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Adverse reactions caused by waterborne contaminants constitute a major hazard to the environment.
Controlling the pollutants released into aquatic systems through water degradation has been one of the
major concerns of recent research. Bismuth-based perovskites have exhibited outstanding properties in
the field of photocatalysis. Nonetheless, many proposed bismuth-based perovskites still suffer from
stability problems. The present study investigated a unique bismuth-based metal-co-sharing composite
of 2D Bi,O3z/Cs3Bi>Brg nanosheet perovskite synthesized via a modified anti-solvent reprecipitation
method. Several samples were prepared using different ratios of Bi,Os and CszBi,Brg. The optimal
composite sample was found to be BO/CBB 28%, where 2D stacked nanosheets of Cs3Bi,Brg showed
remarkable interaction with Bi,Oz due to its optimal Bi co-sharing, as displayed in the FE-SEM and
HRTEM images. However, further increasing the percentage led to greater agglomeration, hindering the
photocatalytic degradation efficiency. The average size and optical band gap energy of the optimal
sample were 42.5 nm and 2.46 eV, respectively. The photocatalytic degradation of MB using the optimal
sample reached ~92% within 60 min with a catalyst dosage of 10 mg L™, With an increase in catalyst
concentration to 40 mg L™, MB removal reached almost ~96% within 60 min under visible light owing
to the enhanced stability, facilitating efficient charge separation. This paper presents an improved

Received 18th December 2024 composite with optimal ratios of 2D Bi,O3/CszBi,Brg nanosheets that demonstrated good stability and
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enhanced photocatalytic performance in comparison with pure Bi,Os and CszBi;Brg. This study also
DOI-10.1039/d4na01047g sheds light on the significance of metal co-sharing and the pivotal role it plays in enhancing the S-

rsc.li/nanoscale-advances scheme charge transfer and the internal electric field between the two components.

1. Introduction

“Center for Research and Innovations, BGS Institute of Technology, Adichunchanagiri
University, B. G. Nagar, Karnataka, India The rapid increase in the world population, the expansion of
*Department of Mechanical Engineering, BGS Institute of Technology, urbanization, and the issue of climate change have led the
Adichunchanagiri University, B. G. Nagar, Karnataka, India . ..

o ) ) R world into a water and energy crisis. Water and energy
“Leibniz-Institute for Catalysis, University of Rostock, 18059 Rostock, Germany . . . .

) . . ) consumption are intensifying; however, their resources are
“Industrial Chemistry and Heterogeneous Catalysis, Department of Chemistry, TUM . K R
School of Natural Sciences, Technical University of Munich, 85748 Garching, Germany limited, leadmg to a severe shortage of these two Important
. 12 .
‘Department of Studies in Physics, University of Mysore, Manasagangotri, Mysuru, factors for life on Earth. AddreSSIHg the water and energy
Karnataka, India predicament has been imperative for researchers, resulting in
'Physics Department, College of Science and Humanities in Al-Kharj, Prince Sattam Bin  the investigation of several water- and energy-preservation
Abdulaziz University, Alkharj 11942, Saudi Arabia methods. To maintain the sustainability of these two vital
¢Interdisciplinary Research Centre for Hydrogen Technologies and Carbon resources. researchers have devoted Signiﬁcant effort towards
Management, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, . . 38
adopting solar energy and water-treatment practices.

31261, Saudi Arabia > . .
"Department of Materials Science and Engineering, King Fahd University of Petroleum Conventlonally » wastewater contaminant degradatlon can be

and Minerals (KFUPM), Dhahran, 31261, Saudi Arabia achieved through the utilization of physical, biological, or
‘Department of Production Engineering, Faculty of Mechanical Engineering, University ~ chemical methods.*** Photocatalysis is one of the most prom-
of Aleppo, Aleppo, Syria. E-mail: faten.masri.or@gmail.com ising techniques for wastewater degradation due to its envi-

T Electronic  supplementary information (ESI) available. See DOI: ronmentally friendly qualities, durability, low cost, and
https://doi.org/10.1039/d4na01047g

1030 | Nanoscale Adv, 2025, 7, 1030-1047 © 2025 The Author(s). Published by the Royal Society of Chemistry


http://crossmark.crossref.org/dialog/?doi=10.1039/d4na01047g&domain=pdf&date_stamp=2025-02-10
http://orcid.org/0009-0009-8379-2325
http://orcid.org/0000-0002-5113-4223
http://orcid.org/0000-0002-1379-1927
https://doi.org/10.1039/d4na01047g
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4na01047g
https://pubs.rsc.org/en/journals/journal/NA
https://pubs.rsc.org/en/journals/journal/NA?issueid=NA007004

Open Access Article. Published on 29 2025. Downloaded on 22/11/25 17:49:26.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Paper

enhanced performance in destroying and removing
contaminants.”® In photocatalysis, chemical reactions are
promoted under light energy using several materials, such as
metal oxides, semiconductors, and organic compounds.”

The catalytic properties are pivotal for achieving photo-
catalytic reactions. As such, careful selection of the photo-
catalyst is crucial for effective performance. Perovskite
materials have demonstrated remarkable optoelectrical prop-
erties, rendering them a promising option for harvesting light
and executing photocatalytic reactions, including for water
treatment.'®?° Recently, several scholarly studies have proposed
perovskites as promising semiconductors for photocatalytic
reactions due to their unique characteristics, such as regulated
redox cycles, strong conversion adaptability, long carrier diffu-
sion lengths, notable tolerance factors, and high photo-
corrosion stability. The crystal structure of perovskites permits
their bandgap to be adjusted to increase their visible light
absorption, which means they can be tailored to suit the
required reaction.”® Furthermore, the lattice structure of
perovskites can have a substantial impact on photogenerated
charge-carrier separation.” The identified cubic shape of
perovskites allows for the insertion of a wide range of metal
ions.”® Moreover, perovskites are cost-effective, flexible, and
thermally resistant. Thus, all of the aforementioned properties
suggest perovskites would be good candidates for photo-
catalytic applications.***

