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Computer-aided metal–organic framework
screening and design approaches toward efficient
carbon capture processes
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Carbon capture is a priority strategy for reducing CO2 emissions and mitigating climate change.

Adsorption-based technologies offer significant potential to reduce imposed parasitic energy, and metal–

organic frameworks (MOFs) are considered a promising class of adsorbents for this purpose. In this review,

targeting carbon capture using MOFs, we explore materials screening approaches using material-level

properties (e.g., CO2 working capacity and CO2/N2 selectivity) and process-level performance indicators

(e.g., CO2 purity and energy consumption), with an emphasis on the incorporation of process-level

considerations into screening workflows. We also highlight recent advancements of data-driven property

and process models in accelerating large-scale materials screening. Next, we review diverse materials

design approaches, shifting from open-loop exhaustive search to closed-loop targeted discovery. Finally,

we discuss the challenges associated with experimental databases, active materials discovery, and

simultaneous material and process design, with perspectives proposed to accelerate the materials

discovery for industrial carbon capture applications.

1. Introduction

Reducing carbon dioxide (CO2) emissions from industry,
transportation, buildings, and other sources is a critical
priority for mitigating global climate change and achieving a
net-zero future. Carbon capture, deployed at an industrial
scale, is a particularly attractive and promising option.1

Various carbon capture technologies such as post-

combustion capture can be retrofitted onto existing power
plants, offering a practical solution for reducing CO2

emissions in short and medium terms.2 However, the main
challenge in the implementation of carbon capture
technologies is the significant additional energy costs
associated with the capture process.3 Consequently,
developing energy-efficient capture processes that minimize
the energy consumption imposed by carbon capture has
become an important area of research.

Traditional approaches for carbon capture from power
plant streams primarily rely on amine-based absorption
processes.2,4 In amine scrubbing, CO2 is absorbed by an
aqueous amine solution, followed by stripping of the
captured CO2 out of the liquid phase through heating.5

Although this process is highly efficient due to the high CO2
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Design, System, Application

Carbon capture is a critical strategy for mitigating global climate change and achieving a net-zero future. Significant research efforts have been dedicated
to developing advanced adsorbents, such as metal–organic frameworks (MOFs), with improved properties for CO2 capture. Traditionally, this process is
typically dominated by trial-and-error methods, which are resource-intensive and heavily depend on expert knowledge. In contrast, computational
approaches are increasingly being employed to evaluate adsorbents, enabling targeted experimental validation of promising candidates. Targeting efficient
carbon capture using MOFs, this review explores computer-aided materials screening and design approaches. Key computational techniques including
molecular simulations, structure–property relationships, and process simulation and optimization are comprehensively introduced. Multi-scale screening
approaches spanning from material to process level are discussed, highlighting the importance of process-level considerations in identifying high-
performance MOFs for carbon capture. Additionally, recent materials design strategies are introduced for tailoring MOFs with desired properties, shifting
from open-loop exhaustive search to closed-loop targeted discovery. Emerging machine learning and data-driven techniques for accelerated materials
discovery are also explored. Overall, this review presents a comprehensive overview of innovative and interdisciplinary approaches for the efficient discovery
of high-performance MOFs for carbon capture, which are also broadly applicable to a wide range of adsorbent materials and separation applications.
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selectivity of amine solutions, a significant energy penalty
associated with heating the aqueous amine is imposed,
leading to high operating costs.6,7 In this context, alternative
technologies, such as adsorption-based processes using solid
adsorbents, have been considered for their potential to
reduce energy consumption in carbon capture.

Adsorption processes have been widely used for gas
separations, such as air separation and hydrogen
purification.8 For carbon capture, adsorption has emerged as
a promising alternative to traditional amine-based processes
due to its potential to lower regeneration costs. Typical
adsorption processes include pressure swing adsorption
(PSA), vacuum swing adsorption (VSA), and temperature
swing adsorption (TSA).9 The effectiveness and efficiency of
these processes are highly dependent on the adsorbent
material, and the development of improved adsorbents
remains a central challenge for realizing the industrial-scale
deployment of adsorption-based carbon capture technologies.

