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on-specific design: a generalized
deep learning framework for optical property
prediction in TiO2/GaN nanophotonic
metasurfaces
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Metalenses have garnered significant attention for their remarkable ability to precisely focus light while

obviating the inconvenience and intricacy associated with conventional curved lenses. Identifying the

best response for these phase gradient optical devices necessitates intensive trial and error analysis of

meta-atoms with various shapes, materials and dimensions. In this work, we present an artificial

intelligence-based framework to predict the highly skewed, complex transmission and phase responses

of the constituent nanorods. Here, we employed a transfer learning model to train on two extensive

datasets comprising the optical responses of gallium nitride and titanium dioxide nanopillars, each

integrated onto silica substrates. The accuracy of the dataset was assessed through experimental

investigation, particularly inspecting transmittance and the refractive index for a TiO2 layer of a certain

height. A reasonable agreement has been obtained for both cases. The optimized algorithm estimates

the performance in terms of amplitude and phase, attaining minimum Mean Squared Error (MSE) values

of 2.3 × 10−6 and 1.31 × 10−5, respectively, for a wavelength range of 600–700 nm. To validate the

effectiveness of our proposed approach, focusing performance was exhibited for two flat lenses:

a smaller lens with a 20 mm diameter and a larger lens featuring an identical diameter and focal length of

100 mm. A brief study on the effects of varying angles of incident light has also been conducted. While

minimizing the need for typically tedious and at times ineffective repetitive analyses, the parameterized

datasets can be beneficial for developing different optical components.
1 Introduction

Metalenses, employing nanoscale structures to manipulate
light at the sub-wavelength level, offer great potential for the
development of versatile and efficient optical devices.1,2 Unlike
conventional bulky lenses that require longer optical paths,
these considerably thinner and lighter elements possess the
competence to alter intensity, phase, and time varying the E-
eld orientation of incident beams.3–7 Additionally, they can
readily be tailored to suppress optical aberrations and hence
ensure sharper focusing.8–10 In consequence, such at lenses,
today, have unveiled immense possibilities, ranging from
sensing11 and high resolution imaging12 to augmented reality.13
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To address the demands of diverse applications, existing
literature emphasizes using different geometric congurations,
materials, and meta-atom orientation angles in metalens
designs.14,15 To perform chiral imaging, Sun et al.16 experimen-
tally demonstrated 3D plasmonic metalens based on gold and
anisotropic polymethyl methacrylate elliptical nanopillars. In
ref. 14, planar lenses suited for chromatic holographic opera-
tions were realized by etching nanoholes of uniform diameters
onto a silver lm. Metallic at lenses, however, have limited
optical eld manipulation due to absorption losses. Also,
designs with apertures, wherein light must traverse longer
routes, exacerbate this constraint.12

Dielectric materials with high refractive indices (n > 2) and
low absorption are preferable in this context.17 In ref. 18, the
demonstration of a dielectric metalens, operating at three
distinct wavelengths represents one of the pioneering advances
in the relevant research eld. Recently, structures with quasi-
continuous nanons or rectangular strips have been incorpo-
rated to showcase broadband and highly efficient performance
at different spectra.19,20 Barulin et al. in ref. 21 introduced
a dielectric planar lens that allows light to be captured from
Nanoscale Adv.
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uorescent sources of two distinct wavelengths. Regardless of
the functionality of these at lenses, two criteria must be
universally satised: attaining high optical transmittance and
ensuring full phase mapping in the range of 0 to 2p.

Achieving the desired phase modulation with enhanced light
throughput necessitates a meticulous and iterative optimiza-
tion process, oen characterized by trial-and-error experimen-
tation. It is worth noting that despite conducting these stringent
adjustment procedures, the performance metrics of the at lens
are effectively calibrated only for certain materials, within
a limited wavelength range, and for a restricted array of
Fig. 1 Our design framework. (a) Three-dimensional schematic structure
nanorods, and then the incident light is focused at focal length f. (b) The b
a SiO2 substrate. (c) Unit cell of the metalens with nanorods of height h,
shown for the transmission and phase model. (e) Predicted transmission
designed full metalens.

