred.
This can be achieved by using non-metal-based fuel electro-
catalysts that do not require safety gases,'”"*° even the state-of-
the-art Ni-cermet electrodes could be electrochemically reduced
and activated.'** For example, syngas with an H,/CO ratio close
to 2 can be obtained from an efficient 20% CO,-80% H,O
electrolysis without a safety gas on an Sr,Fe; sM0,50s nano-
structure infiltrated YSZ scaffold with a finger channel and
a modified phase-inversion tape-casting method.””” Such
a nanostructure electrode also can directly use CO, as the fuel,
yielding a current density of 1.1 A cm 2 at 1.5 V at 800 °C,
comparable to a Ni-based cermet electrode. Another work
proposed adjusting appropriate inlet gas fraction, temperature,
and electrolysis current to obtain a controllable H,/CO ratio of
approximately 2 in a symmetric SOEC using the same electrode
materials as the above case for H,0/CO, co-electrolysis."** With
an appropriate H,/CO ratio, the upgradation to synthetic fuel
will be facilitated in the commercialized F-T plants.

3.1.1.3.2 In situ methanation using O-SOECs with a higher
round-trip efficiency. Another important reason to develop co-
electrolysis technology is its capability to produce higher
hydrocarbon fuels like CH, accompanied by the electrolysis
process in the one-step pathway, instead of first producing
syngas that is then processed downstream into chemicals.
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Compared with syngas, one step pathway to hydrocarbon fuel
can store renewable power sources in higher energy density and
use the existing infrastructure such as natural gas pipelines and
end-use appliances."*® Generally, the methanation process was
taken placed through the following reactions: CO + 3H, = =
CH, + H,0 (AH95 = —206 k] mol ') and CO, + 4H, = =CH, +
2H,0 (AH,5 = —165 k] mol ) with the obtained syngas from
H,0/CO, co-electrolysis. The second reaction is also known as
the Sabatier reaction. Therefore, the methanation reaction does
not require the reduction of CO,, which can reduce significant
energy. Instead, according to the literature, compared with the
co-electrolysis in SOECs to obtain syngas and then integrating
with the F-T process to produce synthetic fuel, the one-step
process has multiple benefits:""”**® (1) the energy utilization
efficiency can be significantly improved in the one step process
since it balances the heat in situ between the exothermic
methane production reaction and the endothermic H,O/CO,
electrolysis reaction in a single device. Taking H,O electrolysis
to obtain H, and then combining with CO, to produce CH, as
an example, the thermodynamic maximum round-trip effi-
ciency of H,O electrolysis is around 76% at 800 °C, which is
already much lower than that required for direct CH, synthesis,
both under the thermal neutral conditions; (2) reduced indus-
trial facilities, free-from the F-T process and the corresponding
instruments and investment; (3) improvement in system reli-
ability. Moreover, this process could be economically competi-
tive with the biomass-to-liquid process if the provided electricity
is from nuclear power and surplus renewable power.'****°

The methanation process through the co-electrolysis tech-
nology has been widely investigated using the O-SOEC, in which
CO, and H,0 are co-fed into the cathode chamber, and the O
element is extracted to form O®> which is then transported
through the electrolyte layer to the anode layer, where it is
released electrons and moved to the cathode through an
external circuit, forming O, gas. In the cathode chamber, CO
and H, are produced which can react with the remaining H,O
and CO through the above equation to produce methane under
an electric field or thermal-catalysis conditions. It was initially
proposed by NASA in the manned space colonization on Mars to
convert the Martian CO, atmosphere and H,O into methane
fuel and build a astronaut life-support system. CO, hydroge-
nation is first carried out using the YSZ solid electrolyte and Rh
electrode in the configuration of a single-chamber
reactor.'®'***?> 1t is found that both CO and CH, were produced
at temperatures of 346-477 °C and their yield rates have an
inverse relationship with each other with the application
potential, ie., the rates of CH, were enhanced with positive
potentials while the rate of CO formation with negative poten-
tials,*** suggesting different electrochemical promotion effects.
Later work developed a monolithic SOC (Rh/YSZ/Pt or Cu/TiO,/
YSZ/Au) reactor to investigate the hydrogenation of CO, at
atmospheric pressure.'” For the former cell, it is found that the
selectivity of CH, can reach 12%, while in the case of Cu/TiO,/
YSZ/Au cells, the selectivity of CH, could reach ~100% under
open-circuit polarization conditions at temperatures of 220-380
°C. Those pioneering research studies highlighted the
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important roles of cell structure design and electrode catalyst
selection.

It should be noted that the H,O or CO, electrolysis reaction
preferably takes place at the elevated temperature with high
reaction kinetics, while the exothermic methanation reaction is
more favored at the reduced temperature of recommended
value of 300-500 °C. The mismatch in temperature makes the
heat balance of those two reactions quite difficult. In 2010,
Bierschenk et al."*® experimentally observed that methane-con-
taining fuels are produced during electrolysis operation, which
decreased the thermal-neutral voltage (SOEC applied voltage)
and thereby allowed improved round-trip storage efficiency.
They observed that the CH, yields are more favorable at reduced
temperature (~600 °C), enabled by the LSGM electrolyte to
replace the conventional YSZ electrolyte, and/or increased
pressure (~10 atm) based on their thermodynamic calculations
and preliminary experimental analysis. The obtained CH, yield
can be improved from trace to 14.3% with the reduction of
SOEC operational temperature from 750 °C to 600 °C based on
the same material system, and it can be further improved to
26.7% by properly applying the operational pressure. This
opened a new avenue for methanation R & D. Almost at the
same time, Xie et al.'** reported the use of a novel Fe-La, -
Sr¢TiO; fuel electrode for direct synthesis of methane by
combining the co-electrolysis of CO,-H,O in an oxygen-ion
conducting SOEC and in situ Fischer-Tropsch-type synthesis in
a synchronous process. A CH, rate of 0.0047 mL min ' with
a faradaic yield of 2.8% at 650 °C with a feedstock of 2 mL per
min H,0 and 1 mL per min CO, were obtained. The methana-
tion yield is limited by the heterogeneous catalysis process
which is against the thermodynamic behavior. Following these
pioneering studies, Chen et al.*** smartly designed long enough
tubular cells with two distinct temperature zones: one for H,O-
CO, co-electrolysis at elevated temperature with a high
conversion rate and one for the F-T synthesis process at the
reduced temperature (down to 250 °C) for the one-step metha-
nation reaction through co-electrolysis (Fig. 3c). The yield of
CH, was substantially improved to 11.84% and an overall CO,
conversion ratio of 64.1% at atmospheric pressure. Based on
a similar cell design, an increased CH, yield of 23.1% was
demonstrated by optimizing the H: C ratio in the inlet gas by
adding H, into the cathode chamber with H,0-CO, mixed
gas.” However, the split-zone approach engenders thermo-
mechanical stress to the super-long cell and delicate electro-
ceramic cell components and brings reliability concerns. A
combination of efficient co-electrolysis and the F-T process at
the reduced temperature is preferred.

Further work tried to improve CH, yield through reducing
temperature and the addition of H, gas."*® It was observed that
without the H, gas, the CH, yield increased negligibly from OCV
to the applied voltage of 1.5 V, while with the 20% H, fed into
the cathode, a clear increase of the CH, yield by 3-4% is
observed at 550 °C. With the application of the higher ionic
conductive ScSZ electrolyte layer and Ni-YSZ cathode catalyst,
a maximum CH, yield of 9.94% was achieved. Based on the two-
dimensional multiscale electro-thermal tubular SOEC model
calculation with parameter optimization on the materials, flow
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modes, and operating conditions, the CH, production ratio can
be improved from 13% to 50% at 550 °C and 1.3 V for the same
inlet gas composition, even though the temperature is consid-
ered still too high to obtain acceptable CO, to CH, yield.
Furthermore, the applied model calculation results revealed
that the H,0/CO, co-electrolysis and methanation reactions can
be simultaneously enhanced by feeding a cold gas in counter-
flow mode and under pressurized conditions. At 29 bar, the
tubular LSGM-based SOEC could realize a conversion ratio of
98.7% and an electricity-to-gas efficiency of 94.5% in the
thermal neutral mode.”” Such a theoretical calculation sug-
gested that developing methane-integrated SOECs operating at
300-600 °C can efficiently convert CO,/H,0 into more valuable
chemicals, which will be a new research direction in the future.
However, the concept of in situ methanations in SOECs is still at
a nascent stage and requires signhificant advancements in SOEC
materials, F-T catalysts, and cell/reactor geometric design,
along with optimization of cell operating conditions (tempera-
ture, pressure, and applied potential) to maximize CH, yield
below 550 °C. Another interesting but important branch for the
one-step methanation process is realized by the PCECs due to
the superior proton conductivity at low temperatures that are
crucial to realizing high reaction kinetics and CH, yields, which
will be discussed later.

