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Enantioselective C–H amidation of sulfondiimines
for the synthesis of 1,2,4-benzothiadiazine-1-
imines under cobalt catalysis†
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In comparison to the notable recent progress in the derivatization of sulfoximines via directed C–H acti-

vation, the C–H activation/functionalization of sulfondiimines is underdeveloped. Here, we report C–H

amidation/cyclization reactions of sulfondiimines with dioxazolones catalyzed by the combination of a

cobalt(III) catalyst and a pseudo C2-symmetric chiral carboxylic acid, leading to the formation of unpre-

cedented 1,2,4-benzothiadiazine-1-imine structures in high enantioselectivity.

Introduction

Sulfur-containing scaffolds, such as sulfones, sulfoxides, and
sulfonamides, are fundamental and important motifs in
organic chemistry and related research fields.1 Sulfoximines,
i.e., the mono-aza-analogues of sulfones, are less common
than the related hexavalent sulfur compounds, but have
recently attracted great attention, particularly in medicinal
chemistry.2 This surge in interest has led to the development
of synthetic and derivatization methods for sulfoximines; in
particular, transition-metal-catalyzed directed C–H functionali-
zation reactions have been examined for the derivatization of
sulfoximines.3–5 Sulfoximines and sulfoximine derivatives that
feature different carbon substituents contain a chiral sulfur
center, and their stereochemistry can potentially influence
their biological properties,6 which has motivated the investi-
gation of enantioselective methods for the C–H functionali-
zation of sulfoximines (Scheme 1a). Since the pioneering work
by Li5a and Cramer5b using a chiral CpxRh(III) catalyst, several
catalytic systems have enabled the desymmetrization of diaryl
sulfoximines and kinetic resolution to provide chiral 1,2-ben-
zothiazine-1-oxides and 1,2,4-benzothiadiazine-1-oxides in an
enantioselective manner.5

In contrast to the rapid maturation of the directed C–H
functionalization of sulfoximines, sulfondiimines have
attracted less attention, despite the fact that they have an

additional substituent that increases the structural diversity
and provides new potential sites for interaction with biological
target molecules.7,8 In 2019, Bolm and co-workers reported

Scheme 1 Enantioselective directed C–H functionalization of sulfoxi-
mines and sulfondiimines.
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C–H alkylation/cyclization reactions catalyzed by Rh(III) com-
plexes.9 More recently, our group has reported that the combi-
nation of a Ru(II) catalyst and a chiral carboxylic acid enables
enantioselective C–H alkylation reactions to provide 1,2-ben-
zothiazine-1-imines in high enantioselectivity (Scheme 1b).10

Nevertheless, no further studies on the directed C–H
functionalization of sulfondiimines have been reported.
To expand the chemical space of readily available chiral
sulfur-containing structures for medicinal chemistry and other
biological studies, we envisioned the extension of our chiral-
carboxylic-acid-assisted enantioselective C–H activation/
functionalization strategy11,12 to the synthesis of novel chiral
scaffolds from sulfondiimines. Here, we report enantio-
selective C–H amidation and cyclization reactions of sulfondii-
mines to furnish 1,2,4-benzothiadiazine-1-imines using a
Co(III) catalyst13 and a chiral carboxylic acid (Scheme 1c).
Although the presence of two nitrogen atoms that can poten-
tially act as a directing group in a sulfondiimine makes the
stereochemical course of the C–H activation more compli-
cated, the optimal catalytic system achieved high enantio-
selectivity (up to 99 : 1 er).

Results and discussion

We began our study with an examination of the reaction con-
ditions based on our previous results in the enantioselective
C–H amidation of sulfoximines with dioxazolones.5g

Gratifyingly, the desired C–H amidation/cyclization reaction
proceeded to afford a 1,2,4-benzothiadiazine-1-imine using a
catalytic amount of Cp*Co(CO)I2, AgOTf, and a carboxylic acid
in tAmOH at 80 °C. No C–H amidation product without cycli-
zation was observed at this reaction temperature. We then eval-
uated several chiral carboxylic acids (CCAs; A1–A5) that have
previously been investigated in our group5g,14 under the opti-
mized reaction conditions with sulfondiimine 1a and dioxazo-
lone 2a as model substrates (Table 1, entries 1–5). While
amino acid derivative A1,14b ferrocene carboxylic acid A2,14c

and C1-symmetric binaphthyl carboxylic acid A314a resulted in
low enantioselectivity (entries 1–3), pseudo C2-symmetric
binaphthyl carboxylic acid A414d exhibited good reactivity and
enantioselectivity (entry 4). Changing the binaphthyl backbone
of A4 to a partially reduced H8-binaphthyl structure (A5)5g

further enhanced the reactivity and selectivity, and the desired
product was finally obtained in almost quantitative yield and
97 : 3 er (entry 5). The absolute configuration of 3aa was deter-
mined to be S by single crystal X-ray diffraction analysis (CCDC
2423806†). With the optimal CCA A5 in hand, other related
piano-stool d6 metal catalysts, i.e., [Cp*RhCl2]2, [Cp*IrCl2]2,
and [Ru(p-cymene)Cl2]2, were also investigated (entries 6–8),
but none improved the results relative to Cp*Co(CO)I2. The
combination of a relatively small cobalt catalyst with A5 was
essential for the high enantioselectivity.

