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action of NaN3 with nitriles toward
the synthesis of tetrazoles catalyzed by a copper
complex on boehmite nanoparticles†

Arida Jabbari, *a Bahman Tahmasbi, b Elham Mohsenib and Mitra Darabib

In the present study, the synthesis of boehmite nanoparticles was done using a hydrothermal method using

an aluminum source in water solvent. The synthesized boehmite support wasmodified using (3-iodopropyl)

trimethoxysilane (3-IPTMS), and then the modified boehmite was functionalized using a Schiff-base ligand.

Finally, copper ions were immobilized on the functionalized boehmite denoted as a boehmite@Schiff-base-

Cu nanocatalyst. The synthesized catalyst was identified and confirmed using SEM, FT-IR, TGA, EDXS, WDX,

XRD, and BET techniques. The activity of boehmite@Schiff-base-Cu was investigated in preparing 5-

substituted tetrazoles using nitrile derivatives and sodium azide, in which short reaction times and high

yields were observed in described reactions. Also, the many advantages of the boehmite@Schiff-base-Cu

nanocatalyst are ease of operation, compatibility with the environment, its easy separation from the

reaction medium, and the ability to reuse it several times without significantly reducing its catalytic activity.
1. Introduction

An ideal catalytic system should have good selectivity and
activity like homogeneous catalysts. It should also provide ease
of recovery and reuse like heterogeneous catalysts. In this
regard, in heterogeneous nanocatalysts, as the particle size
decreases to the nanoscale, the surface area increases, and
a high surface area will be available. Hence, nanocatalysts act as
a bridge to the gap between conventional catalysts (homoge-
neous and heterogeneous). In other words, nanocatalysts
provide the advantages of conventional catalysts (homogeneous
and heterogeneous) simultaneously.1,2 In recent years, the
immobilization of homogeneous catalysts on insoluble solid
surfaces to recover catalysts from the reaction medium has
attracted the attention of researchers in chemistry.3,4 The
behavior of catalysts immobilized on the support is strongly
inuenced by the properties of the support. To solve this issue,
various nanoheterogeneous supports such as boehmite nano-
particles, mesoporous silica, magnetic nanoparticles, carbon
nanotubes, graphene oxide, metal–organic frameworks,
zeolites, and ionic liquids have been used to heterogenize
homogeneous catalysts.5–12 Among the supports mentioned,
boehmite nanoparticles have outstanding physical and chem-
ical properties such as high concentrations of surface hydroxyl
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groups, very high internal surface area, non-toxicity, being
inexpensive, and high thermal and chemical stability. For this
reason, these nanoparticles are considered one of the most
attractive candidates for solid supports.13–16 Aluminum oxide
has various phases which can be gibbsite [g-Al(OH)3], bayrite [a-
Al(OH)3], nordstrandite[b-Al(OH)3], diaspore[a-AlO(OH)],
boehmite[g-AlOOH] and alumina [Al2O3]. The most stable of
them is a-Al2O3, and all these phases are intermediate and
unstable phases, which aer heating nally form an a-Al2O3

phase.17–19 Boehmite is actually one of the phases of aluminum
oxide called aluminum oxy-hydroxide AlOOH, which has many
applications in the elds of ceramics, petroleum, petrochemi-
cals, and medicine. In addition, boehmite has been used as
a catalyst, coating, membrane, optical material, water sweet-
ener, abrasive, absorbent, and vaccine supplement.20–23 Aer
alumina phase Al2O3, boehmite is the most stable aluminum
oxide phase. This material starts to convert into an alumina
phase in the temperature range of 250–450 °C, during which
complete phase change occurs at a temperature of about 450 °C.
Therefore, one of the most important applications of boehmite
is as a precursor in the preparation of alumina.24 Today, there
are many methods such as the electrochemical method,
hydrothermal method, sol–gel method, and thermal decompo-
sition method to prepare boehmite in nanodimensions. In the
meantime, the hydrothermal method is controllable, has a high
crystallization ability, and has been used more than other
methods.25–28 According to the reported studies, boehmite is in
the form of cubic structural units (orthorhombic) and the
surface of these units contains many hydroxyl groups.29,30