Nanoscale Adv.
applications. Systematic adoption of different AI algorithms
would be advantageous to minimize the design timeline and
escalated costs associated with traditional design
approaches.22–28

Studies reported in ref. 23 and 24 utilize simulated datasets
and reveal the efficacy of DNN in predicting the optical
responses throughout various regions of the visible spectrum.
However, models trained solely on unvalidated simulated
results may exhibit poor generalizability owing to unaccounted
fabrication-induced discrepancies. While inverse design tech-
niques aid in ascertaining the appropriate phase and
of a metalens: a plane wave is normally incident on an array of circular
uilding blocks of a metalens are nanopillars composed of GaN/TiO2 on
diameter D and refractive index h. (d(i–iii)) The FCDNN architecture is
and phase allocation as a function of radius. (f) Intensity profile for the

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 (a and b) Phase and (c and d) transmission data for GaN and
TiO2.
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transmission proles necessary for obtaining the desired device
geometries, they also inherently rely on precise forward models
for effective optimization.25–27 As evident by these state-of-the-
art research studies, the existing architectures are typically
trained to represent a unique geometric arrangement or con-
strained operating window. Alternatively, hybrid means
combining deep learning with evolutionary algorithms—such
as genetic algorithms or particle swarm optimization7,29,30—

have been explored to enhance design exibility. Nevertheless,
such methods are computationally intensive, and for nonlinear
distributions, may converge to solutions that are theoretically
optimal yet realistically unfeasible, not to mention that their
performance depends on high-delity datasets generated
through forwardmodeling. The accuracy and authenticity of the
training data, therefore, remain essential, highlighting the vital
importance of robust forward modeling practices in metalens
design. Additionally, a signicant technical hurdle emerges
from the highly skewed transmission spectral distribution,
where high-transmission data substantially outnumber low-
transmission data.

This work overcomes the aforementioned challenge by pre-
senting two distinct data libraries of optical responses for TiO2

GaN-based nanopillars operating in the 600–700 nm spectrum.
While previous studies31–34 have applied machine learning to
specic metasurface functionalities with limited datasets and
materials, we propose a broad dataset capturing both trans-
mission and phase responses suitable for versatile applications.
The validity of these datasets was subsequently conrmed
through comparative analysis with lithographically fabricated
TiO2 thin lms. A fully connected deep neural network (FCDNN)
was developed to accurately predict the highly asymmetric and
complex transmission-phase responses of both structures, with
rigorous multilayer benchmarking validating model efficacy.
Adopting such a unied model trained on diverse datasets aids
to improve the network's capacity to generalize material-specic
effects under similar conditions. A full lens simulation was
subsequently conducted to showcase its practical usability. The
response of a full lens for varying incident angles has also been
explored. The capability demonstrated through the successful
design and validation of the metalens conrms the model's
potential for driving inverse design.

2 Proposed methodology
2.1 Metalens design and dataset generation

The electromagnetic (EM) models of two metalenses (see
Fig. 1(a) and (b)) are rst constructed using two different unit
cells: one comprising TiO2 nanopillars and the other consisting
of GaN-based equivalents. Each structure (as in Fig. 1(c)) inde-
pendently engineered on a transparent SiO2 substrate, main-
tains cylindrical geometry and polarization insensitivity. Such
material variants are chosen since they ensure broad trans-
parency windows, minimized absorption losses and strong light
connement while exhibiting high refractive indices.35,36 In the
designed device, for a certain height of nanorods, diameters are
systematically varied to ensure a diffraction-limited spot. To
this aim, the spherical phase prole 4(x, y) of a metalens that
© 2025 The Author(s). Published by the Royal Society of Chemistry
focuses a normally incident plane wave of wavelength l can be
estimated as:

4ðx; yÞ ¼ 2p

l

�
f �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2 þ xp

2 þ yp2
q �

(1)

where xp and yp indicate the radial coordinates and f is the focal
length. Our overall workow is illustrated in Fig. 1.

To generate the dataset, design parameters such as height
(h), radius (R), refractive index (h) and wavelength (l) are varied
and optimized to create a library of phase and transmission
responses. The nanopillar heights for GaN range from 500 to
600 nm, with diameters ranging from 50 to 300 nm. However,
the corresponding dimensions for TiO2 are 610–700 nm in
height and 100–360 nm in diameter. With a uniform 10 nm
increment for height and diameter shis for GaN and TiO2

nanostructures, the excitation wavelength range of 600–700 nm
yields 28 886 and 27 270 unique congurations for GaN and
TiO2, respectively. Each simulation set employs normally inci-
dent plane waves of discrete wavelengths on periodic unit cells.
All the numerical investigations are conducted using the
commercial full-wave EM solver Lumerical. Here, the phase
phenomenon has a symmetric normal distribution, in contrast
to the asymmetric le-skewed distribution observed in trans-
mission characteristics (see Fig. 2).