Initially, the perovskites employed as photocatalysts were
based on lead, and they demonstrated enhanced photocatalytic
activity compared to their traditional counterparts.”® However,
the commercialization of lead-based perovskites was hampered
due to their solubility in water, resulting in a toxic release of
lead into water. Alternative lead-free perovskites with similar
ionic radii to Pb emerged as promising less-toxic, low-cost, and
efficient candidates for photocatalytic applications.”” Lead-free
bismuth-based perovskites Cs;Bi, X, have been selected as
catalysts by many researchers because of their excellent optical
properties, moderate band gaps, and robustness under ambient
conditions.”®?' Besides, they exhibit excellent organic dye
degradation capabilities. For instance, Cs;Bi,l, could effectively
remove 93% of rhodamine B (RhB) in 180 min under visible
light.** Similarly in another study, rhodamine 6G dye (RhG) was
degraded using synthesized Cs;Bi,Brgy as a photocatalyst, and
the reported results revealed a remarkable photocatalytic
activity of the synthesized photocatalyst.** Nonetheless, the
susceptibility of Cs;Bi,Bry to degradation under humid condi-
tions hinders its stability as water molecules could cause the
decomposition of Cs;Bi,Brg,

Recently, Masri et al. addressed the instability issue of Cs;-
Bi,Bre in aqueous environments through making use of the
unique properties of two-dimensional (2D) perovskite nano-
sheets. They prepared 2D Cs;Bi,Bry perovskite nanosheets as
photocatalysts for the removal of contaminants from water.
Different scans of the prepared 2D Cs;Bi,Bry perovskite nano-
sheets showed they possessed abundant active sites for the
adsorption and reaction with the target pollutants. Due to the
high reactivity of the catalyst's surface, the contact between the
catalyst and the water contaminants was enhanced, leading to

© 2025 The Author(s). Published by the Royal Society of Chemistry
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the successful degradation of the contaminants in water.”® In
fact, the morphology, including the thickness and composition,
of 2D perovskite nanosheets allows for the formation of flexible
bandgaps that permit harnessing a broader spectrum of light
energy, which can facilitate initiating and accelerating chemical
reactions under a wide range of light irradiation,*****” whereby,
2D Cs;3Bi,Bry perovskite nanosheets displayed improved pho-
tocatalytic performance for the removal of dyes.

Much research has investigated the degradation of several
pollutant dyes via oxide-based photocatalysts, which have
exhibited good degradation activities.”® Oxide-based photo-
catalysts are considered excellent materials for the elimination
of water contaminants due to their non-toxicity, cost-
effectiveness, and durability together with exceptional opto-
electrical properties. Over several decades, numerous nano-
metal oxides, including ZnO, Mn,03;, Fe;0,, TiO,, and Fe,03,
have been used to degrade plenty of dye molecules.**™*
Although each of the aforementioned materials has demon-
strated a satisfactory degradation efficiency, major deficiencies
have also been found, such as agglomeration, fast electron-hole
recombination, and inefficient bandgap values.** Bi,O;3
possesses many beneficial physiochemical properties, such as
an appropriate bandgap, high refractive index, high metal oxide
ion-conductivity properties, dielectric permittivity, superior
photoconductivity, and photoluminescence properties, in
addition to being an eco-friendly material.***** Hence, many
research studies have experimented with Bi,O; for water
degradation.”

In the present study, we developed an innovative solution to
tackle the instability problem of catalysts in aqueous media by
synthesizing stable 2D Bi,0;/Cs;Bi,Bry nanosheets. Through
a modified anti-solvent reprecipitation method, we accom-
plished a remarkable achievement: the successful preparation
of 2D Bi,05/Cs;Bi,Bry nanosheets by optimizing the mixing
ratio between Bi,O; and Cs;Bi,Br,. By leveraging the distinctive
characteristics of both bismuth oxide and bismuth halide
perovskites, and harnessing the benefits of the 2D structures in
Cs;Bi,Bry and Bi,0s, our aim was to significantly enhance the
nanosheets photocatalytic efficiency. Our main focus was to
improve the degradation efficiency for methylene blue under
visible light, which served as a representative example of a dye
wastewater contaminant for our exploration. Through the
successful synthesis and comprehensive characterization of 2D
Bi,03/Cs;3Bi,Bry, we reveal the crucial role played by the 2D
structure in enhancing both the stability and photocatalytic
performance of Bi,03/Cs;Bi,Bro. Finally, we investigated
enhancing the S-scheme charge carrier via metal co-sharing.

2. Experimental section

2.1. Chemicals

Bismuth nitrate [Bi(NOj);-5H,0], bismuth bromide BiBr;
(97%), cesium bromide (CsBr, 99.999%, trace metals basis),
isopropanol, and dimethyl sulfoxide (DMSO) were purchased
from Sigma-Aldrich. Oxalic acid was purchased from Alfa Aesar.
No further purification was done for any of the chemicals.
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2.2. Synthesis of Cs;Bi,Bry

The synthesis of pure Cs;Bi,Brg was carried out using the typical
anti-solvent method. Here, in order to form a uniform Cs;Bi,Br,
precursor solution, 192 mg of CsBr and 269.0 mg of BiBr; (molar
ratio = 3 : 2)*° were dissolved in 20 mL of DMSO. Then, 250 mL of
isopropanol was quickly injected into the as-prepared precursor
solution under vigorous stirring. One minute later, the obtained
mixture was centrifuged at 3000 rpm for 3 min to precipitate the
large particles, while the small particles were thrown out along
with the solution. Then, isopropanol was added to the precipi-
tated large particles, and the solution was centrifuged at 10
000 rpm for another 5 min. Then, the resultant sample was dried
in a hot air oven at 60 °C. Finally, the pure yellow perovskite
Cs;Bi,Bry was obtained, and was labeled as CBB.

2.3. Synthesis of Bi,O;

Bi,0; was synthesized following the conventional hydrothermal
method. Here, 20 mL of 0.1 M Bi(NOj3);-5H,0 and 10 mL of
1.2 M oxalic acid were slowly stirred at room temperature for
1 h. The resultant solution was sonicated for 30 min, and
a white precipitate of bismuth oxalate was formed.** Subse-
quently, the precipitate was transferred into a 100 mL Teflon-
lined autoclave filled with water up to 60% of its total volume.
Afterwards, the autoclave was put in an oven at 150 °C for 24 h.
Then, it was naturally cooled to room temperature. The ob-
tained product was collected and washed with deionized water
(DIW) and pure ethanol, and it was dried in a hot air oven at 60 ©
C for 2 h. Next, it was calcinated at 400 °C for 10 h to obtain the
Bi,O; powder, labeled as (BO).