Tetrazoles are cyclic materials with a ve-membered ring
containing 4 nitrogen atoms and 1 carbon atom.31,32
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Heterocyclic tetrazole derivatives have various applications in
the synthesis of other organic compounds and pharmaceutical
and biological industries. Because of having low sensitivity to
impact and friction, high potential energy of heterocyclic tet-
razole derivatives, and high explosion heat, they are good
candidates for use in gas and explosives producers. Also,
because of having a high percentage of nitrogen, they release
a large amount of nitrogen gas aer combustion, and for this
reason, they have little pollution for the environment and are
considered green explosives. In addition, tetrazole compounds
play a signicant role as ligands in coordination chemistry, so it
is important to provide catalytic methods for the synthesis of
this group of compounds.33–35

We have introduced a new protocol for the catalytic synthesis
of tetrazoles using boehmite@Schiff-base@Cu as a heteroge-
neous nanocatalyst.
2. Experimental
2.1. Boehmite synthesis

First, 49.6 g of NaOH was dissolved in 50 ml of distilled water
and poured into a burette. Then, in a 250 ml beaker, 20 g of
Al(NO3)3$9H2O as the aluminum source was dissolved in 30 ml
of water and stirred using a stirrer. The sodium hydroxide
solution was added drop by drop to the aluminum solution
under a mechanical stirrer. Sedimentation was allowed to
proceed for twenty minutes with stirring. Aer sedimentation,
the obtained sediment was dispersed using an ultrasonic bath
(for 3 h). Then the sediment of the obtained gels was poured
into a porcelain crucible and heated for 4 h at 220 °C. The
Scheme 1 Synthesis of 3-iodopropyltrimethoxysilane (3-IPTMS).

Scheme 2 Preparation of a Schiff-base ligand.

Scheme 3 Synthesis of (MeO3Si)DETA.

© 2025 The Author(s). Published by the Royal Society of Chemistry
obtained white solid powder is the boehmite crystal. To remove
the nitrate impurity, the obtained boehmite was washed with
distilled water and dried at 70 °C.36

2.2. Synthesis of 3-iodopropyltrimethoxysilane

For the synthesis of 3-IPTMS, potassium iodide (0.246 mmol)
was rst added to dry acetone in a 50 ml ask. Then, the same
proportion of 3-chloropropyltrimethoxysilane (0.246 mmol) was
reuxed dropwise under a N2 atmosphere at 50 °C overnight.
Aer the completion of the reaction, the precipitate of potas-
sium chloride (KI) was ltered, and the 3-iodopropyl-
trimethoxysilane product, which was in the form of a yellow
liquid, was isolated (Scheme 1).37

2.3. Synthesis of the ligand

For the synthesis of the Schiff-base ligand, salicylaldehyde and
di(ethylenetriamine) were used in a ratio of 2 : 1 in methanol
solvent. For this purpose, salicylaldehyde (4 mmol) was dis-
solved in MeOH (methanol) solvent, and then diethylenetri-
amine (2 mmol) was added dropwise to the mixture. The
mixture was stirred under reux conditions for 4 h. Aer
evaporation of the solvent, the obtained product was dried
(Scheme 2).38 The nal product was puried by recrystallization
and characterized using FT-IR spectroscopy.

2.4. Synthesis of (PMeOSi)DETA

In a 100 ml ask, a mixture of 3-IPTMS (0.310 g) and the Schiff-
base ligand (0.330 g) was prepared in THF solvent. Then K2CO3

(3 mmol) was added to the mixture and reuxed for 21 h at
65 °C. The obtained precipitate was ltered, washed several
times with toluene, and dried at 70 °C for 4 h (Scheme 3).38

2.5. Functionalization of boehmite with (PMeOSi)DETA

In a 100 ml ask, 1 g of (MeO3Si)DETA was dissolved in toluene
solvent and then 1.5 g of boehmite support was added to it. The
mixture was reuxed for 24 h at 85 °C. Aer that, the obtained
Nanoscale Adv., 2025, 7, 3664–3675 | 3665
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Scheme 4 Preparation of boehmite@Schiff-base.

Scheme 5 Synthesis of the boehmite@Schiff-base-Cu nanocatalyst.

Scheme 6 Synthesis of tetrazoles catalyzed by the boehmite@Schiff-
base-Cu nanocatalyst.
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product (boehmite@Schiff-base) was isolated from the mixture
using lter paper, washed several times with ethanol, and
nally dried at 50 °C (Scheme 4).
Fig. 1 N2 adsorption–desorption isotherms and BJH-plot of the boehm

3666 | Nanoscale Adv., 2025, 7, 3664–3675
2.6. Preparation of copper catalysts (boehmite@Schiff-base-Cu)

In the nal stage of nanocatalyst synthesis, 1 g of
boehmite@Schiff-base and 3 mmol of Cu(NO3)2$9H2O were dis-
solved in ethanol solvent. The reaction mixture was reuxed for
24 h. Aer the reaction nished, the synthesized nanocatalyst
(boehmite@Schiff-base-Cu) was ltered and washed with distilled
water and ethanol. Finally, it was dried at 60 °C (Scheme 5).