3.1.1.3.3 Fuel-assisted electrolysis (FAE). Under electrolysis
conditions, though the major voltage loss is mainly ascribed to
the electrode polarization resistance of the fuel reduction
reaction for both steam and CO, electrolysis, the polarization
loss for the oxygen evolution reaction (OER) in the anode
chamber should not be ignored. In the initial study, the OER
was used to prepare oxygen sources for life support in space. It
can be employed in further applications considering the high
value-added pure and fresh O, and provides the opportunity for
process intensification. An important application is reforming
CH, or other less purified/valuable solid fuels like carbon®****
and coal;**° gaseous fuels such as CO,"* natural gas,"*>'** and

© 2025 The Author(s). Published by the Royal Society of Chemistry

biofuel & biomass*** were also used to obtain syngas feedstock
or achieve chemical upgradation, besides the hydrocarbon fuel.
This comprises an important and hot research topic, fuel-
assisted electrolysis (FAE). A distinguishing characteristic of
FAE is its strong coupling of the endothermic electrolysis
reaction with the exothermic fuel reforming or upgradation
reaction, and the uphill potential barrier for the OER is also
avoided, which has consequently led to significantly reduced
electrical power input (both cell voltage and electricity are
reduced) while increasing the production of valuable gases.
Moreover, with the increase in temperature to a certain point,
such an FAE device can be turned into a combined chemical
and power co-generation device."*® According to the one-
dimensional elementary reaction kinetic model analysis,"* the
CO-assisted steam electrolysis cell could save 80% of electricity
and produce better steam electrolysis performance. It was also
found that the assisted electrolysis cell based on different fuels
showed different anode polarization behaviors. Another study
even proposed that such a cell can be operated at room
temperature and can realize a higher hydrogen generation rate,
suggesting promising application in wide cell temperature
windows for chemical and power generation with low carbon
emission advantage.'*® Although the overall reaction of the FAE
process is the same as that for fuel steam/CO, reforming, it is
more advantageous to perform such a process by an electrical-
to-chemical energy conversion route based on the solid elec-
trolyte membrane reactor, which is promising to serve as a load
lever for energy storage between renewable electricity and fuel.
In addition, FAE can be implemented as distributed syngas
generator under atmospheric pressure, which is different from
traditional reforming reactor that typically operates as a large
chemical plant in pressurized operation.

3.1.1.3.3.1. Solid carbon/coal-assisted electrolysis reaction.
In 1979, carbon-assisted electrolysis of water was first reported
at room temperature in a H,SO, electrolyte solution,* showing
that the  carbon-assisted process only required
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a thermodynamic energy of about 9.5 kcal and a reversible
potential of only 0.21 V to take place. The coal provided the
additional electron required for H,O splitting and consequently
CO generation. Moreover, the authors hinted at a more rapid
and steadier oxidation rate at the temperature range of 200-600
°C. A more recent study demonstrated that a steam-carbon
electrochemical cell with YSZ as an electrolyte and Pt as an
electrode can produce carbon-free hydrogen and positive OCV
at the temperature of 800-900 °C under a carbon/(H,O0-H,)
atmosphere.” The higher the H,O concentration in the
cathode chamber, the larger the cell potential. At a negative
voltage of 0.6 V, the electrolysis current density could reach 17
mA cm 2. Lei et al.*® also reported a carbon-assisted CO,~H,0
co-electrolysis cell using LSGM-supported SOECs. The thermo-
dynamic calculation and experimental results (Fig. 4) demon-
strated that the co-electrolysis potential can be reduced by
about 1 V by adding carbon to the anode, and the electricity
input can be reduced to less than 10% of that without carbon.
For example, a potential of 1.5 V is required to reach an elec-
trolysis current density of 1.2 A cm ™ without carbon fuel, while
itis reduced to 0.8 V with carbon (Fig. 4c). It was also found that
CO was mainly formed through a so-called “CO shuttle”
mechanism: simultaneous production of CO on the anode and
syngas CO/H, on the cathode side through the well-known
Boudouard reaction (C + CO, = 2CO) at elevated temperatures
(Fig. 4d). Moreover, as seen in Fig. 4b, the theoretical electrical
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demand (AG) decreases with increase in temperature. When the
temperature is higher than 900 K, AG becomes a negative value,
that is, carbon reacts with H,O to produce CO, and H,, spon-
taneously. Such an integration of carbon gasification and
SOECs provides a promising method for the efficient storage of
renewable electricity using coal/biomass and CO,/H,O, and
producing clean fuel.

Another interesting study attempted to mitigate the large
polarization resistance of H,O electro-splitting using the
carbon-assisted method.** Different from the above approach,
they first decomposed CH, in the anode compartment to H, and
carbon under OCV conditions; the deposited carbon penetrated
the porous Pt/YSZ electrode and had intimate contact with the
electrode catalyst, which is different from that of the conven-
tional design where carbon fuel is on the top of the fuel elec-
trode. After the decomposition period, steam is introduced to
the other electrode with the Pt catalyst, which is electrolyzed to
H, and O>~ under the much lower polarization conditions, the
O’ is then moved to the carbon electrode allowing the removal
of the previously deposited carbon and regenerating the Pt/YSZ
electrode. Such a coupling catalysis and electrocatalysis process
enabled efficient H, production (CH, pyrolysis and H,O elec-
trolysis) and cell electrode regeneration with a much lower
energy input compared with the general CH, steam reforming
process. 18 cycles of durable operation of the applied cell
materials and operational mode demonstrated the feasibility of
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Fig. 4 Thermodynamic calculation of the required energy for CO,—-H,O co-electrolysis without (a) and with (b) carbon fuel in the anode, (c)
comparison of the /-V curves of the electrolysis cell, and (d) temperature-dependence of anode outlet gas composition.**® Reproduced with

permission.
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such a novel process and device. Moreover, ethane and ethylene
were observed during the regeneration step because of the
electrocatalytic methane oxidative coupling reaction on the Pt/
YSZ porous catalyst film.

3.1.1.3.3.2. Gaseous chemical-assisted electrolysis. Besides
the solid fuel, gaseous chemicals, like CH,, natural gas, and
biogas with a higher diffusion capability and reactivity are also
used in fuel-assisted SOECs. In 2000, the first kind of patent on
a natural gas-assisted electrolyzer for hydrogen and syngas co-
generation was filed.™® An oxygen ionic conductor is used for
the electrolyte, water is introduced into the cathode chamber
where it is reduced to H,, and the oxygen ions are then trans-
ported through the electrolyte and reach the anode chamber
where they react with the supplied natural gas mainly CH, to
form CO and H,; with further injection of H,O, the gas-steam
shift reaction takes place and converts CO and H,O to CO, and
H,. Moreover, the oxygen transportation rate can be accelerated
by 1-2 orders of magnitude in the presence of a gaseous fuel at
the anode.* The natural gas-assisted process reduced the
electricity input by 65% and concurrently improved the H,
yield. However, such a technology has not received sufficient
attention, probably due to the immature SOFC technology and
the low hydrogen price of the mature technologies. In 2008,
Jiang et al.*** reported adopting a perovskite oxide hollow-fiber
membrane for the simultaneous production of hydrogen and
synthesis gas by combining water splitting with partial oxida-
tion of methane. Pure H, was obtained in the inner tube of the
hollow fiber by H,0O decomposition and the oxygen ion is
transported to the extern of the fiber to react with CH, to
synthesize syngas due to the oxygen partial pressure difference.
In fact, such a reactor is an evolution of the steam-reforming
process setup. However, it showed a much higher H, yield due
to the avoidance of the equilibrium reaction and presented
higher system controllability since the reactants are separated
in the two chambers. Following this work and the increased
attention to the energy crisis, extensive efforts have been made
in the last decade with a focus on the development of novel
electrode materials, like redox stable Sr,Fe; sMo0g 506_s perov-
skite, with high activity and durability and alternative fuels to
intensify the oxygen transport process to reduce the electricity
demand.**'*'** For example, a hybrid catalyst Ru-LSM/YSZ, in
which Ru was used for the oxygen evolution reaction and LSM/
YSZ catalytically oxidized the diluted CH, to form CO/H,, was
developed as a bifunctional anode electrode in a CH,-assisted
CO, electrolyzer.* Such an anode catalyst enables a higher CH,
single pass conversion rate of 75% at only an applied electrol-
ysis current density of 200 mA. Moreover, the products from
each electrode chamber can be collected separately and/or
accurately mixed to prepare compositionally adjustable syngas,
allowing great flexibility for various final products. To further
improve the electrode activity and overcome the potential
carbon deposition issue under the above conditions, a metal/
oxide hybrid was developed through the in situ exsolution
process as a symmetrical electrode catalyst for electrochemical
reforming of CH,/CO, in an SOEC (Fig. 5a-d)."*® A NiCu alloy
was precipitated on the surface of
(Lag.75570.25)0.9(Cro.sMng 5).o(NiyCuy_)o103_s which greatly

© 2025 The Author(s). Published by the Royal Society of Chemistry
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favored the chemical adsorption of CO, (Fig. 5b) and oxidizing
reforming activity of CH,, and the exsolved catalyst with
a nominal composition of NijsCuys gave the optimized
performance. The exsolved NiCu alloy, the in situ formed active
interface (Fig. 5c and d), and the application of CH, in the
anode compartment in FAE reduce the required voltage and the
electrode polarization resistance; a maximum electrolysis
current density of 2.5 A cm™> could be achieved at the applied
voltage of 1.5 V with the introduction of CH, gas into the anode
chamber, which is double that of the electrolysis cell without
the assistance of CH, fuel (Fig. 5e). Moreover, the H,/CO molar
ratio in gas products and the CO,/CH, conversion rate are
highly dependent on the electrode composition, the applied
electrolysis current density as well as the composition of inlet
gas. An optimized ratio of 2 can be obtained by adjusting the
electrode material composition and the cell operational
parameters, accompanying CO,/CH, conversion rate above 90%
(Fig. 5f). The constructed electrochemical reforming cells also
showed stable performance in a 300 h period and were kept
inert for 10 redox cycling tests due to the strong interaction of
the exsolved metal with the perovskite oxide parent.

The in situ exsolution idea was also employed and optimized
for both electrodes in CHy-assisted CO, electrolyzer cells'**
considering that both anode and cathode chambers are in
a reducing atmosphere. Rh nanoparticles with a particle size of
2.1 nm and coverage density of 11 000 um > were precipitated
on the surface by treating under 5% H,/N, and 600 °C for 10 h,
which led to a higher CH, conversion rate by 3.7-13.4% and
gave a molar ratio of 1.8-2.0 for H,/CO. Moreover, such a reactor
can be operated in the power and chemical co-generation mode.
For instance, when the applied voltage is —0.15 V at 850 °C, the
syngas yield is 5.6 mL min~" cm 2, and enables a power density
of 30 mW cm ™ ?; all are remarkably better than that without the
Rh nanoparticle precipitation.