In recent years, various types of solid adsorbents including
porous carbons, zeolites, covalent organic frameworks, and
metal–organic frameworks (MOFs), have been actively
synthesized and evaluated for adsorption-based carbon
capture.10–12 Among these available materials, MOFs are
highly attractive due to their vast chemical design space. In
principle, by combining different metal nodes and organic
linkers, numerous structurally diverse MOFs with distinct
physical and chemical properties can be engineered.13 This
tunability and versatility make MOFs ideal adsorbents for a
wide range of applications. They have also been
demonstrated as promising candidates for carbon capture
applications due to their high CO2 working capacity and
selectivity over other components. For example, a recent
innovative zinc-based MOF, CALF-20,14 has demonstrated

remarkable stability in humid conditions and high selectivity
to capture CO2 from flue gas. It can also meet all criteria
required for post-combustion CO2 capture, offering a cost-
effective and reliable option for industrial-scale applications.

Huge research efforts have been dedicated to developing
better adsorbents with improved properties such as higher
working capacity and selectivity.1 This is typically dominated by
traditional trial-and-error strategies, heavily dependent on the
domain knowledge and expertise of chemists and materials
scientists.15 Thus, this process is often resource-intensive and
time-consuming. Alternatively, computational methods have
been increasingly adopted to evaluate the adsorbent's
performance, followed by experimental validation focusing only
on the most promising candidates.16 Furthermore,
computational methods allow researchers to explore the
potential performance of adsorbent materials that have not yet
been synthesized. This enables the discovery of new materials
with improved performance, as well as the identification of
existing materials suitable for novel applications. Therefore,
computer-aided screening and design have become essential
tools for identifying high-performance adsorbents from large
materials databases and accelerating the discovery of new
adsorbents for carbon capture.

In this review, targeting carbon capture using MOFs, we
explore the computer-aided materials screening approaches
from a multi-scale perspective, spanning from the material to
the process level. We also introduce computer-aided
materials design strategies for tailoring MOFs with desired
properties, shifting from open-loop exhaustive search to
closed-loop targeted discovery. In light of significant
advancements in machine learning and related fields, we
extend the scope of this review to include their key
applications in accelerating materials screening and design.
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Although the primary focus is on MOFs and carbon capture
applications, the methodologies and challenges discussed are
broadly applicable to a wide range of adsorbent materials
(e.g., zeolites and covalent organic frameworks) and
separation applications (e.g., hydrogen purification and
hydrocarbon separation).

2. Computer-aided screening of
metal–organic frameworks

To date, tens of thousands of MOF structures have been
synthesized and evaluated for various applications, and
open-source structure databases have been established,
serving as essential resources for advancing computational
materials science and related fields. One of the largest and
most widely used databases is the hypothetical MOF
(hMOF) database, established by Wilmer et al.17 in 2012.
This database contains 137 953 structures generated by
combining available metal nodes and organic linkers from
experimentally synthesized MOFs. However, its structural
diversity is relatively limited, as only a few metal nodes and
framework topologies were considered. A significant
advancement in computational materials science came with
the establishment of the Computation-Ready, Experimental
(CoRE) MOF database in 2014.18 This database initially
compiled over 4700 experimentally reported MOFs, and
these structures were modified to be directly used in
atomistic simulations, offering a variety of experimentally
synthesizable MOF structures for preliminary computational
investigations. In 2019, it was expanded to include
approximately 14 000 structures, leading to the release of
the CoRE MOF 2019 database.19 The database was recently
updated to include over 40 000 structures reported by early
2024, along with a comprehensive set of calculated material
properties.20 Most of these major experimental and
hypothetical structure databases have been integrated into
the online platform MOFX-DB,21 which provides simulated
adsorption data for gases (e.g., H2, CH4, CO2, and N2),
textural properties (e.g., pore sizes and surface areas), and
structure files, enabling a user-oriented search for MOF
structures with desired structural and adsorption
characteristics. In addition to hMOF and CoRE MOF
databases, a handful of databases of varying sizes and
resources, such as Cambridge Structural Database (CSD)
and QMOF, have been developed.22–28 These open-source
resources have significantly advanced computational
materials science, offering extensive options for diverse
MOF-supported applications including carbon capture.