2.7. Synthesis of tetrazoles

In a 25 ml round bottom ask, a suspension was formed with
a mixture of 35 mg of boehmite@Schiff-base-Cu nanocatalyst,
ite@Schiff-base-Cu nanocatalyst.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Table 1 Structural and textural parameters of boehmite@Schiff-base-
Cu samples

Sample
SBET
(m2 g−1)

Pore diameter
(nm)

Proe volume
(cm3)

boehmite@Schiff-base-Cu 739.96 4.6495 0.8601

Fig. 2 TGA curves of the boehmite@Schiff-base-Cu nanocatalyst.
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1 mmol of nitrile, 1.2 mmol of NaN3 (sodium azide), and
a sufficient amount of PEG (2 ml) at a temperature of 120 °C
under a magnetic stirrer. The progress of the reaction was
checked by TLC in a mixture solvent of n-hexane and acetone at
a ratio of (4 : 1). Aer the end of the reaction, the nanocatalyst
was separated using lter paper. Then, 10 ml of 4N HCl and
7 ml of ethyl acetate were added to the mixture, and the organic
phase extracted using a decanter was dried at ambient
temperature (Scheme 6).
2.8. Spectral data

2.8.1. 4-(1H-tetrazol-5-yl)benzonitrile. 1H NMR (250 MHz,
DMSO-d6): dH = 8.21–8.18 (d, J = 7.5 Hz, 2H), 8.07–8.04 (d, J =
7.5 Hz, 2H) ppm.
Fig. 3 SEM images of the boehmite@Schiff-base-Cu nanocatalyst.

© 2025 The Author(s). Published by the Royal Society of Chemistry
2.8.2. 2-(1H-tetrazol-5-yl)phenol. 1H NMR (250 MHz,
DMSO): dH = 13.07 (br, 1H), 8.05–7.89 (m, 1H), 7.42–7.30 (m,
1H), 7.13–6.91 (m, 2H) ppm.
3. Results and discussion

As indicated in Scheme 1, we synthesized the boehmite@Schiff-
base-Cu nanocatalyst for the rst time and we investigated its
catalytic performance in the synthesis of tetrazoles from various
nitrile derivatives. The prepared nanocatalyst was identied by
some techniques such as BET (Brunauer–Emmett–Teller),
scanning electron microscopy (SEM), energy-dispersive X-ray
spectroscopy (EDXS), thermogravimetric analysis (TGA),
wavelength-dispersive X-ray spectroscopy (WDX), X-ray diffrac-
tion (XRD) and Fourier transform-infrared spectroscopy (FT-IR).
3.1. N2 adsorption–desorption isotherm studies

The nitrogen adsorption–desorption technique was used to
determine the structural characteristics and examine the
surface of nanocatalyst boehmite@Schiff-base-Cu. Fig. 1 shows
the nitrogen adsorption–desorption analysis at 120 °C and the
pore size distribution plot corresponding to the N2 adsorption–
desorption for boehmite@Schiff-base-Cu. As it is clear in this
gure, this diagram is a type IV isotherm (denition by IUPAC)
in the region of relative pressure (P/P0) between 0.4 and 0.8,
which is characteristic of mesoporous compounds.39,40 The
structural parameters of nanocatalyst boehmite@Schiff-base-
Cu, such as the average pore diameter, surface area, and total
pore volume, are listed in Table 1. The average pore diameter,
total pore volume, and specic surface area of the
boehmite@Schiff-base-Cu nanocatalyst are 4.6495 nm, 0.8601
cm3, and 739.96 m2 g−1, respectively. Also, there is only one
sharp peak at 2.3 nm as observed from the pore size distribution
plot derived from this isotherm.
3.2. Thermogravimetric analysis studies

The thermal stability of catalyst boehmite@Schiff-base-Cu was
investigated through thermogravimetric analysis. This TGA
Nanoscale Adv., 2025, 7, 3664–3675 | 3667
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analysis was done in the heat range of 29 to 800 °C. The TGA
diagram of boehmite@Schiff-base-Cu is shown in Fig. 2. The
rst weight loss (about 8%) at low temperatures is related to the
evaporation of solvents. As indicated, except for the evaporation
of the solvent, no weight loss occurred up to 210 °C, meaning
that the boehmite@Schiff-base-Cu catalyst is stable up to
210 °C. The curve shows a weight loss of about 22% from the
temperature range of 210–450 °C, which indicates the well
stabilization of the copper complex on the boehmite
nanoparticles.
Fig. 4 The EDS spectra of the boehmite@Schiff-base-Cu
nanocatalyst.