Another interesting work adopted Ni-based quasi-symmet-
rical electrodes for biofuel-assisted water electrolysis."** The
application of biofuel not only increases energy conversion
efficiency but also stores abundant biomass energy into valu-
able fuels. Such an FAE enabled a thermal-neutral operation at
the electrolysis potential of 0.36 V, which is above 1 V lower than
that of the steam electrolysis alone. To facilitate the biofuel,
typically the ethanol, reforming (CH;CH,OH + 3H,0 — 2CO, +
6H,), a channeled anode support was prepared by the mesh-
assisted phase-inversion process and 5 wt% Ru/GDC fibrous
catalysts were loaded into the well-aligned channeled pores. A
recorded high electrolysis current density of 3.0 A cm™> was
obtained at 1.3 V, which were well preserved in 300 h of testing,
and no carbon deposition is observed under the electro-
chemical oxidation conditions, especially with a high O*7/
ethanol ratio at the largely applied electrolysis current density.

3.1.1.3.3.3. Electrolysis in tandem with fuel upgradation. The
extracted oxygen from CO,/H,O splitting is mainly used for the
fuel partial oxidation reforming in the above cases, ie., the
oxygen from H,0/CO, electrolysis is added to the fuels or con-
verted to the oxygenated chemicals (electrolysis in tandem with
fuel upgradation). There is also another typical reactor in which
the fuels are converted to upgraded chemicals in tandem with
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the H,0/CO, electrolysis, such as from oxygenated alkanes to
form alkenes and water. A typical example is the oxidative
coupling of methane (OCM) and oxy-dehydrogenation of an
alkane to an alkene with CO,/H,O electrolysis for producing C,
compounds (ethane and ethene) at an elevated temperature. In
this type of reactor, the cathode activated gaseous H,O/CO, into
0°" species, which permeated through the solid electrolyte;
selective oxidation reactions then take place in the anode with
permeated oxygen species. Integrating the OCM and CO,/H,O
reduction processes in one electrolysis apparatus with full
application of valuable O, and heat management can provide
economic and environmental benefits.! Besides that, the
transportation of oxygen species could help in C-H bond
cleavage in CH, and suppress the carbon deposition issues that
are not achievable by other methods. Therefore, the effective
utilization of methane as a chemical resource has been strongly
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desired and extensive studies have been performed after the
pioneering work by Keller and Bhasin.**” However, it should be
noted that a deep oxidation reaction seems to be a more
favorable route both from the thermodynamic and kinetic
aspects. A key to achieving high C, yields was to control the type
and state of oxygen species™***** for the oxygenation process.
Different approaches like a sequential feed of oxygen and
methane prefer lattice oxygen involved processes using metal
oxide instead of gaseous oxygen and using SEMRs. It has been
demonstrated that the electrochemically permeated oxygen
showed higher activity and selectivity for the production of C,
compounds over other forms.**>™**” For example, the highest C,
yields of 16.7% (11.5% C,H,; + 5.2% C,H¢) and 82.2% C,
selectivity, as well as exceptionally high durability in 100 h
operation for O, electrolysis in conjunction with the OCM
process using an O-SEMR based on the intentionally
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(a) Schematic illustration of the coupling of electrochemical oxidative dehydrogenation of ethane and CO, electrolysis into an SOEC and

TEM image of the LSCF-SDC anode infiltrated with y-Al,Os, and electrochemical performance of SOEC under different operational conditions:
(b) with different anodes at a current of 20 mA and ethane flow rate is 4 mL min~%, (c) at different currents with the ethane flow rate of 4 mL min™
! (d) at different ethane flow rates and a current of 60 mA on the LSCF-SDC + Al,Oz anode and (e) stability test at a current of 20 mA and ethane

flow rate of 4 mL min~1.1% Reproduced with permission.
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constructed Fe-oxide interface in the anode by the exsolution
approach, were reported.*® However, when in conjunction with
the CO, electrolysis, a C, yield of only 5.08% was obtained at 850
°C, which is far from the standard required for commerciali-
zation. Recent studies reported adopting a CeO, single crystal or
Ni-doped single crystal as the anode for CH, oxidation coupling
or ethane dehydrogenation with CO, electrolysis at the
cathode.”>*” The application of a single crystal effectively
improved the hydrocarbon selectivity without deep oxidation by
selectively using the low active lattice oxygen instead of highly
active adsorption oxygen.'*” The exsolution of Ni in the anode
significantly improves the catalytic activity and C, selectivity.***
With 2.25% Ni doping into the single crystal CeO,, the elec-
trolysis current density reaches 1.2 A cm™? at 1.6 V. Moreover,
a C, selectivity of up to 99.5% was reported with a CH, single
pass conversion of 7%. To further improve the C, yield, the
focus should also be given to the conversion of alkanes. For
example, an active La, Sry.4C0qFe, 305 5 (LSCF)-Sm, ,Ce g-
0,_;was developed as the anode catalyst for ethane conversion.
The conversion of ethane can be well adjusted by the applied
current/voltage. However, the pristine anode showed a little bit
of deep oxidation to yield a lot of CO,. By intentionally adding
a thin layer of Al,O3, ethylene selectivity can be improved over
90% (Fig. 6a-d). The addition of Al,O; not only effectively
reduced the amount of adsorbed oxygen species, leading to
improved ethylene selectivity and stability, but also altered the
electronic structure of the Fe active center by forming an Al-O-
Fe interface, which increased the density of states around the
Fermi level and downshift of the empty band, leading to the
enhanced ethane adsorption and conversion. The suggested
Al,O; modified anode shows high durability under 200 h testing
under a current of 20 mA and ethane flow rate of 4 mL min "
(Fig. 6e).

Different from the above two-chamber configurations, Car-
avaca et al.">> employed a single-chamber SMER of Pt/YSZ/Ag for
water electrolysis in conjunction with an OCM reaction. The
influence of the applied current (+ values), reaction tempera-
ture, and feeding composition on the H, and C, production
were systematically evaluated. They demonstrated that the
possibility of controlling the rate of O>~ supply enables the
controllability and optimization of the production rate of the
desired compounds (H, and C,). A maximum C, yield of 8%
could be achieved under negative current and an inlet CH,
concentration of 0.6-0.8% at 820 °C. Recently, Kyun Kim and
their colleagues further proposed a novel design for the inte-
gration of CO, electrolysis and the OCM process.*** A successive
but two-stage zone reactor was designed (Fig. 7a). The first zone
of the reactor is a typical SOEC using LSGM as an electrolyte,
a SrTig 3Fe(.55C00.15035_s (STFC) anode electrode, and an STFC-
GDC cathode. In this stage, CO, is split into CO and O, at 850 ©
C. The latter is mixed with CH, to reach the second zone of the
reactor, where CH, conversion and C, selectivity are favored
with the applied Mn-Na,WO,/SiO, catalyst at 825 °C. The
assembled SOEC showed an electrolysis current density of 550
mA cm™? at the applied voltage of 1.5 V, which enables the
production of O, at the rate of 1.9 mL min~" cm > (Fig. 7b). A C,
yield of 25.4% and a stable short-term (100 h) performance were
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achieved through the designed reactor capable of indepen-
dently controlling the operating conditions of two reactions in
one apparatus. A combination of efficient SOEC and active
catalysts would be a promising method to further improve the
C, yield of such an integrated process.

3.1.1.4 Other reactions. Besides the aforementioned reac-
tions based on the O-SEMR, the unique separated chambers
also present many opportunities for other advanced
synthesis.’**%* Recent work reported synthesizing ammonia
through the electrochemical reduction of nitric oxide and water
using the oxygen-conducting (Lag.oSro1GagsMgo .03 _5)
SEMRs." Generally, ammonia synthesis is achieved through
the Haber process at elevated temperatures and chamber
pressure. Recently, the low temperature electrochemical
process using N, and H,O precursors was also demonstrated.
However, the competitive hydrogen evolution reaction and the
strong triple bonds lead to low faradaic efficiency and low
yields. In addition, the sluggish reaction kinetics at room
temperature hinder its wide application.'** Inspired by those
studies, Kwon et al.** innovatively proposed to use the SOEC
with a perovskite oxide cathode catalyst SrTig 3Feq 55C00.1503 5
GDC and BSCF-GDC anode to synthesize ammonia using NO
and H,O as the reactants at 650 °C. Benefiting from the
improved kinetics at the elevated temperature, a recorded
electrochemical NH; production rate of 1885 umol cm > h™*
and a faradaic efficiency of 34.8% were achieved at 1.5 V (Fig. 8),
both are significantly larger than that of the low temperature
electrochemical approach. This work potentially provides a new
approach to electrolysis-based NH; production from environ-
mentally harmful NO gas. One potential barrier is that the
enriching NO with high concentration should be performed
since most NO sources from exhaust gas are diluted gas.

There is also intensive interest in developing SEMRs for the
removal of nitric oxide (NO,, including NO and NO,, such
a process is called De-NO,),"** one of the typical contaminants
in exhaust gas emissions, especially for coal-based power plants
and a lean-burn gasoline engine for automotives. Different
operational modes use SEMRs for De-NO,, including (1) oper-
ating under open circuit conditions, the reducing gas (fuel) is
only applied for construction of the electrical field which favors
the NO, decomposition to N, and O,, while no fuel is consumed
in this process.'® It is interesting to see that complete emission
control for zero pollution of the automotive engines was ach-
ieved'® because of the electrochemical promotion of the catal-
ysis (EPOC) effect or non-faradaic electrochemical modification
of catalytic activity (NEMCA, will be detailed in Section 6); (2)
NO, is reduced in the cathode side to form N, and O®>~, then the
0”~ will be transported to the anode and oxidized to O, (ref.
166) and (3) similar to case 2, the obtained O*~ in NO reduction
in the cathode will involve the anodic fuel oxidizing reaction of
chemical fuels like H,, CO, ethane and propane that results in
power generation.'®” Since there is already excellent review work
on the typical De-NO, process,'**'*® attention will be given to the
NEMCA effect later.