To identify promising candidates from MOF databases,
systematic and efficient methods for large-scale screening are
highly desirable. Computational tools such as Zeo++29 and
Poreblazer30 have been developed to obtain key structural
characteristics (e.g., surface area and porosity). When
combined with experimental expertise, these structural
characteristics can be used to guide the selection of
materials. However, they do not capture the interaction

between the material and its environment, which is crucial
for separation applications such as carbon capture, where
competitive adsorption of different components (e.g., CO2,
N2, and H2O) on the material must be considered. Therefore,
relying solely on these structural characteristics for materials
selection may not be effective. In such cases, suitable metrics
that can quantify the performance of materials are necessary
to identify optimal candidates from MOF databases.

In general, metrics for materials screening can be
classified into two types: material- and process-level metrics.
Material-level metrics quantify the ability of materials to
adsorb and separate different components under specific
conditions, while process-level metrics evaluate the ability of
materials to separate different components in practical
adsorption processes. This section focuses on materials
screening methods for MOFs, transitioning from property-
based screening using material-level metrics (e.g., CO2

working capacity and CO2/N2 selectivity) to performance-
based screening that incorporates process-level
considerations (e.g., CO2 purity and energy consumption)
(see Fig. 1).

2.1. Material level: property-based screening

Over the years, a wide range of material-level metrics has
been developed, primarily based on adsorption equilibrium
data. The most common and straightforward metrics include
selectivity, which indicates the relative affinities of two
components on an adsorbent, and working capacity, which
quantifies the difference in equilibrium adsorption capacities
between adsorption and regeneration conditions.31 More
advanced material-level metrics include adsorption
selectivity,32 separation factor,33 regenerability,32 and
adsorbent performance indicator,34 among others. For
example, the adsorbent performance score (APS) was
introduced to combine both selectivity and working capacity,
as materials with high working capacity usually exhibit low
selectivity, and vice versa.35 A comprehensive list of these
material-level metrics and their definition are available in the
literature.2,6 These metrics typically rely on single- and multi-
component adsorption isotherms, with some also
incorporating the enthalpy of adsorption to account for the
ease of adsorbent regeneration. With significant
advancements in computational power and algorithms,
adsorption isotherms and enthalpies of adsorption can be
efficiently calculated, enabling large-scale screening of
materials databases to identify promising candidates for
carbon capture based on material-level metrics.

2.1.1. Molecular modeling. Since experimental adsorption
data is available for only a limited number of materials,
molecular modeling methods such as quantum mechanical
calculations and molecular simulations provide a powerful
alternative for estimating gas adsorption behaviors across
diverse materials.36 Using these computational methods,
various adsorption-related properties can be determined to
gain key insights into material performance in carbon
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capture. These properties include thermodynamic properties
(e.g., CO2 adsorption isotherms and enthalpies of CO2

adsorption) and kinetic properties (e.g., diffusion
coefficients of CO2). Compared to quantum mechanical
calculations such as density functional theory (DFT),
molecular simulations are less computationally demanding
and therefore are relatively affordable for screening
hundreds to thousands of materials. For example, grand
canonical Monte Carlo (GCMC) simulations are widely used
to estimate equilibrium adsorption capacities and
enthalpies of adsorption, enabling large-scale materials
screening based on material-level metrics.37