Fig. 5 Elemental mapping images of the boehmite@Schiff-base-Cu nan

3668 | Nanoscale Adv., 2025, 7, 3664–3675
3.3. SEM photographs

The particle size and morphology of the boehmite@Schiff-base-
Cu nanocatalyst were investigated by SEM. Fig. 3 shows the SEM
images of the nanocatalyst. As shown in the images, this cata-
lyst has been synthesized as cubic structural units (ortho-
rhombic) with a uniform size between 10 and 25 nm.

3.4. Energy dispersive X-ray analysis and elemental mapping

The EDS analysis is a method to determine the elemental
composition of a sample. The EDS technique was used to
determine the quality of the elements in the structure of
boehmite@Schiff-base-Cu. The diagram obtained from this
analysis is shown in Fig. 4. The obtained results showed that O,
Al, C, Si, N, and Cu elements are present in the prepared
nanocatalyst structure. This evidence conrms the successful
synthesis of this nanocatalyst. Fig. 5 shows the distribution of
the elements in boehmite@Schiff-base-Cu. In these images, the
presence of aluminum, silicon, oxygen, carbon, nitrogen, and
copper elements is visible. Also, the distribution of copper on
the support surface was conrmed by this elemental analysis.

3.5. FT-IR spectra

FTIR spectroscopy makes it possible to verify the functional
group in the structure of the synthesized catalyst. Fig. 6 shows
the FT-IR spectra of (a) boehmite support, (b) boehmite@Schiff-
base, and (c) boehmite@Schiff-base-Cu. In spectrum a, the
peaks at 3467 cm−1 (symmetric) and 3552 cm−1 (asymmetric)
displayed in the spectrum of boehmite nanoparticles are related
to the vibrations of surface O–H bonds that are attached to the
ocatalyst.

© 2025 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5na00081e


Fig. 7 XRD patterns of (a) boehmite and (b) boehmite@Schiff-base-Cu
nanocatalyst.

Fig. 6 FT-IR spectra of (a) boehmite, (b) boehmite@Schiff-base and (c)
boehmite@Schiff-base-Cu nanocatalyst.
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surface of boehmite nanoparticles.41 The peaks appearing in all
IR-FT spectra in the regions of 618 cm−1 and 764 cm−1 are
attributed to the Al–O bond vibrations in the boehmite core.42

Also, the peak shown at 1638 cm−1 is related to the bending
vibration of hydrogen bonds of surface hydroxyl groups.43 In the
IR spectra of boehmite with a Schiff-base functionalized ligand
(Fig. 6b), stretching vibrational bands C]C, C]N, and O–H
were observed at 1660, 1394, and >3000 cm−1 respectively and
the peak shown at 1080 cm−1 is attributed to the vibration of Si–
O. The FTIR spectrum of the catalyst (Fig. 6c) shows the C]N
stretching vibrational band at a lower wave number
(1637 cm−1). Based on these data, copper metal ions of C]N
groups were coordinated.38
Table 2 Effect of various parameters on the formation of tetrazoles in
the existence of the boehmite@Schiff-base-Cu catalyst

Entry Solvent Temp. (°C) Catalyst (mg) Time (min) Yield (%)

1 PEG 120 40 60 95
2 PEG 120 35 85 95
3 PEG 120 30 90 70
4 PEG 100 35 170 Trace
5 PEG 120 — 120 N.R
6 H2O 100 35 120 Trace
7 EtOH 77 35 120 Trace
3.6. X-ray diffraction