0.1M
Bi(NO,),.5H,0
1.2M C,H,0,

!

Stirring for 1 hr

Teflon-lined
autoclave

Sonicated for 30 min
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2.4. Synthesis of Bi,0;/Cs;Bi,Br,

Bi,03/Cs;3Bi,Bro was synthesized via the anti-solvent method.
First, CsBr and BiBr; (molar ratio = 3:2) as well as the previ-
ously prepared pure Bi,O; were dissolved in 20 mL DMSO.
Several ratios of these components were used to obtain different
samples. The samples comprised CsBr and BiBrj3, constituting
1%, 7%, 14%, 28%, and 56% of the respective composite
samples, while the other part (99%, 93%, 86%, 72%, and 44%)
was Bi,O;, respectively. Each of the resultant precursors was
then sonicated for 10 min. After that, 250 mL of isopropanol was
quickly injected into the as-prepared precursor solutions under
vigorous stirring. The obtained samples were then centrifuged
at 3000 rpm for 3 min to precipitate the large particles and then
centrifuged for another 5 min at 10 000 rpm. Afterwards, the
samples were dried in a hot air oven at 60 °C. Eventually, five
yellow composite perovskites of Bi,03/Cs;Bi,Bry were obtained,
and were labeled as BO/CBB 1%, BO/CBB 7%, BO/CBB 14%, BO/
CBB 28%, and BO/CBB 56%, based on the percentage of CBB in
the composite samples (Scheme 1).

2.5. Characterization

A Rigaku Miniflex X-ray diffraction (XRD) system with Cu-Ko
radiation and 40 kV/15 mA current was utilized for confirming
the crystal structure of the pure Bi,O3 and Cs;Bi,Brg as well as
the prepared Bi,O;/Cs;Bi,Bro composite samples. Fourier
transform infrared (FTIR) spectroscopy (FTIR, SHIMADZU
IRSPIRIT) (alpha model, laser class 1) was performed in the
transmittance mode in the spectral range of 4000-400 cm ™' to
identify the functional groups in crystals of the samples. A

Washing and Centrifuging

T

Putin anovenat 150 °Cfor 24 h

r.!
g S, Calcinated at 400 °C for 10 h
) . -
: _d —~ B0
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Scheme 1 Synthesis of Bi,O3z/CszBi>Brg nanocomposites.
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Shimadzu UV-2600i instrument was employed for the UV-vis

diffuse reflectance spectroscopy (DRS) measurements.
Detailed information was revealed about the surface
morphology of the prepared Bi,O;/Cs;BiBrg composite

samples using scanning electron microscopy (SEM; Zeiss EVO®
LS 15). Moreover, transmission electron microscopy (TEM;
Talos 200 kV) was utilized to determine the size and shape of the
prepared Bi,03/Cs;Bi,Brg composite samples.

2.6. Photoreactor setup

The photocatalytic reactor used in this research work was
a Heber Scientific photoreactor (Fig. S11) from Heber Scientific
(Chennai, India). This system includes a medium-pressure
mercury vapour lamp (125 W, max = 365 nm) that is placed
in a jacketed quartz tube. A continuous flow of cold water passes
through the jacket for the purpose of dissipating the heat
generated by the lamp. The dyes for testing were contained in
several quartz tubes with a volume of 150 mL. These tubes have
a length of 37 cm and dimensions of 2.3 cm and 2.7 cm for the
inner and outer diameters, respectively. A distance of 6 cm was
kept between the mercury lamp and the tubes placed around it.
The catalyst particles were consistently distributed throughout
the solution using an air pump.

2.7. Photocatalytic degradation of MB

A 5 ppm methylene blue (MB) solution of was individually
prepared from a stock solution of MB in deionized water. The
experiment was repeated three times to ensure the reliability of
the results. During the experiment, the pH level of the dye
solution was retained between 6.8 and 7.0 in a 100 mL volume.

View Article Online
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The dye concentration in each of the test tubes was 5 ppm.
Afterwards, 10 mg of the prepared Bi,03/Cs;Bi,Bry catalyst was
added to each of the test tubes. The suspensions were stirred for
30 min in complete darkness to maintain adsorption-desorp-
tion equilibrium between the MB dye and the photocatalyst
before exposing the samples to visible illumination. Subse-
quently, a photoreactor was utilized to irradiate the stable
aqueous dye solution. A 2 mL aliquot of the photodegraded dye
samples was withdrawn every 10 min, which was filtered to
remove the catalysts and then centrifuged (SPINWIN, Tarsons)
at 5000 rpm for 5 min. Eventually, the centrifuged suspensions
were analyzed by recording the absorption band maximum of
MB at 660 nm using a Shimadzu UV-2600i spectrophotometer.
Eqn (1) was used to calculate the degradation efficiency.

G -G

i

% Degradation = x 100

1)
where C; and C; are the absorbance at time zero and time ¢,
respectively.

3. Results and discussion

3.1. PXRD patterns

Bi,0; nanosheets were prepared via a hydrothermal method at
150 °C for 24 h. The powder X-ray diffraction (XRD) patterns are
shown in Fig. 1(a and b), and reveal the good crystallinity of the
structure of pristine Bi,O; in a single monoclinic phase.
Moreover, the observed distinct diffraction peaks of the as-
prepared Bi,Oz could be indexed to the (002), (120), (200),
(—212), (112), (—222), (041), (—321), and (—241) planes located
at 260 = 26.30°, 27.22°, 32.85°, 34.85°, 37.20°, 39.93°, 45.91°,

b ——— BOICBB 56%
a
— CBB 022 ——BOICBB 28%
110 003 | 220 —
A \ 122 5
— o | A 12 421 f N v | = —— BOJ/CBB 14%
5 bt bt WAL b AL, 8
s =2 150 PN
b ‘ ‘ | ﬂ L [ | “u” PR | FTT SOTH AT 2
‘0 |—Bo 002 8 ——BOICBB 7%
g [=
- 200 o H‘ H
E 120 041
2412 299 | 24 — BOICBB 1%
‘_____._)J.N_JWW
TR “ \| Il o J\.ulu.lmmln( m - " N " B
10 20 30 40 50 60 10 20 40 50 60