To identify suitable MOF structures for precombustion
CO2 capture (i.e., separating CO2 from syngas), Avci et al.38

evaluated 3857 diverse MOF structures from the CSD
database. They performed GCMC simulations for CO2/H2

mixtures at 0.1, 1, and 10 bar, and key material-level metrics
including CO2/H2 selectivity, CO2 working capacity, APS, and
regenerability were calculated for different adsorbent
regeneration methods. Under the constraint that
regenerability should exceed 85%, they identified 20
promising MOFs with the highest APS values. One of the
MOFs identified was previously reported with CO2 and H2

adsorption capacities. Further validation under the identical
conditions confirmed a good agreement between the GCMC
simulations and the reported experimental data. This
demonstrated that molecular simulations accurately
estimated MOF properties, and materials screening based on
the APS successfully identified high-performing candidates
from the large set of materials. In a more recent study by the
same group,39 they expanded the candidate pool to 10 221
MOFs using the updated CSD database. This broader
materials screening enabled the identification of MOFs with
both higher selectivity and CO2 working capacity.

For post-combustion CO2 capture (i.e., separating CO2 from
flue gas) and natural gas upgrading (i.e., removing CO2 from
natural gas), Qiao et al.40 used molecular simulations to
evaluate 4764 MOFs from the CoRE MOF 2014 database. GCMC

simulations were performed for CO2/N2 and CO2/CH4 mixtures.
Material performance was assessed using four material-level
metrics, including CO2 selectivity, CO2 adsorption capacity,
CO2 working capacity, and regenerability. Under specified
constraints on CO2 working capacity, CO2 selectivity, and
regenerability, 15 top-performing MOFs were identified.
Further breakthrough simulations confirmed the high
performance of these adsorbents in separating CO2 from flue
gas or natural gas, demonstrating the effectiveness of
molecular simulations in identifying promising materials for
diverse carbon capture scenarios.

For 4188 MOFs selected from the CoRE MOF 2019 database,
Xu et al.41 evaluated their performance in post-combustion CO2

capture via GCMC simulations. MOFs with high CO2 working
capacity, low N2 working capacity, high CO2 selectivity, and
high regenerability were retained, leading to 90 MOFs being
identified as superior adsorbents for the CO2/N2 separation.
Further analysis of adsorption isosteric enthalpy revealed that
these MOFs exhibit stronger interactions with CO2 than N2

molecules, confirming their effectiveness in selective CO2

adsorption. Furthermore, when evaluated across varying CO2

concentrations in flue gas, some of these MOFs exhibited
adaptability, which makes them suitable candidates for
industrial carbon capture applications.

When applied to carbon capture for water-containing
gas mixtures (e.g., wet flue gas), many MOFs exhibit reduced
performance because water competes with CO2 for
adsorption sites.42 To address this challenge, systematic
screening approaches that consider the effect of water are
essential for identifying materials suitable for carbon capture
under humid conditions. Kancharlapalli and Snurr43

proposed a multi-scale modeling strategy to screen MOFs for
selective CO2 adsorption from wet flue gas. For 3703 MOFs
selected from the CoRE MOF 2019 database, they optimized
single-molecule adsorption configurations and calculated
MOF-molecule interaction energies for CO2, N2, and H2O.
This initial screening identified 458 MOFs with a stronger
affinity for CO2 than for both N2 and H2O. DFT calculations

Fig. 1 Structure–property–performance hierarchy and general routines for materials screening in carbon capture: (A) material-level property-
based screening and (B) process-level performance-based screening.
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were performed to accurately determine adsorption energies
between molecules and MOFs, and 48 MOFs were confirmed
to have stronger interactions with CO2 than with H2O.
Subsequently, GCMC simulations of a binary CO2/N2 mixture
narrowed the list to 10 MOFs that exhibit high CO2/N2

selectivity and CO2 adsorption capacity. Finally, in ternary
mixture simulations considering the presence of water, most
of these MOFs are still highly selective for CO2 adsorption.
This demonstrated the effectiveness of the multi-scale
screening approach in identifying promising MOFs for
selective CO2 capture from wet flue gas.