The normal XRD patterns of boehmite and the
boehmite@Schiff-base-Cu nanocatalyst are shown in Fig. 7. The
XRD diffraction of boehmite (Fig. 7a) exhibits a series of peaks
at different 2q positions at 14.32° (0 2 0), 28.47° (1 2 0), 38.52° (0
3 1), 45.72° (1 3 1), 49.47° (0 5 1), 51.87° (2 0 0), 55.72° (1 5 1),
60.70° (0 8 0), 64.42° (2 3 1), 65.27° (0 0 2), 67.97° (1 7 1), and
72.52° (2 5 1), which are related to the standard pattern of
boehmite nanoparticles in the orthorhombic unit cell (JCPDS-
no. 00-049-0133 and JCPDS-no. 01-074-1895).44–49 All these
peaks are also clearly observed in the XRD patterns of the
boehmite@Schiff-base-Cu nanocatalyst, indicating that the
crystal structure of boehmite nanoparticles remained stable
aer functionalization and stabilization of the copper complex
in orthorhombic cells (Fig. 7b).
© 2025 The Author(s). Published by the Royal Society of Chemistry
Moreover, a broad peak of the 2q value at the 18–26° position
is related to the coated silica on boehmite nanoparticles,3,50

which is not observed in the XRD pattern of unmodied
boehmite nanoparticles. This peak indicates that boehmite
nanoparticles were successfully modied with (3-iodopropyl)
trimethoxysilane.
3.7. Catalytic studies

Various experiments were conducted to investigate the
boehmite@Schiff-base-Cu nanocatalyst and to optimize the
conditions in the reaction related to 4-nitrobenzonitrile,
including the type of solvent, the amount of the catalyst, and the
temperature. To obtain optimal conditions for the synthesis of
tetrazoles, the reaction of 4-nitrobenzonitrile (1 mmol) with
sodium azide (1.2 mmol) in the vicinity of the boehmite@Schiff-
base-Cu catalyst was selected as a sample reaction. The results
related to the effect of different parameters on this reaction
were investigated, which are summarized in Table 2. At rst, the
reaction was investigated in the presence of different amounts
of the boehmite@Schiff-base-Cu catalyst; according to the
results in the table, the shortest time and the highest yield were
obtained in the presence of 35 mg of boehmite@Schiff-base-Cu
nanocatalyst. Then the effects of different solvents such as
DMSO, PEG-400, 1,4-dioxane, toluene, ethanol, and H2O were
compared, and it was found that PEG-400 solvent provides the
Nanoscale Adv., 2025, 7, 3664–3675 | 3669
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best results. Finally, the effect of temperature on the reaction of
the model was investigated. The best results with excellent yield
and low reaction time were obtained in PEG-400 solvent (as
green solvent), for an amount of 35 mg of boehmite@Schiff-
base-Cu nanocatalyst, and at a temperature of 120 °C (Table 2).

Aer obtaining the conditions, the [3 + 2] cycloaddition
reaction of nitrile derivatives and NaN3 was examined for the
Table 3 Synthesis of some tetrazoles catalyzed by boehmite@Schiff-ba

Entry Substrate Product

1

2

3

4

5

6

7

8

9

3670 | Nanoscale Adv., 2025, 7, 3664–3675
preparation of several types of tetrazoles (Table 3). All nitriles,
including electron- (donating or accepting) functional groups,
became related tetrazoles in the presence of boehmite@Schiff-
base-Cu. Signicantly, boehmite@Schiff-base-Cu exhibits
a good homoselectivity in the tetrazole synthesis, when two
similar types of cyano-substituted groups are present in two
quite same positions of the benzonitrile ring, e.g. phthalonitrile
se-Cu

Time (min) Yield (%)

100 90

120 95

200 70

70 95

135 85

180 78

100 98

100 85

85 95

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Scheme 7 A cyclic mechanism for the formation of tetrazoles cata-
lyzed by boehmite@Schiff-base-Cu.

Fig. 8 Recyclability study of the boehmite@Schiff-base-Cu
nanocatalyst.
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and terephthalonitrile, that only mono-cycloaddition was
observed (Table 3, entries 2 and 4). The homoselectivity of the
boehmite@Schiff-base-Cu catalyst in the synthesis of tetrazoles
Fig. 9 FT-IR spectra of recovered boehmite@Schiff-base-Cu.

© 2025 The Author(s). Published by the Royal Society of Chemistry
was conrmed with 1H NMR spectroscopy, as 1H NMR (250
MHz, DMSO-d6): dH = 8.21–8.18 (d, J = 7.5 Hz, 2H), 8.07–8.04
(d, J = 7.5 Hz, 2H) ppm.