20 degree

30
20 degree

Fig. 1 XRD patterns of (a) pure BO, CBB and (b) BO/CBB 1%, BO/CBB 7%, BO/CBB 14%, BO/CBB 28%, and BO/CBB 56%.
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51.89°, and 54.88°, which was in accordance with JCPDS card
no. (PDF # 41-1449). The pristine Cs;Bi,Bry nanosheets
synthesized by the anti-solvent method displayed several
diffraction peaks that could be indexed to the (011), (110), (003),
(112), (022), (121), (122), (220), (131), (115), and (041) planes
located at 26 = 15.60°, 22.13°, 27.22°, 28.86°, 31.76°, 35.76°,
38.83°,45.19°, 51.01°, 53.73°, and 56.55°. The characteristics of
the resultant patterns corresponded to the hexagonal phase of
Cs3Bi,Bry and well matched the standard JCPDS card no. (PDF #
01-70-0493) with lattice parameters of @ = 7.97200 A, ¢ = 9.86700
A, and space group P3m1.>> Bi,05/Cs;Bi,Br, nanosheets were
fabricated following the anti-solvent method, whereby 2D Cs;-
Bi,Bro, nanosheets were grown on Bi,O; nanosheets based on
the electrostatic interaction between Bi,O; and Cs;Bi,Brs.
Evidently, the XRD patterns of the Bi,O,/Cs;Bi,Bry composites
clearly displayed combination peaks for the pure Bi,O; and
Cs;3Bi,Brg, confirming the formation of a van der Waals heter-
ojunction between the Bi,0;/Cs;Bi,Bro composites. The peak
intensity of Cs;Bi,Brg increased with the increase in Cs;Bi,Brg
content.

3.2. Fourier transform infrared spectroscopy (FTIR)

FTIR was performed to aid identifying the chemical bonds of
the prepared samples (Fig. 2). For pure CBB, two peaks were
observed: one at a wavenumber of around 1650 cm ™
sponding to O-H (bending), and a second peak at around

corre-

——CBB
BO/CBB 56%
~ |—BoicBB 28%
=
©
A
s, [—B8orcBB 14%
h—
2]
c
Q |—BoiCcBB 7%
]
=
—— BOICBB 1%
—BO
4000 3000 2000 1000

Wavenumber (cm'1)

Fig.2 FTIR spectra of BO, BO/CBB 1%, BO/CBB 7%, BO/CBB 14%, BO/
CBB 28%, BO/CBB 56%, and CBB.
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3350 cm ' corresponding to O-H (stretching) vibrations of
residual H,O molecules absorbed from the moisture in the
environment. These matched well with the results of previous
studies.”*"* Moreover, the synthesis of BO was confirmed by the
appearance of sharp bands in the range of 450-550 cm ™", which
were attributed to the characteristic bands for Bi-O stretching.>*
Besides, two peaks were observed centred at around 1400 and
3450 cm ™' related to bending and stretching of the O-H group
resulting from moisture.®* Regarding the BO/CBB composites,
the peaks observed were almost in the same regions as for the
pristine individual materials. It was also noticed that as the
percentage of CBB increased in the composite samples, the
peaks were shift towards those of pristine CBB. In general, all
the characteristic peaks evidenced the formation of CBB and
BO.

3.3. Field emission scanning electron microscopy (FE-SEM)

The morphology of the prepared samples was obtained in detail
using FE-SEM. Large 2D nanosheet layers with smooth surfaces
were clearly observed in pure CBB (Fig. 3(a)). As shown in
Fig. 3(b), for the morphology of pristine BO, a grouping or
stacking of 2D nanosheets with shorter dimensions than pure
CBB could be observed. Regarding the composite sample BO/
CBB 1%, it could be seen that the 2D nanosheets of CBB
slightly interacted with BO (Fig. 3(c)). Moreover, as the ratio of
CBB increased, the interaction with BO increased, until there
was a complete interplay between them for BO/CBB 56%
(Fig. 3(d-g)). This increase in the interaction and Bi co-sharing
promoted the generation of more active sites, thus boosting the
stability of the composite and enhancing the photocatalytic
efficiency.***”*” Additionally, it was found that the agglomera-
tion of the five composite samples was reinforced with the
increase in the interaction and Bi co-sharing between BO and
CBB.

3.4. Energy-dispersive X-ray (EDX) spectroscopy

EDX is an analytical technique that is utilized for determining
the elemental analysis and chemical characterization of
samples using an electron microscope. Fig. 4 shows the EDX
spectrum of the composite sample BO/CBB 28%, which
confirmed the presence of Cs, Bi, Br, and O elements.

3.5. Transmission electron microscopy (TEM) and selected
area electron diffraction (SAED)

The morphology of the BO/CBB 28% composite was investi-
gated by TEM, with the TEM image displaying the formation of
2D nanosheets with slight agglomeration, high crystallinity,
and in close contact with each other, as shown in Fig. 5(a).
Moreover, the images obtained from high-resolution TEM
(HRTEM) revealed stacked nanosheets that had lattice fringes
with d-spacings of 0.26 and 0.32 nm, corresponding to the (022)
crystal plane belonging to CBB and (120) plane belonging to BO,
respectively (Fig. 5(b-d)). Strong interaction resulting from Bi
co-sharing was thus observed between the individual compo-
nents of the composite. Furthermore, the SAED pattern indi-
cated the existence of bright spots, with the lattice fringes

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 SEM images of (a) CBB, (b) BO, (c) BO/CBB 1%, (d) BO/CBB 7%, (e) BO/CBB 14%, (f) BO/CBB 28%, and (g) BO/CBB 56%.

spacings corresponding to the (110) and (022) crystal planes of
CBB and (120) plane of BO (Fig. 5(e)). Some defects in the lines
of the lattice fringes could also be noticed (Fig. 5(c and d)),
indicating the presence of oxygen vacancies (OVs).”® These
results were in excellent agreement with the planes found in the
PXRD pattern. The STEM-EDS elemental mapping images
exhibited a homogeneous elemental distribution of Cs, Bi, Br,
and O, as displayed in Fig. 6.

