A three-in-one strategy enables improved kinetics in an LLZTO solid electrolyte for Li-CO2 batteries with high energy efficiency†
Abstract
Solid-state Li-CO2 batteries possess unique merits, including high environmental friendliness, extremely high energy density, and wide operational temperature range. In this work, we used the garnet-type Li6.4La3Zr1.4Ta0.6O12 (LLZTO) as the solid electrolyte for Li-CO2 batteries. By a simple solid-state reaction under vacuum, LLZTO was tightly composited with organic materials. Detailed analysis confirms that a three-in-one effect was achieved, resulting in additional Li+ migration pathways, improved mechanical properties of the electrolyte, and more active sites for Li2CO3 decomposition. This contributes to accelerated Li+ transport and fast CO2 reaction kinetics. A solid-state Li-CO2 cell was assembled using a Ru@C cathode and an integrated layer of LLZTO@PVDF interfaced with an artificial molten salt. An exceptionally low charging overpotential (below 3.0 V) was achieved, maintaining a charge potential retention rate of over 99%. This work introduces LLZTO as a promising electrolyte for solid-state Li-CO2 batteries, shedding light on the advancement of next-generation Li-CO2 battery technologies.
- This article is part of the themed collection: 2025 Inorganic Chemistry Frontiers HOT articles