A reaction mechanism for the formation of tetrazoles cata-
lyzed by boehmite@Schiff-base-Cu is shown in Scheme 7.51–53 In
this suggested mechanism, at rst, the nitrile group becomes
susceptible to nucleophilic attack with the interaction of the
cyano-functional group with the boehmite@Schiff-base-Cu
catalyst. At this stage, intermediate I is formed. Then, inter-
mediate II is formed through the [3 + 2] cycloaddition reaction
with NaN3 and intermediate I as a sodium salt form. In the nal
stage, the salt form of the intermediate II is converted to a target
molecule tetrazole compound through HCl addition in the
work-up step.
3.8. Reusability of the catalyst

To investigate the recovery and reusability of the
boehmite@Schiff-base-Cu nanocatalyst in the synthesis of tet-
razoles under optimal conditions, the synthesis of 5-phenyl-1H-
tetrazole was selected as a model reaction. Aer the end of the
reaction in each cycle, the catalyst was separated using centri-
fugation and washed several times with HCl 4N and hot ethyl
acetate and then it was reused in the next cycle aer drying. The
catalyst was recycled in 4 periods without a signicant decrease
in its activity. In Fig. 8, the activity results of the recycled
boehmite@Schiff-base-Cu nanocatalyst are shown in the form
of a diagram.

To investigate the heterogeneous nature of the
boehmite@Schiff-base-Cu nanocatalyst, a hot ltration test was
carried out based on a published article.28 In this regard, in the
synthesis of 5-phenyl-1H-tetrazole, the catalyst was removed
aer nishing the reaction and then the exact amount of
probabilistic leached copper in the ltered reaction media was
calculated by AAS analysis. In this analysis, a notable amount of
leached copper was not detected. These results indicate that
Nanoscale Adv., 2025, 7, 3664–3675 | 3671
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Table 4 Comparison of the boehmite@Schiff-base-Cu catalyst for the synthesis of 4-(1H-tetrazol-5-yl)benzonitrile with previous catalysts

Entry Catalyst Solvent Time (min) Yield (%)

1 Boehmite@Schiff-base-Cu PEG 70 95 [This work]
2 Fe3O4@SBTU@Ni(II) PEG 7 h 94 ref. (54)
3 Cu(II) immobilized on Fe3O4@SiO2@L-histidine PEG 90 95 ref. (55)
4 FeCl3–SiO2 PEG 20 h 80 ref. (56)
5 Fe3O4-adenine-Zn PEG 140 91 ref. (57)
6 BNPs@Cur-Ni PEG 120 88 ref. (58)
7 Boehmite@SiO2@Tris-Cu(I) NPs PEG 110 89 ref. (59)
8 CdCl2 PEG 9 h 79 ref. (60)
9 Fe3O4@boehmite PEG 24 h 92 ref. (61)
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copper is not leached from the boehmite@Schiff-base-Cu
catalyst and that this catalyst has a heterogeneous nature.

The structure of the recovered boehmite@Schiff-base-Cu
nanocatalyst was identied using FT-IR analysis (Fig. 9). As it
is clear from the FT-IR spectrum, there is no signicant change
in the recycled nanocatalyst compared to the original catalyst.
These results indicate that the boehmite@Schiff-base-Cu
nanocatalyst is stable under the reaction conditions for the
formation of tetrazoles.

3.9. Comparison of the catalyst

The activity of the boehmite@Schiff-base-Cu catalyst was eval-
uated in comparison with other previously reported catalysts in
the literature (Table 4). According to the results given in Table 4,
the synthesis reaction of 4-(1H-tetrazol-5-yl)benzonitrile has
been carried out in PEG-400 as a green solvent with low reaction
time and high yield of the product. The results in Table 4 prove
the superiority of the boehmite@Schiff-base-Cu catalyst in
terms of efficiency or reaction time compared to other catalysts
in the literature.

4. Conclusion

In this research, a new and green nanocatalyst
(boehmite@Schiff-base-Cu) was prepared, whose catalytic
activity was investigated in the important synthesis of tetrazoles
using nitrile derivatives and NaN3, in PEG-400 solvent at 120 °C.
This nanocatalyst was identied by SEM, FT-IR, TGA, EDXS,
WDX, XRD, and BET. The advantages of tetrazole synthesis in
the presence of boehmite@Schiff-base-Cu include short reac-
tion time, high yield of products, stability of the catalyst, and
inexpensive and availability of reagents. Also, the use of this
nanocatalyst in this work compared to other catalysts has
advantages such as low toxicity, transportation, easy storage,
weighing and utilization, simple preparation of the catalyst
from cheap and available raw materials, high catalytic activity
due to the increased surface area, stability, and recyclability and
reusability of the catalyst.
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