2.2 Data preprocessing

As depicted in Fig. 3(a–c), the phase responses for GaN and TiO2

nanorods with different radii at various wavelengths exhibit
damped variations. These sharp dips correspond to the
coupling of the incident light with the surface mode of the
periodic lattice.37 Additionally, for TiO2, the smaller dips, seen
for all four wavelengths can be attributed to a higher-order
resonance within the nanopillars in adjacent unit cells.38,39

Since nanopillars can be thought of as Fabry–Perot resonators
with low-quality factors, these mutual interferences can be
ignored to capture the general trend of the phase plot for
varying radii.37,40 Therefore, preprocessing steps are carried out
for the phase property. Such noise removal can be implemented
by nonparametric smoothing techniques, including LOWESS
Nanoscale Adv.
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Fig. 3 Phase response (a and c) after filtering, with the inset of (c)
showing damped variations. (b and d) After normalization.

Fig. 4 Transmission after filtering for (a) GaN and (b) TiO2.
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smoothing41 and the bootstrap method.42 In this work, LOWESS
smoothing was applied to the data (Fig. 3(a–c)) due to its ability
to handle outliers effectively and capability to detect complex
relationships between variables.43 Furthermore, the phase data
were normalized to a range of 0 to 1, and any phase repetition
was eliminated, as shown in Fig. 3(b and d). The transmission
response for nanopillars with GaN and TiO2, processed using
a Gaussian lter, is shown in Fig. 4(a) and (b), respectively. Prior
to training, feature scaling was applied to the data using Scikit-
Learn's44 StandardScaler to standardize it so that the deep
learning models utilize the data efficiently. Once all the data
preprocessing steps were completed for GaN and TiO2, the
datasets utilized to train the models had a total of 26 327 and 25
301 data samples, respectively.
2.3 Model architecture and the prediction methodology

In this section, a fully connected deep neural network (FCDNN)
(as in Fig. 1(d)) has been implemented in order to accurately
predict the phase and transmission behavior required for full
metalens designs. Here, a common neural network comprising
ve hidden layers with 32, 100, 500, 100 and 32 neurons is
Nanoscale Adv.
utilized to foresee the optical responses of both GaN and TiO2

nanopillars, respectively. Such a framework demonstrates the
robustness of the architecture in handling diverse datasets
without compromising computational efficiency. Therefore,
a transfer learning strategy is utilized to address data scarcity
and reduce inherent biases in predictive modeling. While
alternative techniques, such as resampling45 and physics-
informed models,46 could be explored, our focus was on main-
taining architectural simplicity and computational efficiency.
Here, two transmission networks are employed, one dedicated
to classication and the other to perform regression.47,48 The
essentiality for enhanced transmittance in at metalenses leads
to a skewed dataset, with low-transmission samples being
greatly underrepresented.

At rst, in the binary classication problem, transmission
values less than 0.8 are assigned as class 0 (low transmission),
and the rest are identied as class 1 (high transmission). The
model undergoes training for 100 iterations with early stopping
and the weights or the low level features from this model are
later fed to the transmission regression architecture. These
weights have been kept frozen for ten epochs, so that the new
regression model can have reasonable output weights. Aer
completing the ten epochs, these coefficients are unfrozen so
that the new model can tweak the weights. Preemptive termi-
nation has also been employed in the transmission regression
model aer 500 epochs. Such a procedure improves the
performance of the regression task by drawing upon the
knowledge acquired from the classication job. As seen in
Fig. 1(d(iii)), the phase regression model has been implemented
without the use of transfer learning. For the phrase regression
model, training parameters have been kept consistent with
those of the transmission regression representation. In both
classication and regression models, the Rectied Linear Unit
(ReLU)49 activation function is employed in the hidden layers to
introduce nonlinearity, while the initialization strategy is
utilized to randomly activate the connection weights. This
combination is adopted because of its computational efficiency.
In the case of output layers, the sigmoid/logistic activation
function50,51 is utilized instead of the conventional gradient
descent optimizer.52 Hyperparameters such as the learning rate
and batch size have been optimized for both transmission and
phase paradigms. The entire training process is executed on
Google Colab.53 For the transmission classication task, binary
cross-entropy is used as the loss function, whereas accuracy,
precision and recall metrics have been considered for perfor-
mance evaluation. For the transmission regression model, the
Mean Absolute Error (MAE) (as dened in eqn (2)) has been
employed as the loss function due to its robustness to outliers,
even though the use of another loss functionMean Square Error
(MSE) (see eqn (3)) leads to a more signicant reduction in loss.