For natural gas upgrading in the presence of water,
Rogacka et al.44 initially selected 764 MOFs from the CoRE
MOF 2014-DDEC database24 using pore limiting diameter
and Henry constant of water adsorption as screening criteria.
Subsequent GCMC simulations for the ternary CO2/CH4/H2O
mixture under different humidity levels identified 13 MOFs
with high adsorption capacity and selectivity over H2O.

Li et al.45 conducted large-scale computational screening
to identify suitable MOFs that can effectively adsorb CO2 at
80% relative humidity for post-combustion CO2 capture.
Starting with 5109 MOFs from the CoRE MOF 2014
database, they removed structures with zero accessible
surface area and high H2O adsorption energy, reducing the
pool to 2054 MOFs. These remaining structures were then
ranked by CO2/H2O Henry's selectivity, and the top 15 MOFs
were selected for further binary (CO2/H2O) and ternary
(CO2/H2O/N2) GCMC simulations. The CO2/H2O selectivity
obtained from both binary and ternary simulations showed
a strong agreement. These top-performing MOFs exhibited
high CO2/H2O and CO2/N2 selectivity, confirming their
potential for highly selective post-combustion CO2 capture
under humid conditions.

2.1.2. Structure–property relationship. Computationally
expensive molecular simulations are usually required to
evaluate each candidate material of interest, posing a major
challenge for large-scale screening. To address this, property
models that correlate material structures with their
properties offer efficient alternatives for adsorption property
estimation. However, unlike small molecules, materials lack
well-developed property models due to their structural
complexity. In this context, various mathematical modeling
techniques, including machine learning approaches, have
been used to establish structure–property relationship
models for materials.46,47 These models, developed on
relatively small datasets, can rapidly predict targeted
properties for a large number of candidate materials. In this
way, only the most promising materials were subsequently
evaluated using molecular simulations, significantly
accelerating large-scale, property-based materials screening.

An important consideration in establishing structure–
property relationships is the representation of materials,
which encodes material structures into machine-readable
formats.48 The most fundamental representations are textural
properties, such as pore volume and surface area, which
directly describe the pore geometry of material structures.49

Beyond these geometry-related properties, chemical
information can be obtained from material structures as
descriptors, such as the metal node and the chemical
composition of organic linkers.50,51 Additionally, energy-
based descriptors can be derived from molecular modeling to
account for the interaction behavior between adsorbates and
MOFs.52,53 In a more advanced manner, various algorithms
were proposed to extract structural features, which are
usually not readily interpretable by humans. Despite this,
these approaches can encode comprehensive structural and
chemical information into high-dimensional representations,
leading to accurate predictions of material properties. For
example, graph neural networks have been employed to learn
hierarchical features from both building blocks and entire
reticular crystal structures.54–57

Using five fundamental geometric features (such as pore
diameter, void fraction, and surface area), Fernandez and
Barnard58 developed a set of models (such as multilinear
regression and artificial neural network) to classify MOFs as
high- and low-performing based on their CO2 and N2

adsorption capacities. Among these models, the random
forest (RF) model showed the highest accuracy over 94% for
both capacities. When applied to a large and chemically
diverse set of approximately 65 000 MOFs, the model
successfully identified over 70% of high-performing MOFs
for CO2 capture and 60% for N2 capture. By pre-screening
MOFs using the RF model, the pool of candidate materials
can be considerably reduced, allowing computational
resources to be focused on the most promising materials.

Combining six geometric features and three chemical
features derived from the atomic property weighted radial
distribution function,59 Dureckova et al.49 trained gradient
boosted trees regression (GBTR) models to predict CO2

working capacity and CO2/H2 selectivity of MOFs for
precombustion CO2 capture. These models presented high
accuracy for both CO2 working capacity and CO2/H2

selectivity, with determination coefficients of 0.944 and
0.872, respectively. When applied to a dataset of 35 840
MOFs, these models correctly identified 77.1% of the top
1000 MOFs for CO2 working capacity and 86.0% for CO2/H2

selectivity. These results indicate that these accurate models
can significantly accelerate the screening of top-performing
MOFs for precombustion CO2 capture.