3.1.2 Oxygen pumping mode-fuel cell reactors. Besides
electrolysis, SEMRs have been long pursued for power genera-
tion for a broad spectrum of applications, to meet the high

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 7 (a) Schematic diagram of integrating the CO, electrolysis with the OCM process in a successive two-stage reactor design, (b) SOEC
performance and (c) durability comparison.*** Reproduced with permission.

energy conversion efficiency from portable electronics to
stationary power plants. Under typical fuel cell conditions, the
oxygen is pumped from the molecular oxygen/CO,/NO to react
and form oxygenated chemicals, like oxygenated hydrocarbons

to yield H,0, CO,, and an important product, electrical power.
From the aspect of reactor voltage, a potential difference is
yielded due to the different chemical potentials of the applied
fuel and oxidant, building on the specific ionic conductor.
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Fig.8 Schematic illustration of the electrochemical synthesis of NHz from NO and H,O using oxygen-conducting SEMRs and the comparison of
NHs yield with other studies operated at low to higher temperatures.**® Reproduced with permission.
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Among versatile SEMRs, SOFCs have received particular atten-
tion and have made significant progress in recent years because
of the highest energy conversion efficiency and fuel flexibility
enabled by the high temperature operation. Through the quick
evolution of new cell materials/components and cell fabrication
technologies, e.g., Bloom Energy Ltd could provide a commer-
cial unit as a ‘black box’ with 200 kW power capacity using
natural gas as fuel. Considerable progress has been made in cell
component material development,*®""* super-electrochemical
performance generation,”*'”® and flexible fuel adaptation,
especially for commercially available natural gas and gaso-
line.****”* Moreover, with the further development of SOFC
technologies and understanding of the fuel cell reaction
mechanism, the reduction of the operational temperature of
SOFCs has become the major tendency in the communities to
improve cell stability and reduce investment.'”“'7>77 Many
excellent reviews have systematically analyzed the progress and
well-addressed the challenges of the current SOFC system, the
readers are suggested to read and refer to the cited references in
those excellent studies and reviews.”>"7'# Different from the
previous review work, attention here will not be put on the
discussion on the fuel cell efficiency with H, fuel and stability.
Instead, we will focus on SOFCs that could combine power and
chemical co-generation with a particular hydrocarbon applica-
tion, which has received increased attention in recent decades
because of the progress of the evolution of the electrification
process with a large requirement for chemicals and fuels from
the industry (Fig. 9). As mentioned in the aforementioned
section, the integrated thermo-electrocatalysis in SEMRs
enables significant reactant conversion and targeted fuel
production. Pioneering studies on hydrocarbon-fed SOFCs
focused on electrocatalysis and chemical production, rather
than electric power generation.'”®

3.1.2.1 Advanced fuel electrodes and novel design for fuel
oxidation. A distinct advantage over other SEMR technologies,
more exactly SOFCs in this section, is their fuel flexibility
because of the high temperature operation. The technology is
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Fig. 9 Publication numbers vs. time in Web of Science database by
searching for “"Cogeneration” and “solid oxide fuel cells” both in
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more attractive in the current fossil fuel era, where sufficient
conversion of hydrocarbon fuel with reduced CO, emission is
required. SOFCs can directly use hydrocarbon fuel without
transitional reforming, with high efficiency, and the CO,
emission can be significantly reduced compared to other tech-
nologies. However, for the typical SOFCs, the Ni-based cermet
anode cannot work properly due to the super-catalytic activity
toward hydrocarbon cracking, leading to the carbon deposition
and deactivation of the anode. An alternative anode catalyst is
therefore urgently needed.

3.1.2.1.1 Modified Ni-cermet electrode. One of the first
approaches is to modify the Ni-based anode catalysts.**"*** For
example, the mixture of Ni metal with other metals can reduce
the crack capability while not reducing the total oxidation
activity.'® The addition of the transition metal to form an alloy
can reduce the degree of crystallization of formed carbon, which
could be easily removed through reacting with the products
from hydrocarbon oxidation reactions, like CO, and H,O.
However, there is always a compromise between activity and
anti-coke capability. It is found that catalysts with good water
maintenance/adsorption capability can effectively promote the
removal of carbon. For example, in 2009, Yang et al.** reported
that the Ni catalyst anode  composited  with
BaZr,1Cep ;Y02 xYbyO3_ 5 (BZCYYD), a kind of claimed mixed
0" and H" conductor, worked effectively with wet C;Hg under
OCV conditions and with dry C;Hg under ‘discharging’ condi-
tions, but not with dry C;Hg under OCV conditions. Such
unique performance response and experimental phenomena
suggested that BZCYYb with the water adsorption capability can
effectively remove the thermodynamically unstable carbon
through the equation: H,O + C — CO/CO, + H, reaction.
Moreover, the same functionality also helps improve the sulfur
tolerance to 20 ppm. The same group also intentionally loaded
BaO islands on the Ni surface through an evaporation deposi-
tion method, which formed numerous nanostructure BaO/Ni
interfaces to readily adsorb water and facilitate carbon removal
reaction with the adsorbed water.’®* They experimentally
demonstrated that the designed BaO/Ni interface could work
stably in dry C;Hg and CO as well as gasified carbon with
a current density of 500 mA cm ™2 at 750 °C for 100 h, while the
Ni-YSZ anode cannot work properly within 1 h. The density
functional theory calculations showed that the dissociated OH
from the adsorbed H,O on BaO reacts with thermodynamically
formed carbon on Ni near the BaO/Ni interface to produce CO
and H species, which are then oxidized at the triple-phase
boundaries to form CO, and H,O, achieving the purpose of
carbon removal. It is interesting to see that the newly formed
BaO/Ni gave higher peak power density over the pristine one
when using humidified CO, suggesting another role of the
modified anode, promoting the reforming of CO to yield easily
oxidized fuels, like H,. To accelerate the application of SOFCs
and use the current public infrastructure, not hydrogen, Zhan
et al.'® reported attaching an additional catalyst layer of Ru-
CeO, on the Ni-YSZ anode to internally reform octane, a typical
high-purity compound similar to gasoline. The resulting cell
gave a stable power density of 0.3-0.6 W cm ™~ at 770 °C for 50 h.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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The application of Ru-CeO, internally reforms 5% iso-octane/
9% air/86% CO, fuel mixtures resulting in a large content of CO/
H,/CH,, which is closer to direct oxidation under fuel cell
operating conditions and avoids the carbon deposition issue.
With the worldwide research tendency to reduce the operating
temperature of SOFCs to intermediate to low temperature, the
direct application of hydrocarbons meets even challenges,
especially for CH, activation. In 2018, Chen et al.** adopted
a similar idea by coating the Ce 9oNip.05RU,.050, (CNR) catalyst
on Ni-BZCYYb, which enabled the synergistic thermal catalytic
and electrocatalytic reforming of CH, to H, and CO (Fig. 10a
and b). Integrating the highly active nanofiber-like PrBa, s-
Sry.5C04 5Fey. 5055 cathode, the assembled SOFCs showed 0.37
W cm ™2 peak power density at 500 °C, which is higher than that
reported in the literature work under similar conditions, and
was comparable to the cell performance fueled by H,. Moreover,
the designed cell showed stable cell performance with CH, fuel
for more than 380 h. Both the presence of Ni and Ru elements
favor the improved CH, conversion and H,/CO selectivity
(Fig. 10c-e). The application of an additional layer with
improved thermal catalytic and electrocatalytic activity enables
low temperature high-performance with hydrocarbon fuel,
which may accelerate the commercialization of the SOFC tech-
nology. The only issue of such cell design is the challenge of
current collection if integrated into the fuel cell stack.
Another effective strategy to overcome the carbon deposition
issue is to use hydrocarbon + air fuel in a single chamber. For
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example, Hibino et al'®® reported the operation of a typical
SOFC cell unit (Ni-YSZ anode/SDC electrolyte/Sm, 5Sry 5C00O3)
with a mixture of C,Hg or C;Hg and air. It was found that the
peak power density reached 403 and 101 mW cm ™ at 500 and
350 °C without the carbon deposition issue. Such an encour-
aging performance is enabled by the selectively catalytic activity
of Ni and Sm 5Sr,5C00; for fuel oxidation and oxygen reduc-
tion, the presence of air in the fuel, and the resulting H,0/CO,
from the electrochemical products help remove the formed
carbon. The authors also compared the influence of electrolyte
type (YSZ, SDC, and LSGM) on the electrochemical perfor-
mance. Among these, SDC showed the highest activity toward
hydrocarbon oxidation since ceria also acts as a catalyst for
electrochemical reactions and YSZ showed the lowest electro-
chemical performance due to the lowest ionic conductivity.