3.6. Surface elemental analysis

The surface chemical composition, as well as the electronic
states of the two pure synthesized samples (BO and CBB) and
the optimal composite (BO/CBB 28%), were investigated by XPS
to understand the possible charge migration pathways in the
heterostructure (Fig. 7). The shift of the peak position was
calibrated according to the binding energy of C 1s at 284.6 eV.*®
The survey spectra of BO, CBB, and BO/CBB 28% were
compared, as shown in Fig. S2.T Moreover, high-resolution XPS

© 2025 The Author(s). Published by the Royal Society of Chemistry

(HR-XPS) was performed on Cs, Br, Bi, and O to obtain more
detailed information about the chemical state of the resultant
heterostructure. In Fig. 7(c), two peaks could be observed at
724.0 and 738.0 eV (Cs 3d) related to Cs 3ds,, and Cs 3ds, in
CBB, and two peaks at 724.2 and 738.2 eV (Cs 3d) related to Cs
3ds, and Cs 3dj/, in the BO/CBB 28% composite, indicating
a slight positive shift compared with the pure CBB. Similarly, for
Br 3d, Fig. 7(b) shows a peak at 68.5 eV for CBB, and at 68.7 eV
for the BO/CBB 28% composite, demonstrating a positive shift
compared with the pure CBB. These slight positive shifts in the
Cs 3d and Br 3d peaks of the BO/CBB 28% composite indicate
the migration of electrons from CBB and the generation of an
internal electric field at the interface, which resulted in an
upward bending of its potential energy level, thereby facilitating
the formation of an S-scheme junction.*®** Fig. 7(a) shows the
binding energies in the spectrum of the Bi 4f core level; for the
BO/CBB 28% composite, two peaks were observed located at
159.6 and 164.6 eV, ascribed respectively to Bi 4f;,, and Bi 4f;,
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Fig. 4 BO/CBB 28% (a) SEM image, (b) EDX analysis, and (c—g) elemental mapping analysis.

Bi** oxidization states.® Similarly, Bi 4f,/, and Bi 4fs/, displayed
peaks at 159.3 and 164.9 eV for CBB and at 159.9 and 165.1 eV
for BO (Fig. 7(a)). The Bi 4f binding energies of CBB and BO
showed a remarkable negative and positive shift, respectively,
compared with the BO/CBB 28% composite. These positive and
negative shifts in the Bi 4f of CBB and BO indicate the transfer
of electrons from CBB to BO during their junction formation
and the upward and downward bending of their energy poten-
tials, respectively. Moreover, these remarkable shifts in the Bi 4f
core level confirmed the strong interaction between CBB and
BO in the heterojunction, indicating there was Bi interfacial co-
sharing between BO and CBB due to the equilibrium of their
Fermi levels. The formation of such a Bi interfacial co-sharing
metal bond between CBB and BO would enhance the hetero-
junction stability and the charge transformations. These
observations were also observed in the O 1s spectrum of the
pure BO in comparison to BO/CBB 28% (Fig. 7(d)). It was also
observed the intensity of the O 1s spectrum in the pure BO was
higher than in BO/CBB 28%, indicating the lower content
number of O atoms in the BO/CBB 28% composite and metal
surface exposure between the CBB and BO components. The O
1s spectrum for pure BO showed two prominent peaks at 529.6
and 531.3 eV related to the Bi-O bond and oxygen vacancies
(OVs).*®** These OVs in BO would facilitate the formation of Bi-
Bi bonds between CBB and BO during the formation of the BO/
CBB 28% composite. From the O 1s core level of the BO/CBB
28% composite, it could be observed the ratio of OVs and Bi-
O was remarkably reduced, which indicated the filling of these
vacancies by the Bi atom and the replacement of the Bi-O bond
by a Bi-Bi bond. However, the additional peak located at
531.5 eV in the O 1s spectrum of BO/CBB 28% was ascribed to
the hydroxyl (OH) group on the surface due to the humidity
sensitivity of CBB. Moreover, it could be observed that the peak
for Bi-O in BO/CBB 28% showed a negative shift compared to in
BO, which further verified the Bi replacement and acquisition of

1036 | Nanoscale Adv, 2025, 7, 1030-1047

a negative charge on the BO surface at the interface with CBB in
the heterojunction. Ultimately, these shifts facilitated the
formation an S-scheme junction, whereby interfacial Bi atom
co-sharing between CBB and BO greatly boosted the S-scheme
charge transfer, maintaining a high charge separation and
efficient photocatalytic degradation.®**

As can be seen from Fig. 7(d), there were two prominent
peaks at 529.6 and 531.3 eV in the O 1s spectrum of BO, which
were related to Bi-O bonds and OVs, while three peaks could be
observed at 528.4, 529.9, and 531.5 eV in the O 1s spectrum of
the BO/CBB 28% composite, which were related to Bi-O, OVs,
and hydroxyl group bonds, indicating a positive shift compared
with the pure BO. Moreover, the intensity of the O 1s spectrum
was noticeably higher in the pure BO than in BO/CBB 28%. This
decrease in the O 1s spectrum intensity of the composite was
due to the replacement of O 1s by bismuth, where Bi-sharing
was formed instead of Bi-O. Additionally, there were more
OVs in the composite. A shift was thus noticed, referring to the
replacement of O 1s by Bi. Based on the above analyses, it could
be concluded that Bi had replaced O 1s in BO/CBB 28% with
atomic-level contact enabled by Bi atom co-sharing.®* These
resulting positive and negative shifts of the binding energy
signified the electronic density degree.”® As such, an internal
electric field was generated at the interface of BO/CBB 28%,
which facilitated the smooth migration of electrons from the
CBB phase across the interface to the BO phase. Hence, this
interfacial Bi atom co-sharing between CBB and BO greatly
boosted the S-scheme charge transfer due to their effective
spatial charge separation, maintaining a high-efficiency pho-
tocatalytic degradation.®*

3.7. UV-vis-diffuse reflectance spectroscopy

The photophysical properties of the prepared pure and
composite samples were studied by UV-vis-DRS, as shown in
Fig. 8(a). The BO, BO/CBB 1%, BO/CBB 7%, BO/CBB 14%, BO/

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 5 TEM images (a and b), high-resolution (HR)-TEM images (c and d), and SAED pattern (e) of the BO/CBB 28% composite.