We investigated the substrate scope using the combination
of Cp*Co(CO)I2 and A5 as the catalyst (Scheme 2). To obtain
reproducible results for various substrates, including less reac-

tive ones, we used 10 mol% catalyst under the optimized con-
ditions. We first examined the effects of the structure of dioxa-
zolone 2 (Scheme 2a). A series of para-substituted aromatic
dioxazolones as well as a meta-methyl substituted one resulted
in moderate to good product yields with high enantio-
selectivity (3aa–3ag; 94 : 6 to 97 : 3 er), except that a para-cyano-
substituted dioxazolone exhibited very low reactivity (<20%;
not shown in Scheme 2) probably due to the competitive
coordination of the cyano group. The extended and heteroaryl
group substituents (2-naphthyl, 2-furyl, and 2-thienyl) were
well tolerated (3ah–3aj; 97 : 3 er). An alkenyl dioxazolone
exhibited slightly lower reactivity but furnished the product in
high enantioselectivity (3ak; 97 : 3 er). We also examined a
methyl-substituted dioxazolone, which gratifyingly provided
the corresponding product (3al) in good yield and selectivity.
Next, we investigated the scope of sulfondiimines (Scheme 2b).
The introduction of para- and meta-substituents at the diaryl

Table 1 Effects of chiral carboxylic acids (CCAs) and metal catalysts
under the optimized conditionsa

Entry CCA Catalyst (mol%) %yieldb erc

1 A1 Cp*Co(CO)I2 (5) 47 41 : 59
2 A2 Cp*Co(CO)I2 (5) 27 69 : 31
3 A3 Cp*Co(CO)I2 (5) 24 67 : 33
4 A4 Cp*Co(CO)I2 (5) 82 92 : 8
5 A5 Cp*Co(CO)I2 (5) >95 97 : 3
6 A5 [Cp*RhCl2]2 (2.5) 64 72 : 28
7 A5 [Cp*IrCl2]2 (2.5) 2 84 : 16
8 A5 [Ru(p-cymene)Cl2]2 (2.5) 1 80 : 20

a Reaction conditions: 1a (0.060 mmol), 2a (0.050 mmol), catalyst, CCA
(2.5 µmol, 5 mol%), and AgOTf (5.0 µmol, 10 mol%) in tAmOH
(0.1 mL) at 80 °C for 24 h. bDetermined by 19F NMR analysis of the
crude reaction mixture using PhCF3 as the internal standard.
cDetermined by chiral HPLC analysis.
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moieties did not interfere with the desired reactions, leading
to products in sufficient yield and high enantioselectivity
(3bb–3eb; 74–89%, 96 : 4–99 : 1 er). Several sulfondiimines with
a different aromatic substituent at the nitrogen moiety were
also applicable (3fb–3ib), although the introduction of a para-
substituent decreased the reactivity (3fb and 3gb).

To elucidate the origin of the high enantioselectivity
achieved using the optimal chiral carboxylic acid (A5), we per-
formed DFT calculations on the transition states for the C–H
activation step15 of 1a, which is generally considered to be the
enantio-determining step in chiral-carboxylate-assisted desym-
metrization reactions. The sulfondiimine (1a) has two coordi-
nating nitrogen atoms, both of which can potentially act as the
directing group (DG) for C–H activation. Thus, we carefully per-
formed conformational searches based on several different
initial structures to obtain relevant transition states (for
details, see the ESI†). We found two transition states for the
major (S)-product (TSmajor1 and TSmajor2) and one for the
minor (R)-product (TSminor) to be energetically feasible (Fig. 1,
left). Among these, TSmajor1 was the most stable structure; the
energies of TSmajor2 and TSminor are +2.0 kcal mol−1 and
+2.4 kcal mol−1 higher, respectively, which is in reasonably
good agreement with the experimental results. The NH moiety
acts as the DG in TSmajor1 and TSmajor2, while the NPh moiety
acts as the DG in TSminor (for other energetically higher tran-
sition states, see the ESI†), which indicates that both nitrogen

atoms function competitively as DGs, and that the pathway is
controlled by the carboxylate ligand. Additionally, a non-
covalent interaction (NCI) plot16 was produced to visualize the
weak interactions contributing to the high enantioselectivity
(Fig. 1, right). TSmajor1 involves π–π and C–H/π interactions
between the H8-binaphthyl moiety of A5 and the phenyl group
of 1a, and TSmajor2 involves π–π interactions around the α-aryl
group of A5. On the other hand, TSminor shows only minor C–
H/π interactions between the α-aryl group of A5 and the phenyl
group of 1a. These DFT calculations suggest that the high
selectivity with A5 might be enhanced by the weak π–π and C–
H/π interactions in TSmajor1. The improvement of the selectivity
upon changing the binaphthyl to the H8-binaphthyl backbone
(Table 1, A4 vs. A5) might be due to the slight enhancement of
such interactions by the increased dihedral angle of the back-
bone of A5.

Conclusions

In summary, we have developed enantioselective C–H amida-
tion/cyclization reactions of sulfondiimines with dioxazolones
using an earth-abundant and readily available cobalt catalyst
and a chiral carboxylic acid. This catalytic transformation
enables convenient and highly enantioselective access to un-
precedented chiral 1,2,4-benzothiadiazine-1-imine derivatives,

Scheme 2 Substrate scope. Reaction conditions: 1 (0.24 mmol), 2
(0.20 mmol), Cp*Co(CO)I2 (0.02 mmol, 10 mol%), A5 (0.02 mmol,
10 mol%), and AgOTf (0.04 mol, 20 mol%) in tAmOH (0.4 mL) at 80 °C
for 24 h.

Fig. 1 Transition-state structures and relative Gibbs energies for C–H
bond cleavage (left) and non-covalent interaction plots (right) calculated
at the M06/def2-TZVPP+SMD(tBuOH)//M06L/def2-SVP level of
theory.17–20 The NCI plots were generated with Multiwfn 3.721 and visu-
alized by VMD 1.9.422 (isosurface = 0.5; color scale from −0.04 to 0.02).
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which would further facilitate biological and medicinal
research on chiral-sulfur-containing heterocyclic compounds.
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