3.1.2.1.2 Alternative electrode catalyst. One of the solutions
to avoid the carbon deposition issues in SOFCs with methane as
the fuel is to replace Ni with other metals that favor the oxida-
tion of hydrocarbon without carbon formation. In 1999, Perry
Murray first reported adopting a layer of (Y,03)0.15(Ce02)o.85
(YDC) between Ni-YSZ (current collection layer) and YSZ elec-
trolyte and selecting a suitable temperature in the range of 500-
700 °C;'* the carbon deposition issue induced both by the
direct CH, pyrolysis and CO disproportionation reaction is well-
treated, and the reduced YDC gave high catalytic activity toward
CH, direct oxidation, which is comparable to the performance
of hydrogen oxidation but with a distinct reaction mechanism
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(a) Schematics of a Ceq 9oNig.0sRUQ.05O> catalytic layer modified classic BZCYYb SOFC, (b) cross-sectional SEM image, (c) the synergistic

effect of Ni and Ru element for CH, and CO, activation using DFT calculations, (d) fuel cell performance, and (e) durability.*®® Reproduced with

permission.
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based on the EIS responses. Such pioneering work demon-
strated the feasibility of CH, direct oxidation with superior
performance while being free from coke deposition issues.
Following this work, Park et al.'”® developed a composite anode
of Cu and ceria for the direct electrochemical oxidation of CH,,
C,Hs, 1-butene, n-butene, and toluene without reforming and
they did not result in any carbon formation in the anode. The
much-reduced hydrocarbon pyrolysis capability of Cu
combined with active ceria yielded the direct oxidation of the
abovementioned hydrocarbon into CO, and H,O as final prod-
ucts. No carbon formation when the cells was operated at 0.12
W cm™? in dry butane at 700 °C for 48 h. Besides transition
metals with reduced activity that are composited with ceria
catalyst, a big group of active catalysts, perovskite oxides, that
can replace Ni-cermet are developed. Perovskite oxides are
famous for their compositional & structural flexibilities and
their unique mixed ionic and electronic conductivity, which
introduce multiple benefits for direct/non-direct electro-
chemical oxidation of hydrocarbons. They also showed inter-
esting anti-sulfur poisoning capability, which is more attractive
with real hydrocarbon fuels, like municipal natural gas. One of
the distinct advantages of perovskite oxides is their redox
stability in an anode atmosphere, where the introduced fuel
results in a super low oxygen partial pressure, i.e., the reducing
atmosphere, while the oxidation reaction products like H,O and
CO, significantly improve oxygen partial pressure at the gas/
electrode or active site surface, which leads to the redox cycling
of the active site. For a typical Ni-based cermet anode, the big
volume change cycle between metallic Ni and NiO causes large
strain stress, as well as redox-induced aggregation, reducing the
electronic conduction and active site and consequently the
anode activity and cell performance degradation. The applica-
tion of redox-stable perovskite oxide well addresses the above
challenges. In 2003, Tao et al.**® first reported that La, ;5S¢ 25~
CrosMn, 503, a chromate perovskite oxide, showed a compa-
rable H, oxidation activity (ASR of 0.2 cm? at 900 °C) and stable
structure in anode and cathode atmospheres. Such anode
catalysts also demonstrated a maximum power density of about
0.2 W cm™2 at 0.5 V at 900 °C for wet (3% H,0) CH, oxidation
with only a trace of carbon detected. Exceptional work by Huang
et al.'® identified Sr,Mg; ,Mn,MoOs ;s (SMMO), a double
perovskite oxide material, as an active and long-term stable
anode catalyst for methane fuel. Such a double perovskite oxide
shows interesting oxygen ion conduction, much improved
electronic conductivity (10 S em™ ') in H,, and well-balanced
activity and stability with the highly coordinated Mo in the
lattice compared with other reported perovskite oxides. Thus,
SOFCs based on this anode gave a peak power density of 438
mW cm ™2 at 800 °C in fry CH, fuel, which is reduced to 338 mW
cm ? with the addition of 3% steam, suggesting the direct
oxidation capability of SMMO for CH, direct oxidation. More-
over, such a double perovskite oxide showed high resistance
toward sulfur poisoning and no performance degradation with
5 ppm H,S in fuel. Another typical oxide is the layered perov-
skite which generally showed higher promise for hydrocarbon
oxidation due to the intrinsic charge and structure capability.
Work by Sengodan et al.**° fully used those capabilities and first
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reported the application in direct hydrocarbon SOFCs. They
obtained the double-phase perovskite oxide PrBaMn,Os.s
(PBM) by in situ annealing of the oxide precursor of Pr, sBa, s-
MnOs; in a reducing atmosphere. At 800 °C, layered PBM shows
high electrical conductivity of 8.16 S em™" in 5% H, and
demonstrates peak power densities of 1.3 W cm™2 at 850 °C
using propane fuels; the latter was one of the highest perfor-
mances at that time. Such an anode also showed encouraging
sulfur resistance up to 50 ppm, and the PBM with the Co-Fe
catalyst could run stably with C3Hg fuel for 500 h under
a current density of 0.2 A cm ™ at 700 °C. In another study, Yang
et al.*** used a similar method to prepare a layered perovskite
oxide but with a newly formed Co-Fe nano alloy during phase
conversion. The resulting Co-Fe/perovskite oxide gave 0.6 W
cm 2 in CH, and 0.94 W em ™2 in C;Hjg at 850 °C and showed an
anti-sulfur capability up to 100 ppm without a clear poisoning
effect. The constructed cells could work stably at 800 °C and 0.6
A cm~? in H, with 50 ppm H,S for more than 500 h and 0.2 A
cm 2 in CH, and 0.4 A cm ™2 in C;Hj for a total of 150 h as well
as 20 times H,-N,-air cycles. The results demonstrated showed
that the combination of active transition metal/alloy with phase
stable perovskite oxides will be the future approach for high
efficiency and direct utilization of hydrocarbon fuel*****7*** and
other functional purposes, and bridging the gap between the
current fossil fuel era and future hydrogen economic society.

3.1.2.1.3 Novel cell structure design. The applications of
other than Ni based anode catalysts do bring improved anode
anti-coking capability, but generally suffers from low fuel cell
performance and requires a dedicated cell assembly procedure.
As one may see the application of both perovskite oxide and Cu
cermet as the anode supporter to the fabrication of a single cell
is difficult or impossible because of the coarsening and evapo-
ration issue during high temperature cosintering with electro-
Iyte. A novel cell configuration design is therefore required.
Moreover, the application of a porous while active catalytic layer
on the Ni-based cermet anode is a good option. However, both
the suspicions of carbon deposition under low current condi-
tions and the difficulty of the current collection remain.
Different from previous work, Barnett's group reported adopt-
ing a conducting oxide material as the cell anode support and
built-in barrier layer to construct an anode supported cell with
a Ni-cermet active layer for efficient natural gas (85% CH,, 10%
C,Hg, and 5% C3Hg) operation.' The cell gave a peak power
density of over 560 mW cm > at 800 °C and ran stably at the
current density of 0.2, 0.4, and 0.8 A cm > for 9 h, while the
conventional cell failed in 6 h. With such a conducting oxide
supporter, the single cell also showed high cell operational
stability during 7 times redox cycling (first in H, for 45 min,
then in air for 30 min). Sullivan et al.**® also confirmed such
results in tubular SOFCs with simulated biogas over 12 days of
continuous operation. They explained that the increase in the
local concentration of electrochemically produced H,O and CO,
throughout the anode resulted in higher local H,O-to-C ratios
which helped remove the formatted deleterious carbon.

3.1.2.2 Hydrocarbons to H,/CO and power. As shown in
Fig. 9, the application of SEMRs attracted increased attention
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during those years. More specifically, as the effective area and
the resident time of the reactant in the anode chamber are quite
short, the overall conversion of the chemical energy into elec-
tricity is impossible. In the practical operation, the fuel utili-
zation efficiency is kept at 70-90% to ensure good electrical
efficiency. By the way, electrochemical fuel oxidation is gener-
ally a highly exothermic reaction, the produced heat can be well
managed to reform the remaining fuel with the produced H,O
and CO,, or the remaining fuel can be catalytically partially
oxidized in the anode active site, or downstream process to form
syngas, with an oxygen ionic conductor, such a power and
chemical cogeneration is frequently reported in the single
chamber SOFCs (SC-SOFCs). The oxygen or air mixed with the
hydrocarbon was co-fed into the SC-SOFCs. The anode and
cathode layers selectively catalyze fuel oxidation reaction and
oxygen reduction reaction for power generation, and the
remaining fuel and oxygen, as well as the resultant H,O/CO,,
react further to generate CO and H,. For example, in 2014, Shao
et al.* fabricated and tested the performance and syngas
production of a flow-through (first outside of cell then inner of
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cells) tubular SC-SOFC with a mixed CH,/O, inlet gas. SC-SOFC
presented an open circuit voltage of 1.02-1.08 V at the
temperature of 650-800 °C, a peak power density of 300 mW
cm 2, and a total power output of 1.5 W was achieved at 750 °C.
Single-cell can be operated stably at 700 °C for 10 h at a constant
current density of 250 mA cm 2. With an additional GANi/Al,O;
catalyst on the two sides of the inner tube, the system can
realize a CH, conversion rate of 90.6%, CO selectivity of 95.4%,
and H,/CO ratio of 2.04 at a furnace temperature of 800 °C. The
same group® reported the integration of SC-SOFC with
a downstream thermal catalytic partial oxidation system for
power and syngas cogeneration without greenhouse gas emis-
sion (Fig. 11a). A cell configuration of Ni/YSZ/YSZ/SDC/BSCF-
SDC was assembled, in which the BSCF cathode showed high
activity toward the ORR while poor activity for hydrogen
oxidation. The peak power density of SC-SOFCs can reach an
impressive value of 1500 mW cm > at 700 °C using a CH,4-O,
gas mixture. With the integration of the downstream catalytic
layer, a methane conversion >95%, CO and H, selectivity higher
than 98%, and a polarization current density independent H, :
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Fig. 11 Different strategies for CH4-fed SEMRs for power and syngas cogeneration: (a) single chamber-SEMR integration with a downstream
catalytic partial reformer®® and (b) thermal and catalytic coupling within the SEMR anode.**® Reproduced with permission from ref. 50 and *°%.
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CO ratio = 2 were obtained, without any waste gas emission.
Though the efficiency of SC-SOFCs is slightly lower than that of
double chamber SOFCs, the ideal syngas production efficiency
offsets 100%. Both the utilization rate and the yield of H,/CO
with a ratio close to 2 are very promising for future deployment.