MAE ¼ 1

n

Xn

i¼1

jyi � ŷij (2)

MSE ¼ 1

n

Xn

i¼1

ðyi � ŷiÞ2 (3)
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 6 Learning curves of phase (a and b) and transmission (c and d)
models for GaN and TiO2, respectively.
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where n represents the total number of training data points, yi
denotes the ground truth values, and ŷi indicates the predicted
values.

3 Results and discussion

In this section, comprehensive multi-layer evaluations have
been conducted to rigorously assess the performance of the
proposed phase and transmission models for GaN and TiO2

based metalenses. Following the validation of the effectiveness
of the models, a complete lens simulation is performed, and the
corresponding optical properties are examined for further in-
depth analysis.

3.1 Model evaluation

As part of the rst stage of our evaluation, datasets within the
relevant wavelength range of 600–700 nm have been systemat-
ically subjected to the Leave-One-Height-Out Cross-Validation
(LOHOCV) method. The datasets for GaN, consisting of eleven
distinct heights, and for TiO2, comprising ten, have been
divided into the corresponding test subsets, each representing
a specic height and its associated data points. This division
facilitated the structured application of the LOHOCV method,
where the models have been trained on all segments except one.
The remaining segment is used as the test set during each
iteration. For instance, in the case of TiO2, this process has been
repeated ten times. Here, each height-specic section has been
employed as a test set exactly once, ensuring a comprehensive
evaluation across the entire dataset. Additionally, a validation
set comprising 5% of the training data has been retained in
each iteration to monitor the model's performance throughout
training. This cross-validation technique provides a more
robust assessment compared to the conventional train/test
split, which is prone to issues such as high variance and the
risk of undertting or overtting.54 The performance of the
phase and transmissionmodels (as illustrated in Fig. 5) for both
materials has been evaluated using four key metrics: Mean
Squared Error (MSE), Mean Absolute Error (MAE), Root Mean
Squared Error (RMSE), and R-squared (R2) values.

It is observed that for GaN, even themaximumMAE andMSE
achieved by the transmission and phase networks are 3.91 ×

10−3 and 7.28 × 10−5, respectively. In comparison, for TiO2, the
same properties are 11.44 × 10−3 and 13.21 × 10−5, respec-
tively. While both models demonstrate satisfactory perfor-
mance, the overall prediction performance for GaN is notably
Fig. 5 Leave-one-height-out-cross-validation results for phase and
transmission models for (a) GaN and (b) TiO2.

© 2025 The Author(s). Published by the Royal Society of Chemistry
higher than that for TiO2. The LOHOCV evaluation results
highlight the strong predictive power and accuracy of the
proposed models, indicating their potential for designing
metalenses with desired properties for both GaN and TiO2.

In the second part of the robustness proling, data corre-
sponding to a specic wavelength and height that meet the
criteria for metalens design have been selected as test sets for
both GaN and TiO2. Predictions have been generated using the
FCDNN architecture for these test sets, allowing for the
construction of full metalenses based on the predicted values.
The selected heights and wavelengths are 600 nm and 700 nm
for GaN, and 660 nm and 646 nm for TiO2, respectively. Next,
learning curves that depict training and validation losses have
been plotted, and comparisons between FDTD simulated data
and FCDNN predicted data are reported. Fig. 6 demonstrates
Fig. 7 Comparison between simulated (FDTD) and predicted (FCDNN)
phase (a and c) and transmission (b and d) responses for GaN and TiO2,
respectively.

Nanoscale Adv.
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that both the training and validation losses decrease and level
off eventually. Comparison between the FDTD simulations and
the FCDNN model predictions for phase and transmission
(Fig. 7) exhibits a strong alignment, indicating that they can be
employed in full lens design. It is worth mentioning that the
entire time for training and prediction for both the phase and
transmission models is about 152 minutes, compared to 86 658
minutes of simulation using FDTD.
Fig. 9 (a) Experimental and simulated transmittance spectra and (b)
used and experimental refractive indices of the TiO2 thin film as
a function of wavelength.
3.2 Experimental investigation

This section details the experimental deposition of TiO2 thin
lms and their subsequent transmittance and refractive index
measurements for benchmarking the consistency and reliability
of the numerically obtained dataset.