CBB 28%, BO/CBB56%, and CBB samples absorbed visible light (ahv)" = K(hv — E,) (2)
ataround 461, 459, 453, 456, 456, 449, and 442 nm, respectively.

The following equation was used to calculate the band gap Wwhere Kis a constant called the band tailing parameter, and Eg
energy.® is the energy of the optical band gap. Fig. 8(b) shows the Tauc
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Fig. 6 STEM-EDS mapping of Cs, Bi, Br, and O in the BO/CBB 28% composite.

plots for the band energy. The band gap energies of the
synthesized BO, BO/CBB 1%, BO/CBB 7%, BO/CBB 14%, BO/
CBB 28%, BO/CBB 56%, and CBB were 2.45, 2.44, 2.47, 2.46,
2.46,2.49, and 2.54 eV, respectively. BO and BO/CBB 1% showed
the lowest band gaps among the seven samples. Fig. 8(a) reveals
that BO/CBB 28% and BO/CBB 56% had higher absorption
rates, owing to the increase in the active sites generated by the
strong interaction between CBB and BO, hence increasing the
photocatalytic activity.

3.8. Evaluation of the photocatalytic activity of MB

The photocatalytic efficiency of BO, BO/CBB 1%, BO/CBB 7%,
BO/CBB 14%, BO/CBB 28%, BO/CBB56%, and CBB was assessed
via observing their ability to degrade MB in the dark and under
visible light, and the obtained results are displayed in Fig. 8.
The experiments were conducted by dissolving 10 mg of each of
the prepared photocatalyst samples in a 100 mL solution con-
taining the MB dye concentration of 5 ppm. The total time for
the degradation was 90 min (30 min in the dark and 60 min
under visible light). Initially, the experiments were carried out
in the dark. It was found that the dye did not undergo any
significant degradation in any of the samples, which well
matched with the results of previous studies.®*®” Still, a very
slight degradation of the dye was noticed in the first 30 min,
which could be attributed to the adsorption of MB on the
photocatalyst surface. Subsequently, the dye concentration
remained unchanged. Under visible illumination, the degra-
dation rate was reported at definite time intervals (10 min) for
each of BO, BO/CBB 1%, BO/CBB 7%, BO/CBB 14%, BO/CBB

1038 | Nanoscale Adv,, 2025, 7, 1030-1047

28%, BO/CBB56%, and CBB. Regarding the pure catalysts BO
and CBB, there was no significant change in the MB concen-
tration (~40% and ~35%, respectively) during the time of the
experiment.

With respect to the composite samples, the degradation rate
increased with the increase in the CBB content, until reaching
BO/CBB 28%. Beyond this, the degradation rate started
decreasing. BO/CBB 28% achieved the highest percentage of MB
removal among all the synthesized samples, reaching ~92%.
This could be attributed to the optimal mixing percentage
between the 2D nanosheets of both BO and CBB, whereupon
there was a great interaction between the two components. This
interaction allowed for a greater stability of the photocatalyst as
well as providing an appropriate surface area, which contrib-
uted to enhancing the photocatalytic activity. Further, the
increase in the percentage of 2D nanosheets of CBB (BO/CBB
56%) led to a greater interaction with BO, resulting in Bi co-
sharing and leading to a reduction in the effects from the
optical properties of BO. Moreover, more agglomeration was
observed (as can be seen in the SEM images in Fig. 3(g)), leading
to the reduction of the surface area for contact between the
catalyst and the dye molecules. Hence, the photocatalytic
degradation ratio started to decrease. This was consistent with
the characterization results.

Typically, the degradation kinetics can be studied using two
equations, namely pseudo-first-order and second-order kinetics
equations, as shown below.®®

—ll’l(Ci/C()) = k] t (3)

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 7 High-resolution (a) Bi 4f, (b) Br 3d, (c) Cs 3d, and (d) O 1s XPS spectra of BO, BO/CBB 28%, and CBB.

1(C; — Cp) = 1(Cy — Cp) + kot (4) Both Fig. 9(b) and Table 1 display the kinetics of the BO, BO/

CBB 1%, BO/CBB 7%, BO/CBB 14%, BO/CBB 28%, BO/CBB56%,

where C¢ is the MB equilibrium concentration at time ¢, Co and  and CBB photocatalysts for the degradation of MB under visible
Cj are the MB concentration at time ¢ = 0, and k; and &, are the  light irradiation. The reaction constant k was found to be
first-order and second-order kinetic rate constants, respectively.  0.00776, 0.00813, 0.00977, 0.02378, 0.03841, 0.0294, and
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Fig. 8 (a) UV-vis-DRS plots and (b) band gap energy Tauc plots of BO, BO/CBB 1%, BO/CBB 7%, BO/CBB 14%, BO/CBB 28%, BO/CBB 56%, and
CBB.

0.00671 min* for the aforementioned photocatalysts, respec-
tively. Additionally, the process could be described by a pseudo-
first-order kinetic model with R?> values of 0.9326 for BO,
0.95227 for BO/CBB 1%, 0.9716 for BO/CBB 7%, 0.89608 for BO/
CBB 14%, 0.90362 for BO/CBB 28%, 0.94644 for BO/CBB 56%,

and 0.93079 for the CBB photocatalysts.