The application of SC-SOFCs for CH, cogeneration resulted
in interesting performance and fuel utilization efficiency.
However, careful gas (fuel/oxidant mixture) injection should be
rationalized to avoid the possible explosion of the CH,/O,
mixture. In contrast, double chamber SOFCs (general one) have
distinct advantages; the fuel and oxidant are separated in two
chambers; the oxygen can be electrochemically pumped from
the cathode to the anode and severed as the oxidant for CH,
reforming in the form of partial oxidation, both the reaction
rate and safety can be well controlled. One difficulty in using
traditional SOFCs is their limited CH, gas diffusion capability
over H, (ref. 199) in the well-sintered anode layer. A well-
designed anode structure without a CH, gas diffusion limita-
tion should be developed. In 2020, Dong et al.*******°* at Jinan
University developed microchannel SOFCs with a loaded cata-
lyst for CH, fuel conversion to electricity and syngas co-gener-
ation through catalytic partial oxidation (Fig. 11b). The
microchannel anode was prepared by a mesh-templating phase-
inversion method with one end open on the anode surface and
the other end terminated by a porous layer, the latter is well-
tailored for electrolyte coating and co-sintering. To improve the
anode catalytic activity, a CeO, nanocrystal,*® or a dedicated
nano fibrous Ni/CeO,-Al,O; catalyst'***°* prepared by the elec-
trospinning process is impregnated into the microchannel by
the capillary force. The adoption of micro-channeled pores
significantly improved the SOFC power output (increased to 2.5
times) with the feeding of 30% CH,/Ar at 600 °C due to signif-
icantly improved gas diffusion, i.e., reduction of the concen-
tration polarization. It is demonstrated that a minimum CH,
concentration of 0.35 atm and 0.80 atm should be used in
microchannel SOFCs and no-channel SOFCs, respectively.
Moreover, they found that the introduction of the catalytic layer
into the microchannel remarkably improved the syngas yields
by almost by 6 times, and CH, conversion from less than 40% to
above 75% and increase with the increase of CO, concentration,
as well as H,/CO ratio. The final one reached 2 but decreased
with increase of CO, concentration in the anode gas mixture.
The micro-channeled SOFC with the catalyst also showed
impressive operational stability at a fixed current density of 1.05
A cm™ 2. The voltage, ohmic and electrode polarization resis-
tance, H, yield and CH, conversion rate were stable during 120
h testing.

3.1.2.3 Oxidative dehydrogenation of alkanes. In Section
3.1.1.3, we saw that ethylene is one of the most important
building blocks in the chemical industry; the application of
solid oxide electrolysis with ethane dehydrogenation brings
multiple benefits like overcoming the thermodynamic limita-
tion and the possibility of over-oxidation compared with the
conventional steam reforming, high temperature pyrolysis, and
direct oxidative hydrogenation methods, respectively. However,
additional electrical energy is still required even though it can
be adjusted to realize the power and chemical cogeneration at
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the much-improved temperature. Alternatively oxidative dehy-
drogenation of alkanes to light olefins is an attractive, low-
energy, alternative route which could reduce the carbon foot-
print of its production.?*»**® The direct application of oxygen
ions which are pumped from the cathode side with the source
from oxygen molecules could still realize such functionality
according to the following equations (taking C,H, fuel as an
example):

Cathode: O, + 4e~ = 20*~
Anode: C,Hg + O~ = C,H, + HyO + 2¢”

Overall reaction: O, + 2C,H¢ = 2C,H,4 + 2H,0

Both selectivity and yield will be enhanced by this “oxygen
buffer” approach since it can avoids deep oxidation. Oxygen
enhances the forward reaction by reducing H, content, there-
fore shifting the reaction equilibrium, reducing the side reac-
tion of coking and cracking, and transforming the reaction
from an endothermic process into an exothermic one. In 2002,
Akin and Lin*** reported an ethene reaction yield of 56% with
a selectivity of 80% at 875 °C by using a dense Bi; 5Y,3;SmO;
tubular membrane reactor without catalyst over 11% yield at
a steady state in a fixed bed reactor. Bi-based oxide with hetero-
elemental doping is a good oxygen ionic conductor with partial
electronic conduction under real reaction conditions, which
allows the transport of O®~ by converting O, outside of the
tubular SEMR reactor and then reacting with the inner C,Hg to
form C,H,. The effect of the operational temperature and C,H,
partial pressure on the C,H, selectivity and yield are carefully
investigated. The SEMR operation is much more beneficial
because of high selectivity and yield.””® Some other type of
membrane reactors based on perovskite oxides with a mixed
ionic and electronic conductor is also used and showed inter-
esting C,H, yield due to the catalytic function of the applied
materials.>****” However, an additional gas separation process is
required and most perovskite oxides cannot be stably operated
under real conditions, and the total energy efficiency could be
further improved. For example, the chemical energy during
a partial oxidation reaction which is converted to heat can be
managed to produce highly valuable electricity in SEMRs while
wasted in other reactors. Therefore, Dogu et al**® developed
such SEMRs and exploited a La and Cl co-doped SrTiO; anode
catalyst for improving the oxidative dehydrogenation of ethane
to ethene at 550 and 600 °C. The reactor Lag ,Sry gTiO;.5Cl,/
YSZ/LSM-YSZ showed a one-time ethane conversion of 4-14%
and an ethene yield of 4-10% at the current density of 0-3.5 mA
em ™2, which are 4-10 times higher than that with SrTiO;.; and
2-5 times better than that of La,SrogTiOs4s. The improved
catalytic activity was ascribed to the improved oxygen mobility,
an abundance of Lewis acid sites, as well as more Brgnsted acid
sites as demonstrated by the multiple characterization tech-
niques including DRIFTS, XPS, TPO-CO,, and laser Raman
spectroscopy. However, high ethene selectivity is ensured in this
work; low ethane conversion due to the limited SOFC efficiency
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with quite low current density is observed, and optimization of
the SOFC efficiency should be managed. Moreover, a high-C
compound conversion that easily induces coking at the SOFC
operating temperature other than C; and C, compounds should
be developed. A “best of both worlds” scenario by simulta-
neously obtaining excellent power output and a high yield of
high-C chemicals could be realized. This was addressed recently
by Yan et al.*® In their work, thin film O-SEMRs with a configu-
ration of Co,Ws@WOx core-shell catalyst loaded (La,Sr)TiOs-
YSZ|YSZ|YSZ-La ¢St 4FeO; (LSF) are prepared. The cell was fed
with a H, and n-butane mixture. Under the optimized cell
operating parameters and catalyst design, the reactor reached
a peak power density of 212 mW cm™> at 650 °C, and a C4
alkene (butenes and 1,3-butadiene) yield higher than 50%
under a butane conversion higher than 80% was achieved; coke
free, are limited CO/CO, are produced in this SEMRs. The
reactor performance can be further improved by employing
higher ionic conductive and thinner electrolytes. Similar work
by Tan et al.>* reported the adoption of NiFe alloy nanoparticles
(NPs) exsolved Pr, Sr; ,Niy ,Fe; sM0, 5065 as the electrode for
oxidative dehydrogenation of propane. With the gradually
exsolved NiFe alloy, the SEMRs reached a propane conversion of
71.4% and light olefin (C,H, + CsHg) yield of 70.1% under
a current density of 0.3 A cm™ > (750 °C) with a propane flowing
rate of 40 mL min~". The cell showed high resistance toward
carbon deposition under constant current mode during 100 h of
testing.

Another interesting study by Zhang et al.>* reported oper-
ating propane fuel in SOFC mode for power and chemical
cogeneration. They developed an active CoFe alloy-perovskite
oxide catalyst for proton oxidation with LSGM electrolyte. An
excellent power density of 0.92 W cm > has been achieved with
C3Hj fuel (3 vol% H,0) and the SOFC worked stably under OCV
and constant current density of 0.4 A cm™? at 850 °C. Both the
"H nuclear magnetic resonance (NMR) spectrum and infrared
(IR) spectrum demonstrated that polycyclic aromatic hydro-
carbons were produced in the exhaust stream of the anode,
which successfully demonstrated the co-generation system and
promising application of SEMRs.

3.1.2.4 Oxidative coupling of CH, to C, compounds. The
oxidation coupling of methane (CH, + O, — C,H, +2H,0, AG =
—69 kecal mol ") was first proposed by Keller and Bhasin in 1982
using a thermal catalysis method with a metal oxide supported
on a-Al,Oj; as a catalyst, in which a CH, conversion of 4% was
achieved.™’ Later, different groups tried to develop active cata-
lysts to improve the CH, conversion and selectivity of C,
compounds.”***'* However, as mentioned in the previous
sections, significant levels of oxidation parallel products are
formed regardless of the kind of oxidant, like CO, and O,, since
the total oxidation of CH, is thermodynamically favored at high
temperatures.” Compared with thermal catalysis, the applica-
tion of SEMRs enables the supply of reactants at the desired rate
to improve selectivity, shift the equilibrium, and remove the
undesired products during the reaction by controlling the
electrode potential and external electron flow.>** The control-
lability of oxygen partial pressure in SEMRs enables higher
selectivity of C, or higher hydrocarbons since the latter follows
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the half-order dependence on O, partial pressure while deep
oxidation shows first-order dependence. To improve the C,
selectivity, SEMRs can be operated at a low partial pressure of
oxygen.”* In particular, for SEMRs, the oxidation of CH, not
only produces electrical power but also yields highly valuable
chemicals of C, compounds," which make methane coupling
reactions more attractive. In 2005, Kiatkittipong et al.*** found
that the SEMRs showed improved C, selectivity over heteroge-
neous catalysis. However, the yield of CH, to C, compounds is
low because of the poor fuel cell efficiency which should be
largely ascribed to the low activity of cell components even
though the electrode selectivity could reach 96.5%.*> With the
quick evolution of novel fuel cell materials and technology, the
CH, conversion has been remarkably improved. In ref. 216,
a SOFC tubular design using a Scandia stabilized zirconia (ScSZ)
electrolyte, LSM cathode multilayer cell structure with the Na-
W-Mn-Ce/SiO, catalyst integrated was applied. The author
demonstrated a 60.7% CH, conversion and a high C, selectivity
(41.6%), which is close to a C, yield threshold of 50%.?"” Such
results demonstrate considerable advantages over conventional
heterogeneous catalysis. The results are much higher than that
of Appamana’s work based on a similar material system.**®* Both
the application of tubular cells with extended CH, residence
time and high ionic conductive ScSZ electrolyte over classic YSZ
electrolyte enables such a much-improved energy conversion
and C, compound yield. It is also interesting to see that a high
ethylene-to-ethane ratio of 5.8 was obtained, which highlighted
the best performance among SEMRs for the OCM reaction.
However, further improvement of the C, yield looks difficult as
the desired products are far more reactive with oxidants than
with methane, i.e., the C, products are easily oxidized to CO,/
CO. Also because one-pass CH, conversion is hard to improve
with a limited residence time of the CH, in the pores of the
anode, an integrated gas recycle electrocatalytic reactor and
separator system was proposed by Jiang et al.>"” in 1994. The C,
products of SEMRs with YSZ electrolyte and Ag-based catalyst
were extensively sieved (up to 100%) using an appropriate
molecular sieve trap in the cycling loop, then the unreacted CH,
and undesired ethane were recycled to the SEMRs for further
conversion. Such a recycling operation with efficient removal of
C, products resulted in an ethene selectivity of up to 88% and
CH, conversion of 97%, i.e., the yield of ethene reached 85% in
the final sample.