3.2.1 Sample preparation. A TiO2 thin lm was prepared
using the spray pyrolysis deposition technique as shown in
Fig. 8.

In brief, an appropriate amount of titanium(IV) butoxide
(purity-97%, Sigma-Aldrich) precursor and de-ionized water
were taken in a beaker and stirred at 300 rpm for 30 minutes
under atmospheric conditions. When the precursor was
completely dissolved and the mixture became homogeneous, it
was then transferred to the spray nozzle of an atomizer via
a simple medical saline tube. Meanwhile, an ultrasonically
cleaned glass substrate was placed onto a heater, which
provided a constant heating temperature. When the heating
temperature reached 400 °C and became stable, then the spray
pyrolysis of TiO2 solution was performed using the spray nozzle
with the aid of pressurized air ow, maintaining a constant ow
rate of 1 ml min−1. To obtain the TiO2 layered lm, the depo-
sition was continued for 5 minutes and the spray nozzle to
substrate height was kept at 25 cm throughout the deposition
process.

3.2.2 Optical measurements. The UV-vis spectra of the
fabricated TiO2 thin lm were recorded within the 350 nm to
800 nm range using a UV-2600i spectrophotometer equipped
with an ISR-2600Plus integrating sphere attachment. Subse-
quently, transmittance was computed from the acquired data
Fig. 8 Schematic diagram of TiO2 thin film deposition using a home-
made spray pyrolysis.

Nanoscale Adv.
based on the principle of energy conservation relation, A + T + R
= 1. From these studies, transmittance spectra were compared
with the simulation and plotted in Fig. 9(a). Furthermore, using
the acquired reectance data, the refractive index (n) of the
fabricated TiO2 layers was determined by using the following

formula:55 n ¼
�
1þ R
1� R

�
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4R

ð1� RÞ2 � k2
s

; where R and k are

the reectance and extinction coefficient respectively. The ob-
tained refractive index and the one used in our dataset gener-
ation were plotted as a function of measured visible spectral
wavelength and are presented in Fig. 9(b).
3.3 Full lens design

To achieve rigorous validation for our computational dataset,
two full lenses have been designed using predicted phase and
transmission outcomes. The TiO2 nanorod integrated large
metalens has a diameter of 100 mm and focal length of 100 mm,
and hence exhibits a numerical aperture (NA) of 0.44 at its
design wavelength of 646 nm. Besides, the GaN meta-atom-
based smaller lens with a 20 mm diameter and 8 mm focal
length demonstrates a NA of 0.78 at the operating spectrum of
700 nm. Both the planar lenses are designed with a spherical
phase prole, intended to independently focus collimated light
onto desired focal spots. Once the phase vs. radius library has
been derived from model predictions (Fig. 10(a)) and the target
phase prole has been determined, the phase data are trans-
lated for the corresponding radius distribution for each spatial
coordinate (Fig. 10(b)). During this stage, the complete
construction of the lens has been achieved by positioning
nanorods at precise locations to span the diameter of the
metalens. The full lens simulation has been performed on
a virtual machine (Amazon Web Services) with the following
specications: CPU – AMD EPYC 7571, vCPUs – 32, memory –

256 GB, clock speed – 2.5 GHz, with a total simulation time of
approximately 6 hours. The FDTD simulations reveal that the
phase imparted by the metalens closely matches with the target
phase prole, as illustrated in Fig. 10(c). For the brevity of the
paper, intensity plots generated from the simulations are
provided only for the larger lens. Fig. 11 demonstrates that the
constructed metalens achieves peak intensity at the designed
focal length of 100 mm, conrming its ability to focus incident
light at the intended focal point. Alongside the simulated
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 10 Metalens design workflow: (a and d) phase vs. radius library
from predicted data, (b and e) translated radius vs. position distribution
and (c and f) comparison of target and simulated phase profiles.