The photodegradation pathway of MB degradation with BO/
CBB 28% (0.1 g L") under visible light was investigated
through mass spectroscopy (MS), and the proposed route is
shown in Fig. 10. The MS spectrum of MB dye had corre-
sponding fragments at m/z 284, 303, 201, 215, 157, and 142,
which well conformed with the previous studies.®”® At m/z 303,
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(a) Degradation curves, (b) kinetics of the photodegradation, (c) catalyst dosage effect, and (d) effect of the initial MB concentration.
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Table1 Slope of —In(C/Co) against time for BO, BO/CBB 1%, BO/CBB 7%, BO/CBB 14%, BO/CBB 28%, BO/CBB 56%, and CBB photocatalysts in

the MB degradation process

Equation y=a+bx
Sample Intercept Slope Adj. R-square
BO —0.02388 £ 0.03054 0.00776 + 8.4711 x 10™* 0.9326
BO/CBB 1% —0.00737 £ 0.02668 0.00813 + 7.3987 x 10™* 0.95227
BO/CBB 7% 0.0022 + 0.02453 0.00977 + 6.80438 x 0.9716

107*
BO/CBB 14% —0.07405 £ 0.11809 0.02378 + 0.00328 0.89608
BO/CBB 28% —0.16746 £ 0.18302 0.03841 + 0.00508 0.90362
BO/CBB 56% —0.08657 £ 0.10246 0.0294 + 0.00284 0.94644
CBB —0.01924 + 0.02675 0.00671 + 7.4189 x 10™* 0.93079

a new peak was observed, which may indicate the cleavage/
oxidation of the substituted dimethyl groups in both imines
for MB.”* Thus, CBB250 had a higher efficiency for decolorizing
and degrading the entire structure of MB dye under visible light.

3.8.1. Catalyst dosage. The catalyst dosage is an influential
parameter that has a significant impact on the mechanism of
pollutant degradation.>®”>”* In the current study, the optimal
obtained sample (BO/CBB 28%) was further studied with
respect to catalyst loading, whereby different BO/CBB 28%
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Fig. 10 MB degradation pathway during photocatalysis.
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concentrations ranging from 10 to 50 mg L™ " were tested. Based
on the experiments conducted in the current study, the results
demonstrated that the photocatalytic efficiency increased as the
concentration of the catalyst increased from 10 to 40 mg L.
However, a decline in MB degradation was noticed beyond this
concentration rate. Evidently, the enhanced photocatalytic
activity was largely influenced by both charge separation and
light absorption. The increase in the photocatalytic degradation
was attributed to an increase in the active sites on the photo-
catalyst surface. The optimal degradation rate occurred as the
concentration of BO/CBB 28% reached a 40 mg L™ catalyst
concentration dosage, whereby the removal of MB was almost
96% within 60 min. However, as the catalyst loading was further
increased, the ratio of light penetration was impaired (Fig. 9(c)).
As such, the number of generated active sites on the catalyst
surface was reduced due to light diffraction caused by the
excessive catalyst loading, thus inhibiting dye degradation.”
3.8.2. Initial MB concentration. The photodegradation
efficiency of BO/CBB 28% nanosheets was studied with refer-
ence to the initial MB concentration. Several initial concentra-
tion rates of MB were tested ranging from 5 to 20 ppm under
60 min visible light irradiation. The results indicated that
increasing the initial MB concentration caused a decline in the
photocatalytic degradation efficiency (Fig. 9(d)). This was
ascribed to the presence of more particles around the active
sites of the photocatalyst, hence, the light was impeded from
passing through the surface of the catalyst, limiting the gener-
ation of e"/h" pairs. As a result, the photocatalytic degradation
efficiency dropped.” The effect of pH on the degradation of MB
by the optimal BO/CBB 28% composite was also studied, with
the discussion of this and the result provided in the ESI file.}
3.8.3. Photocatalytic stability. The photostability and the
reusability of the two pure prepared samples (i.e., BO and CBB),
and the two optimal prepared composite samples regarding dye
degradation (i.e., BO/CBB 28% and BO/CBB 56%) were further
evaluated by filtering, collecting, rinsing, and reusing the pho-
tocatalysts for four cycling experiments, as shown in Fig. 11.
Although the pure photocatalysts (BO and CBB) showed low
degradation activity during the first round compared to the
composite samples, they almost maintained their degradation
rate during the next four cycles, without showing any remark-
able decline. Interestingly, the composite photocatalysts (BO/

Nanoscale Adv., 2025, 7, 1030-1047 | 1041
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Fig.11 Stability tests based on the photocatalytic degradation of MB in
four catalytic cycles using BO, BO/CBB 28%, BO/CBB 56%, and CBB.

CBB 28% and BO/CBB 56%) exhibited no apparent loss in their
photocatalytic activity after the four test cycles. The very slight
decrease in their activity that was seen might be partially
attributed to the loss of photocatalytic particles caused by the
collection and washing during each testing cycle as well as due
to photocorrosion.””’® Thus, it was demonstrated that the
catalysts could retain their photocatalytic properties over time,
and were chemically stable under these conditions. Among all
of the studied photocatalysts in this research work, BO/CBB
56% presented slightly better stability compared to BO/CBB
28%; still, the latter composite showed better overall perfor-
mance regarding efficient photocatalytic degradation. The
stability of BO/CBB 28% was further proved by the XRD results
before and after the photocatalytic recycle tests (Fig. S47). A
slight reduction in the peaks was observed after the fourth cycle
though, which was ascribed to photocorrosion.”

3.8.4. Pollutant degradation mechanism. The band struc-
tures of CBB and BO were analysed in order to trace their
photocatalytic mechanism. The work function was calculated
using XPS measurements with a negative applied bias of
—29.4 eV. Based on the work function, the Fermi levels of the
samples were found to be situated at —3.7 eV for CBB and
—5.6 eV for BO, as shown in Fig. 12(a). For the purpose of
estimating the energy between the Fermi level and the valence
band edge of each semiconductor, valence-band XPS measure-
ments were calculated, as exhibited in Fig. 12(b). Hence, the
construction of the energy diagrams for CBB and BO was per-
formed based on linking the findings with the previously
calculated band gaps (2.54 eV for CBB and 2.45 eV for BO),
whereupon the conduction band of CBB was found to be
—3.1 eV, and that of BO was found to be —4.28 eV (Fig. 12(d)).
The Fermi level of CBB was higher than that of BO. As such,
electrons would travel from CBB to BO, generating an internal
electric field from BO to CBB.” A remarkable charge density
barrier that would improve the charge transfer has the potential
of being created due to this junction. Additionally, the different

1042 | Nanoscale Adv., 2025, 7, 1030-1047
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Fermi energy levels possessing thermal equilibrium led to the
alignment of the valence band (VB) and conduction band (CB),
resulting in an upward rise of the CBB energy bands, and
a downward movement of the BO energy bands. Consequently,
an S-scheme heterojunction was formed.*>* Positive charges
accumulated in CBB, and negative ones in BO in the depletion
layer.