In addition to these, a variety of models for structure–
property relationships have been developed to accurately and
efficiently predict key material properties (e.g., CO2 working
capacity and selectivity) relevant to carbon capture
applications.60–62 These models provide a wide range of
predictive tools for large-scale property-based materials
screening, enabling rapid identification of promising MOF
structures for specific carbon capture applications.

2.2. Process level: performance-based screening

Materials screening based on material-level metrics typically
overlooks the dynamics of adsorption processes, and
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therefore, the screening outcomes may not accurately
reflect material performance under practical operational
conditions.63 To bridge this gap, process modeling needs
to be directly integrated into the materials screening
workflow to evaluate the material's performance in
dynamic adsorption processes such as PSA, VSA, and TSA.
Relying on equilibrium data (e.g., adsorption isotherms),
dynamic properties (e.g., diffusivity), and other
characteristics (e.g., thermal properties), process simulation
and optimization can be conducted for adsorbent materials
to obtain their process-level metrics such as CO2 purity
and recovery, adsorbent usage, and energy consumption.
These metrics not only reflect the realistic process
performance but also directly relate to the techno-economic
analysis of adsorption processes in carbon capture.
Therefore, performance-based approaches can shift the
focus of materials screening from equilibrium properties at
the material level to separation performance at the process

level, providing a more practical way to identify high-
performance MOFs for carbon capture applications.

2.2.1. Rigorous process model. Adsorption processes are
typically described by a set of mass, energy, and momentum
balance equations, coupled with mass transfer and
adsorption isotherm equations. Integration of these physics-
based equations leads to a system of partial differential
equations (PDEs), which needs to be solved to reveal the
dynamic profiles of adsorption processes over both space and
time. Relying on this PDE system, process optimization can
be performed to determine the optimal performance of
adsorbent materials across a wide range of operating
conditions while simultaneously satisfying desired
specifications such as the purity requirement, offering
process-level evaluation and screening of materials.

Several well-known materials have been synthesized and
validated as promising adsorbents for carbon capture, and
their process-level metrics can be directly evaluated using

Fig. 2 Ranking of MOFs for post-combustion CO2 capture using material-level properties and process-level performances. Used with permission
of the Royal Society of Chemistry, from Yancy-Caballero et al.;64 permission conveyed through Copyright Clearance Center, Inc.
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detailed process models. For example, Yancy-Caballero
et al.64 performed simulation and optimization of PSA
processes for 15 MOFs reported in the literature in post-
combustion CO2 capture. Using three different PSA cycle
configurations, these MOFs were ranked based on their
process performance such as productivity and energy
requirements. This process-level ranking was then compared
with rankings based on various material-level metrics,
revealing that material-level metrics can sometimes lead to
misleading evaluation of practical performance (Fig. 2). For
instance, SIFSIX-3-Ni was identified as the best adsorbent by
many material-level metrics, whereas it was ranked at the
bottom in all three PSA processes. This highlights the
importance of process-level considerations in screening high-
performance materials for efficient carbon capture processes.

Pai et al. evaluated five MOFs for post-combustion CO2

capture using a four-step VSA cycle with light product
pressurization.65 Through rigorous multi-objective process
optimization, they identified two MOFs that outperformed
the benchmark adsorbent, zeolite 13X, in terms of CO2 purity
and recovery. Further optimization of energy consumption
and productivity demonstrated that both MOFs can reduce
the energy required for CO2 capture while achieving the
required purity and recovery.

In the context of large materials databases, multi-scale
screening approaches are typically employed. Initially,
molecular modeling techniques are used to narrow down the
pool of candidates, and the promising materials identified
are then evaluated with detailed process simulation and
optimization. For example, Park et al.66 integrated molecular
simulation, shortcut process modeling, and rigorous process
optimization to identify promising MOFs for post-
combustion CO2 capture. Initially, they screened out 35
candidates from a pool of 143 MOFs based on material-level
metrics including CO2 working capacity, CO2/N2 selectivity,
and regenerability. This list was further reduced to 20 MOFs
through PSA process modeling using shortcut models. Multi-
objective optimization with rigorous process models was
finally performed to rank these MOFs based on process-level
metrics including CO2 purity, recovery, productivity, and
energy consumption. Among the material-level metrics
considered, only the CO2 working capacity presented a good
correlation with process-level metrics in MOF rankings.
Moreover, in comparison with rigorous process models, the
shortcut models are too simplistic to provide sufficient
process-level information, highlighting the importance of
rigorous process models in reliable materials screening.