Fig. 11 Intensity profile of TiO2 based metalens (a) in the (x–z plane)
and (b) in the (x–y plane) of the focal spot in the focal plane. (c)
Normalized intensity distribution (simulated and predicted) at the focal
point along the propagation direction (z-axis). (d) Corresponding
horizontal cut at the focal spot in (b). Here, the FWHM of the focal spot
is 701.4 nm.

Fig. 12 Schematic illustration of a single layer metalens system con-
sisting of an aperture stop at oblique incidence.

Fig. 13 Normalized intensity plots for GaNmetalens along the z and x-
axes for an aperture stop at (a and d) 5 mm, (b and e) 10 mm, and (c and f)
for 15 mm. The vertical red line indicates the focal length.
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response, the performance was also predicted using our algo-
rithm. As expected, a strong agreement was observed between
the two.

According to Abbe's diffraction limit, the minimum resolu-
tion for the designed 100 mm metalens is calculated as

d ¼ :5
l

NA
¼ 722:25 nm: However, the full width at half

maximum (FWHM) at the focal plane is approximately
701.4 nm, indicating that the metalens achieves sub-diffraction
resolution, thereby surpassing the diffraction limit. The
focusing efficiency is approximately 66.33% compared to 59.8%
for the GaN-based lens.

3.4 Functionality assessment across angles

While our design was optimized for normal incidence condi-
tions, we systematically evaluated the lens's performance under
oblique illumination to quantify the angular tolerance and
© 2025 The Author(s). Published by the Royal Society of Chemistry
validate the robustness of our approach. To this aim, the GaN-
based lens was chosen to meet computational limitations.
Single-layer metalenses operate efficiently at normal incidence;
however, they experience off-axis aberrations and additional
issues at tilted angles, thereby considerably restricting the eld
of view (FOV) of metalenses.56 Strategies such as incorporating
aperture stops, doublet lenses, or cascaded structural layers are
useful in this regard.57 In this work, as shown in Fig. 12, an
aperture stop is positioned at the back of the metalens substrate
to restrict incoming light to a specied diameter smaller than
that of the lens. Aperture stops with diameters of 5 mm, 10 mm,
and 15 mm have been utilized to capture oblique incident light
at angles ranging from 1° to 4°. The focal spot intensity, shis in
the focal spot position, FWHM, and focusing efficiency at
varying angles and aperture sizes have been analyzed to evaluate
lens performance. As shown in Fig. 13(a–c), a noticeable shi in
focal spot intensity occurs as the AOI increases from 1° to 4°.
Additionally, a reduction in peak intensity is observed with
increasing incidence angle. Moreover, as the angle increases,
the sidelobes become more prominent. Fig. 13(d and f) show
that for aperture stops with a diameter of 5 mm and 15 mm, the
focal distance is signicantly deviant from the designed focal
length. However, it is evident from Fig. 13(e) that for an aperture
Nanoscale Adv.
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Fig. 14 FWHM and efficiency as a function of the incident angle of the
metalens with an aperture stop of 10 mm.
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stop with a diameter of 10 mm and incidence angles ranging
from 1° to 3° degrees, the focal distance is closely aligned with
the designed focal length. Slight deviations are observed as the
angle increases. The intensity plots demonstrate that the
central lobes are dominant, exhibiting higher intensity than the
sidelobes. This conguration results in a narrower FWHM and
an efficiency of approximately 16% as shown in Fig. 14. Our
ndings suggest that, for demonstration purposes, the
designed metalens using an 10 mm aperture stop provides
reasonable performance.

4 Conclusion

We have developed an extensive database on the optical
responses of subwavelength-spaced dielectric nanorods
through adjusting their corresponding heights and diameters.
An efficient transfer learning-based approach is proposed to
predict the transmission and phase prole of both GaN and
TiO2 scatterers. Using this algorithm, our model achieves
signicantly lower mean squared errors—on the order of 10−6

for transmission and 10−5 for phase—outperforming existing
benchmarks by an order of magnitude. Importantly, the dataset
is optimized to satisfy both near-unity transmission and full 0–
2p. Phase coverage, enabling practical device realization.
Performances of the simulated responses of meta-atoms have
also been compared and validated with those of the materials
experimentally grown on SiO2 substrates. Our nal contribution
was to demonstrate the applications of these nanorods through
designing metalenses. Two lenses with 20 mm and 100 mm
diameters that ensure reasonable focusing at the intended focal
plane have been designed. These miniaturized optical compo-
nents facilitate the development of portable biomedical optical
systems operating in the visible spectrum.
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