As the catalyst sample was exposed to light, electrons trav-
elled from the VB to the CB of both CBB and BO, leading to the
generation of holes behind them. The internal electric field
from BO to CBB and the band bending resulting from the
Coulomb force can preserve the photogenerated electrons on
the CBM of CBB, and the holes on the VBM of BO with a higher
redox potential. The electrons on the CBM of BO would quickly
recombine with the holes on the VBM of CBB, as these holes
would be closer to the electrones on the CBM of BO than the
holes present on the VBM of BO, hence leading to charge-carrier
separation with maximized redox potentials (Fig. 12(f)). Hence,
the establishment of the S-scheme heterojunction was
ascertained.®**

Furthermore, the photocatalytic mechanism was investi-
gated to determine the main active species, whereupon radical-
trapping experiments were conducted under optimal condi-
tions via the utilization of several suitable scavengers for each
species, namely benzoquinone (BQ), potassium dichromate
(K,Cr,0y), ethylene diamine tetra acetic acid disodium (EDTA-
2Na), and methanol (MeOH) for ‘O, , e, h*, and 'OH",
respectively.®**” Fig. 12(c) shows that when K,Cr,0, and BQ
were utilized as scavengers, the photodegradation of MB was
significantly decreased, with BQ exhibiting a lower photo-
degradation rate. The use of MeOH led to an approximately 50%
decrease in MB photocatalytic degradation. Eventually, the
addition of EDTA-2Na resulted in a slight MB degradation
decrease. These results reveal that the holes hardly affected the
degradation performance of MB. Superoxide oxygen radicals
and electrons played the most significant role in the degrada-
tion process of MB, while the superoxide hydroxyl radicals had
a less noticeable effect on the degradation process of MB by
Bi,03/Cs;Bi,Br,.

To demonstrate the formation of an S-scheme hetero-
junction in the BO/CBB 28% heterostructure, electron spin
resonance (ESR) measurements were carried out with 5,5-
dimethyl pyrroline N-oxide (DMPO) as a spin-trapping agent to
identify the generation of "OH and ‘'O, radicals in water and
alcohol solutions, respectively.®® BO/CBB 28% exhibited robust
ESR signals for both radicals in both media, while BO produced
only ‘OH in water and CBB produced only ‘O, in alcohol
solution (Fig. 12(d and e)). These results indicate that the
generated electrons in the BO/CBB 28% gathered in the CB of
CBB for efficient "O, generation, while the holes accumulated
on the VB of BO for 'OH production. This charge separation
differs from that observed in traditional type-II junctions,
further evidencing the formation an S-scheme heterojunction.
This unique charge migration pathway underpins the enhanced
photocatalytic performance of the BO/CBB 28% heterostructure
in degrading MB. The ESR results were consistent with the XPS

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 12 (a) Work function. (b) Valence-band edge measurements using valence-band XPS for CBB and BO. (c) Scavenger experiments with

various scavengers (for MB degradation over BO/CBB 28%). (d) 5,5-Dimethyl-1-pyrroline N-oxide (DMPO) spin-trapping electron paramagnetic
resonance (EPR) spectra of ‘OH, and (e) DMPO-"0,", (f) conduction and valence-band edge positions and Fermi levels of the two pure

semiconductors, and schematic of the reaction mechanism.

and scavenger test results, supporting the suggested charge-
transfer mechanism.

4. Conclusion

The current study successfully delved into the fabrication and
characterization of a novel bismuth-halide-perovskite-based
nanocomposite photocatalyst with different ratios of Bi,Os/
Cs;Bi,Brg prepared via the anti-solvent method. The Cs;Bi,Brg
percentages in the composites were 1%, 7%, 14%, 28%, and
56% to obtain BO/CBB 1%, BO/CBB 7%, BO/CBB 14%, BO/CBB
28%, and BO/CBB56%, respectively. The resultant samples were
compared with each other with respect to their optical proper-
ties, morphology, stability, and photocatalytic degradation
performance. Moreover, they were also compared with pristine

© 2025 The Author(s). Published by the Royal Society of Chemistry

2D Bi,O; and 2D Cs;Bi,Bry nanosheets. The SEM images
confirmed the formation of 2D nanosheets of the two pure
samples. Further, the results affirmed that increasing the ratio
of Cs3Bi,Brg in the composites led to an increase in the inter-
action with Bi,O; owing to Bi co-sharing, thus boosting the
stability of the synthesized composites in aqueous medium.
However, the further increase in the percentage of Cs;Bi,Bro
hindered benefiting from the optical properties of Bi,O; as
there was greater agglomeration, thus leading to a smaller
surface area and resulting in a decrease in the photocatalytic
degradation. BO/CBB 28%, which had a band gap of 2.46 eV,
exhibited the optimal degradation rate for MB, reaching ~92%
within 60 min. This mixing ratio between Bi,O; and Cs;Bi,Brg
allowed for taking advantage of the beneficial properties of both
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2D Bi,03; and 2D Cs;Bi,Bro. Besides, appropriate stability was
achieved along with a large surface area-to-volume ratio,
providing ample active sites that are essential for irradiation
absorption. Also, the contact between the catalyst and the target
pollutant molecules was intensified because of the interfacial
co-sharing of Bi atoms, while the internal electric field facili-
tated the development of an improved S-scheme hetero-
structure. As such, the catalytic degradation efficiency was
enhanced. In addition, the photocatalytic dosage of 40 mg L "
was proven to be the optimal dosage in terms of the efficiency of
pollutant degradation. The initial dye concentration also
affected the degradation efficiency, whereby raising the initial
concentration of the dye led to a decrease in degradation effi-
ciency. Furthermore, scavenger experiments indicated that both
‘O, and e” played the most important role in the removal of
MB. The current study proposes a novel composite of a metal
halide perovskite coupled with bismuth oxide for the purpose
that can improve the catalyst stability and enhance the photo-
catalytic degradation efficiency in aqueous medium. Future
research work may further study Bi co-sharing as well as
coupling metal halide perovskites with other metal oxides for
the purpose of ascertaining the optimal composites for photo-
catalytic degradation.
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