Burns et al.67 integrated molecular simulations and
rigorous process optimization to evaluate the performance of
MOFs in an industrial VSA system for post-combustion CO2

capture. After excluding structures with rare or toxic metals,
1584 MOFs from the CoRE MOF 2014 database were retained.
CO2 and N2 adsorption isotherms were predicted using
GCMC simulations, followed by process simulations under
varying process variables (e.g., flue gas flow rate, duration of
adsorption step, and adsorption pressure). This initial

screening identified 392 MOFs that achieved the purity and
recovery requirements. Further process optimization revealed
that 97 MOFs outperformed amine-based capture systems,
with the best MOF achieving a 25% reduction in energy
consumption. Additionally, they evaluated commonly used
geometric features (e.g., void fraction, pore diameter, surface
area) and material-level metrics (e.g., CO2 working capacity,
Henry's selectivity, enthalpy of adsorption) in predicting
process-level performance. Weak correlations between these
simple metrics and process performance underscores the
necessity of full process simulation and optimization for
accurately evaluating MOF's performance in VSA-based
carbon capture processes.

Very recently, alongside the update of the CoRE MOF
database, Zhao et al.20 selected 891 candidate materials based
on criteria such as economic feasibility, structural stability,
and hydrophobicity. Among these, 34 MOFs were identified
by GCMC simulations to exhibit higher or similar CO2/N2

selectivity and CO2 working capacity than those of the
benchmark material, CALF-20.14 Through detailed
temperature swing adsorption (TSA) simulations, the top-
performing candidate was shown to outperform CALF-20
under various feed compositions and humidity levels in
terms CO2 purity and recovery, highlighting its strong
potential for industrial carbon capture applications.

2.2.2. Empirical and surrogate model. Simulation of
adsorption processes can be completed in seconds to
minutes, while optimization of these processes to determine
their best performance may take hours. When applied to
thousands of material candidates, this computational
demand makes process-level screening of all materials
prohibitively expensive. As discussed earlier, multi-scale
screening approaches are usually used, where initial
screening can be performed using various simple metrics
and simplified process models, while accurate yet
computationally expensive process optimization is carried
out for a selected group of promising materials. To facilitate
the performance-based screening of large materials
databases, empirical models can be developed to correlate
process-level performance with material-level properties.
Furthermore, surrogate process models with high accuracy
and computational efficiency can be developed as
alternatives to rigorous process models,68 enabling efficient
large-scale materials screening with the incorporation of
process-level considerations.

Developing property–performance relationships enables
rapid screening of adsorbents with the consideration of their
optimal performance in adsorption processes. Khurana and
Farooq69 proposed a method to correlate equilibrium
isotherm characteristics of adsorbents with the optimal
performance of the VSA process for post-combustion CO2

capture. They derived mathematical equations to estimate
the expected minimum energy consumption and maximum
productivity of adsorbents using five characteristics related to
the CO2 isotherm: selectivity over N2, equilibrium adsorption
capacity, local slope and nonlinearity at feed concentration,
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and Henry's constant. The parameters were regressed using
the results from detailed process optimization for 32
adsorbents, achieving determination coefficients of
approximately 0.9 for both energy consumption and
productivity. By establishing property–performance
relationships, these models enable the efficient evaluation
and ranking of adsorbents based on their performance in
adsorption processes.