Besides the experimental operating condition optimization
such as temperature and/or pressure, researchers also per-
formed techno-economic analysis on the OCM process in
membrane reactors.”**?** Based on the developed 1D membrane
reactor model, Cruellas et al.?*® found that the increased yield
from the optimized operation led to a positive impact on the
economics and performance of the downstream separation,
which resulted in the cost of ethylene production being 595-625
€ per ton C,H,, 25-30% lower than the benchmark naphtha
steam cracking process. Moreover, the CO, emissions of the
OCM studied processes are also 90% lower than with the
reference, exhibiting better environmental benefits. Those
techno-economic analysis results confirm the competition of

the OCM process based on membrane reactors over
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conventional technology, encouraging the efforts to achieve
a larger prototype. The authors also mentioned that the price of
the membrane is crucial for the OCM scale-up process. In
addition, the operational durability as well as the system
durability are also important factors in determining the large-
scale application potential. Therefore, an effective integration
of experimentation, modeling, and techno-economic analysis is
of great importance for the future implementation of SEMRs.

3.1.2.5 Other SEMRs for co-generations. Interest is also given
to methanol synthesis from CH, using the SEMRs since meth-
anol is an important industrial chemical, energy carrier, and
intermediate product. It should be noted that methane activa-
tion should be performed at elevated temperatures, while
methanol may be subjected to decomposition at this tempera-
ture. The key to realizing methane-to-methanol conversion is to
develop an active and selective transition metal oxide catalyst.
Torabi et al*** from Fuel Cell Energy Inc. developed an inter-
mediate temperature anode-supported SOFCs based on sprayed
GDC-Li,CO;, LiNiO,, and doped SrTiO; as the electrolyte,
cathode, and anode, respectively. The composite electrolyte
showed 100 times higher ionic conductivity over doped ceria
alone. To screen active catalysts, they employed the tubular
fixed reactor. The initial results demonstrated that the main
product using SrTiO; is methanol with selectivity over 90% over
the temperature range of 300-600 °C. When the CH, flow rate is
in the range of 70-100 mL min~", the complete conversion of
CH, is achieved within 1 minute. The application of lattice 0>~
instead of molecular O, is believed to induce a superior
performance. Another interesting application of SEMRs for fuel
and electricity co-generation from a C1 precursor is reported by
Neophytides et al.*** They developed an Ag symmetric cell based
on YSZ electrolyte at atmospheric pressure and temperature of
547-697 °C. Both the cell current density, the methanol partial
pressure with He on the CH;OH conversion, and CO, CO,, and
HCOH were investigated. The cells gave an open circuit over 1.0
V. It was demonstrated that the selectivity to HCOH is around
90% at methanol conversions =30%. These results confirmed
that Ag is a selective catalyst for the targeted reaction and
SEMRs can serve as a good platform for high-efficiency
conversion C1 chemistry.

Similar to the previous discussion, the application of SEMRs
is also highly interesting for higher hydrocarbon conversion
even though the selectivity to the targeted chemical is much
lower than that of low carbon-containing hydrocarbons due to
the mismatched operating temperature for reaction and
missing active catalyst for the selective reaction.”*® In 2009, Ji
et al.*** reported adopting MoV, 3Te, 1;Nb, 1,0 as an active and
conductive anode catalyst for propane selectivity to acrylic acid
at the temperature of around 400 °C. When combined with the
low temperature high ionic conductive Bi,Cuy,V;30;;_; €elec-
trolyte for SEMRs, the cell gave an open circuit voltage of 0.7 V
and peak power density of 10 mW cm > at 420 °C using the
C;3Hg: 12H,0: 15He mixed gas. Moreover the C3Hg conversion
was around 3.0-4.7% with an acrylic acid selectivity of 67-
72.9%. Such results demonstrated the feasibility of SEMRs for
application in high hydrocarbon conversion and combination
with electricity conversion. One more interesting work reported
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by Zhang et al.>* shows that ever macromolecular compounds
such as polycyclic aromatic hydrocarbons (PAHs) can be
synthesized by accompanying high fuel-to-electricity conversion
efficiency. A Co-Fe nano alloy exsolved Pr, 4SrgCog Feo 7~
Nb, 105 perovskite material developed by the authors' group
was used as a catalyst and LSGM as the electrolyte, operating at
750-850 °C using 3% H,O humidified C;Hg as fuel. The cell
presented a peak power density of 0.33-0.92 W cm > and
worked stably under both conditions of OCV and current
density of 0.4 A cm ™~ for a total of more than 80 h. The analysis
of liquid by-products in the exhaust stream by combined gas
chromatography-mass spectrometry, IR, and NMR showed that
it is a mixed PAH.

Previous attention is mainly given to low carbon-based fuels
or chemicals for efficient energy conversion and storage. SEMRs
are also widely adopted for other related chemicals like NHj3,
HCN, NO, H,S, and SO, synthesis or abandonment or used for
environmental treatment, which has a significant role in
economic and environmental impacts, which we think will
promote the commercialization of such a promising tech-
nology. Since the pioneering work by Vayenas and Farr et al. on
the use of SEMRs (Pt/YSZ/Pt) to directly convert NH; to NO with
yields =60% and simultaneously generate electric energy at
900-1200 K, this field has received increased attention with
much-improved progress.””® Another example of the use of
SEMR is the synthesis of HCN from the methanol/methane
ammonia steam mixtures (2CH, + 2NH; + 30, — 2HCN +
6H,0).2>??® The SEMR adopted an active Ni-CGO-iron anti-
mony oxide catalyst and was operated in the temperature range
of 500-650 °C. Under the optimized cell operational conditions,
a maximum yield of 40% (to methanol input) and selectivity for
conversion of methanol to HCN of 47.5% was achieved with
CO,, N,, H,, and CH, as the side products. It was also found that
the HCN was obtained by ammonolysis of methanol instead of
electrochemical ammonia oxidation; the H, produced by the
side reactions was oxidized to provide the electricity, and the
electrochemical supply of oxygen to the fuel side had a positive
effect on the cell selectivity to HCN. In those studies, the elec-
tricity output was relatively low. However, their promoted role in
targeted sample synthesis is quite huge, as claimed by EPOC or
NEMCA, which will be discussed in Section 6. The H,S, SO,,
and/or NO, are also used as oxidants for simultaneous green-
house gas treatment and clean energy generation.***>** In 2016,
Li Kang developed multi-channel tubular SOFCs and ran them
with N,O instead of air as the oxidant.?*® An increase of 50% in
power density was observed over that with air oxidant, such an
integration suggested techno-economic feasibility to eliminate
the cost penalty for N,O abatement and yield highly valuable
electrical energy.

3.1.2.6 Direct carbon fuel cells. One of the advantages of
SOFCs is their fuel flexibility. SOFCs fueled with solid state
carbon instead of gaseous and liquid fuel received particular
attention because of the widely available carbon-based fuel and
the >100% theoretical thermodynamic efficiency as well as the
high energy density.”***** The major challenge in using carbon-
based fuel is to improve the fuel-catalyst contact sites or
continuous fueling like gaseous or liquid fuel. Another
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challenge is the reduced real efficiency because of the emission
of thermodynamically favored CO in the anode direct oxidation
reaction as well as the Boudouard reaction (C + CO, — 2CO),
even though the performances of most DCFCs rely on CO
oxidation, instead of the direct carbon oxidation. Nevertheless,
this may suggest the chemicals (CO) and electric energy co-
generation from this point of view (Fig. 12a). Prof. Liu's group
from the South University of Technology performed a system-
atical investigation of such a co-generation system from active
electrode material development,®® carbon fuel precursor
selection, electrochemical and thermal catalytic mechanism,
small stack construction, demonstration,***>** and modeling.>*”
Tubular DCFC single cells that unite with one close end or 2-cell
stack were constructed by the dip coating technique (Fig. 12b).
Then they were assembled into DCFC devices using LSM-YSZ as
the cathode and Ag-GDC as the anode. Ag is an active catalyst for
CO oxidation. Activated carbon with a 5% Fe catalyst to catalyze
the Boudouard reaction is used as fuel. Such a DCFC 2-cell stack
gave an open circuit voltage of 2.11 V and a peak power density
of 319 mW cm ™2 at 800 °C, which is close to that with hydrogen
as fuel (Fig. 12c), suggesting the high activity of the applied
catalyst and suitable cell structure. When the cell is operated at
a fixed current of 2 A, the 2-cell stack can be operated contin-
uously over 1.1 h. During the oxidation period, the peak CO
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yield can reach 25 mL min ™" though it gradually reduced with
time. In contrast, CO, concentration increased with the applied
time (Fig. 12d). The authors also carefully calculated the elec-
trical energy conversion and overall conversion efficiency for
three cells in single-cell configurations that were operated at
different applied currents. Generally, the former is proportional
to its operating voltage while inversely proportional to its
operating current. When the current is 1 A, the electrical
conversion efficiency could reach 40% and the overall efficiency
could be over 70% (Fig. 12¢).>*

Considering that the electrochemical performance of DCFCs
operated at elevated temperatures like 800 °C is contributed by
the CO oxidation nature and currently most DCFCs are con-
structed on small size cells or tubular cells with special sealing,
the same group invented a compact and seal-less direct carbon
SOFC stack for potential application.”®® The SOFC stack is
composed of a 12-array cell on one side of a large-scale single
YSZ electrolyte plate in series, leaving the anode exposed but
without direct contact with the carbon fuel. Each opposed
cathode and anode constitute a cell unit, thus there are 12 unit
cells on the single electrolyte. When the cells are operated using
activated carbon or wood powder (or sawdust) made from
a Bauhinia tree branch as carbon-rich fuel with Fe loading, an
OCV value of 10.8 V, peak power of 10.2 W and a discharge
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Fig. 12 Schematic illustration of electricity—gas cogeneration in DCFC: (a) single cell and (b) the corresponding exhausted gas composition and
power response to the operating time of 2-cell stack operated at 2 A, at 800 °C and (c) electrical efficiency and overall conversion efficiency of
the cells operated with different current at 800 °C.2%* Reproduced with permission from ref. 235.
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energy of 29 W h were achieved on the activated carbon fuel,
and they were increased to 11.6 V and 13.1 W with the Bauhinia
tree branch wood powder fuel. A similar cell design but in the
form of a tubular structure was also used by the same group to
make a rechargeable carbon air battery,”* which makes DCFC
more adaptive in practical applications. Furthermore, numer-
ical modeling was also performed to understand the physical/
chemical processes of the CO and electricity co-generation in
DCFC.*” The 2D model confirmed the feasibility of a non-
contact design of carbon/anode, and a large distance between
the carbon fuel and the porous anode still could give a good
electrochemical performance. The DCFC gave a reduced
performance at the reduced temperature mainly ascribed to the
low Boudouard reaction kinetics. With careful control of the
operational parameters, like the temperature and applied cell
current, the molar fraction of CO can be well controlled. It is
also found that the higher the cell current, the lower the CO
generation. Thus, a commonly used anode configuration
resulted in improved DCFC performance but decreased CO
fraction in the exhausted gas. Thus, such a DCFC showed
promising application in CO-electricity application.

The DCFC performance is contributed by CO oxidation; how
to effectively utilize the CO from the oxidation reaction and
Boudouard reaction is therefore investigated since most CO is
released during the testing. In this regard, Prof. Shao from the
Nanjing University of Technology developed a combined solid
oxide YSZ electrolyte type based DCFC with CO, permeating
membrane to improve electrochemical performance and
carbon utilization efficiency. The CO, permeating membrane is
made up of the doped ceria-carbonate composite, which keeps
CO, at a suitable concentration but confines all the unreacted
CO in the anode chamber, which favors the CO oxidation
kinetics and utilization efficiency and subsequently improves
DCFC performance. Such a DCFC presented an OCV of 1.056 V
and a peak power density of 279.3 mW cm ™ at 850 °C. More-
over, a 2-cell stack was also built and delivered continuous
operation for 200 min at a constant current density of 300 mA.
However, it should be noted that the carbon utilization effi-
ciency is still only 14.36%, which is mainly ascribed to the de-
activation of catalysts.”®® The same group then tried to fix the
active Boudouard reaction catalyst Fe,,O,, (active component)-
K,O (promoter) first on Al,O; and pre-sintered at high temper-
atures. The modified DCFC showed similar performance to the
previous one but with a much improved continuous operational
time of 314 min at 750 °C and a high carbon utilization effi-
ciency of up to 98.7%, which is ever the highest one in the
literature.**

People also tried to improve the DCFC performance by
increasing the contact area of the carbon fuel with the anode
catalyst by creating a nanoporous electrode******>** or using
a redox mediator,**>**® especially at the reduced temperature
where the effect of the Boudouard reaction is not so significant.
The poor point-like solid-solid contact not only restricts the
electrode kinetics but also does not favor electronic conduction.
In this context, hollow nanofibers of Ce,¢Mn, 3Fe, 10, by the
electrospinning method,*** Cu-modified Ni foam,*** and hon-
eycombed porous, carbon fuel size-matching architecture
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anode®® with a three-dimensional open structure were devel-
oped. These 3D anodes not only increased the contact area with
carbon and CO but also facilitated mass and electron transport,
which significantly improved the DCFC electrochemical
performance. A peak power density of 765 mW cm > was ob-
tained based on the carbon fuel size-matching architecture
anode at 800 °C, which is one to two times higher than the
previous cases. Besides the development of an active electrode
with optimized cathode microstructure, in 2011, the Gorte
group from the University of Pennsylvania reported adopting
a molten Sb,05;/Sb redox mediator for DCFCs.*** In such a novel
design, fuel cell performance is realized through the anode
oxidation of metallic Sb at the electrolyte interface, producing
Sb, 03, that is then reduced by the fuel in a separate step in the
anode. In other words, the chemical energy of carbon is first
stored in molten Sb, then further oxidized by the 0>~ from the
cathode. Therefore, the overall cell open circuit voltage is
ascribed to the Sb oxidation, not to carbon oxidation anymore.
It is worth noting that the Nernst potential of the Sb-Sb,0;
mixture is only 0.75 V, which is a little bit lower than that of
carbon oxidation. However, the electrode resistance associated
with Sb fuel is impressively low, approximately 0.06 Q cm?®
because of the molten state of fuels, which has close contact
with the anode catalyst. Therefore, the peak power density
reaches 350 mW cm > with an electrolyte-supported cell made
from ScSZ on different carbon fuels, like sugar char, rice starch,
carbon black, and graphite, and the redox moderated DCFC
showed improved operating stability and service life compared
with previous cases. Another interesting method reported by
Jiang et al.**® who proposed and demonstrated a hybrid molten
carbonate/solid oxide direct carbon fuel cell, in which molten
carbonate is mixed with carbon and refined in the anode
chamber, the liquefied “fuel in molten” effectively reduces the
electrode polarization resistance of the anode. With an opti-
mized carbonate-carbon composition, the hybrid DCFC
showed a maximum power density of 390 mW cm™> using an
LSM cathode, which was further improved to 878 mW cm >
using an LSC cathode under flowing air, comparable to extant
fuel cell technologies. The exceptional DCFC electrochemical
performance makes a solid step toward the wide application of
DCFC.

Exceptional cases of the direct oxidation of carbon in DCFCs
should be highlighted. Inspired by the nanoporous/size
matching anode catalyst and microstructure development, as
well as the “liquid fuel” concept, Ding et al***** developed
a highly efficient, 3D solid-state architectured anode which was
templated by fabric textile coupons and combined with ceria-
carbonate, a low temperature superior ionic conductive elec-
trolyte to directly oxidize carbon fuel below 600 °C. DCFCs
showed maximum power densities of 143, 196, and 325 mW
em™? at 500, 550, and 600 °C, respectively. The cell also oper-
ated steadily with a rated power density of =0.13 W cm™? with
a superior carbon utilization efficiency of over 85.5%. Moreover,
the peak power density was continuously improved to 392 mW
em ™2 at 600 °C based on the same cathode catalyst but the
optimized microstructure of 3D ceramic textiles. The DCFCs
with direct oxidation of carbon to CO, while without going
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through intermediate fuel CO can remarkably improve energy
conversion efficiency, which should become a future research
interest in the academic and industry field.

3.1.2.7 Solid oxide metal-air batteries. Similar to the fuel
cell, metal-air batteries received increased attention in recent
years due to their high energy storage density and capability to
perform fast and deep charge/discharge cycles.>”” This has
positioned the metal-air battery as a front-runner in the
commercial development of large-scale energy storage devices.
However, the current metal-air battery system is mainly inves-
tigated at room temperature or in the liquid electrolyte solution.
The large electrode polarization resistance induced by the
oxygen reduction remains the major challenge and it requires
high loading of the precious metal catalyst. In the previous
section, we showed that the SOCs operated at elevated
temperatures showed much-reduced electrode and total polar-
ization loss. So, metal-air batteries operated at an elevated
temperature should hold a higher potential for energy conver-
sion and storage. In recent years, metal-air batteries, like Fe-
air,>”">*' Mo-air,** Si-air,**® W-air,”** Mg-air,** Li-air,”** and
Sb-air batteries**” have been reported, in which Fe-air batteries
received particular attention because of the abundant and non-
toxic nature of Fe fuel. In 2011, a redox flow battery concept
based on the solid oxide membrane was first demonstrated.**”
Such a battery comprises two key decoupled components:
a reversible solid oxide cell (RSOC) and a metal/metal oxide
redox couple. In a typical operation, Fe is first loaded on the
surface of the anode, when water/steam is introduced and it
reacts with Fe to form/release H,, and Fe is oxidized to FeO,.
The resulting H, is then electrochemically oxidized to generate
electricity in SOFC mode, ie., the discharging process in
a battery. When all Fe is oxidized, the discharging process of
battery is stopped; then the discharging process is initiated.
H,O0 is recycled and electrochemically split into H,, which is fed
into the anode chamber to reduce FeO,, regenerating metallic
Fe to close the redox cycle. When considering the whole process,
the overall reaction is the reverse reaction 2M + xO, < 2MO,
(Fig. 13). Since the flow of reaction gas resembles the flow of

© 2025 The Author(s). Published by the Royal Society of Chemistry

electrodes in a conventional liquid Redox Flow Battery (RFB),
this is termed a “Solid Oxide RFB (SORFB)”.>*” Inoishi et al.>*®
also demonstrated such an RFB with H,O/H, as a redox medi-
ator. Such a novel RFB can produce an energy capacity of 348 W
h per kg-Fe and a round-trip efficiency of 91.5% over twenty
reliable charge/discharge cycles, demonstrating the feasibility
and promising further deployment. One critical issue with
SORFBs, similar to that of DCFCs, is the limited O®>" trans-
portation from the electrode to FeO,. If directly oxidized, the
reaction product FeO, is a semiconductor with low electronic
conductivity, which will hinder further reaction of the remain-
ing Fe. So similar to the redox media-assisted DCFC, gas-
mediated 