Leperi et al.6 developed a simple evaluation metric that can
effectively capture process-level information to identify the best
adsorbent material with the lowest CO2 capture cost. Initially,
MOFs were screened based on metal costs and simple
heuristics derived from preliminary process-level
investigations, such as enthalpy of adsorption and adsorbent
density, reducing the CoRE MOF 2014-DDEC database24 to 369
candidates. For 190 MOFs that achieved the purity and recovery
requirements, process simulation, optimization, and economic
analysis were performed using a four-step fractionated vacuum
pressure swing adsorption (FVPSA) cycle. On this basis, a
general evaluation metric (GEM) was developed as a property–
performance relationship using four material-level metrics: N2

working capacity, CO2 working capacity, CO2/N2 selectivity at
desorption conditions, and N2 internal energy of adsorption.
The GEM demonstrated superior performance in evaluating
CO2 capture costs, exhibiting a Spearman correlation
coefficient of 0.86. Therefore, the GEM can be used to
preliminarily screen adsorbent materials for post-combustion
CO2 capture without conducting computationally expensive
process modeling and optimization.

Several research groups have demonstrated the potential
of surrogate models for the efficient simulation and
optimization of adsorption processes.70–77 For example,
Leperi et al.70 used artificial neural networks (ANNs) to
develop surrogate models for every step involved in PSA
cycles (e.g., pressurization, adsorption, and depressurization).
Demonstrated on three different PSA cycle configurations for
post-combustion CO2 capture, these ANN models showed
good agreement with rigorous models in process simulation
while achieving a computational speedup of approximately
three orders of magnitude. These results highlight the
accuracy and efficiency of these ANN-based surrogate models
and their potential to significantly accelerate the simulation
of PSA-based carbon capture processes and performance-
based materials screening.

Embedding accurate yet computationally efficient
surrogate models into optimization frameworks can yield
high-quality solutions at significantly reduced computational
costs. However, these accurate surrogate models usually
benefit from large datasets that capture full system behaviors
across the design space of interest, incurring resource-
intensive data collection. An alternative approach, Bayesian
optimization, can be used for efficient surrogate-based
optimization without relying on large datasets.78–81 Using
limited data, Bayesian optimization utilizes a surrogate
model to iteratively propose optimal solutions for validation,
with the model being continuously updated as the dataset

expands throughout the process. Recently, Bayesian
optimization has been employed for the optimization of
adsorption processes.82,83 For example, Ward and Pini83

utilized Bayesian optimization for four-step pressure-vacuum
swing adsorption (PVSA) cycle in post-combustion CO2

capture. Bayesian optimization was able to achieve an
essentially identical solution to the conventional method that
couples genetic algorithms with detailed process simulations,
while reducing the computational cost by a factor of 14. This
demonstrated the potential of Bayesian optimization for
reliable and efficient optimization of dynamic adsorption
processes in post-combustion CO2 capture.

The aforementioned surrogate models are developed to
estimate performance for a specific adsorbent under varying
operating conditions. To make these models generally
suitable for adsorbent screening, it is necessary to
incorporate adsorbent features as variables. To address this,
a machine-assisted adsorption process learning and
emulation (MAPLE) framework84 was proposed to develop
generalized surrogate models that predict process
performance using both adsorbent and process features
(Fig. 3). Based on a wide range of inputs such as adsorbent
properties, Langmuir adsorption isotherm parameters, and
operating conditions, the MAPLE predicts the material's
performance indicators such as product purity, recovery,
energy consumption, and productivity. Specifically, using 5
isotherm parameters and 5 process variables, the MAPLE
surrogates achieve an average determination coefficient
exceeding 0.995 for all four performance indicators across
diverse adsorbents and operating conditions. Using zeolite
13X for post-combustion CO2 capture, MAPLE-based
optimization achieved results nearly identical to those
obtained from rigorous process optimization at significantly
lower computational costs. This highlights the high accuracy
and efficiency of the MAPLE framework. In another
demonstration, MAPLE was applied to screen 36 adsorbents
reported by Khurana and Farooq.69 For 23 adsorbents that
meet the CO2 purity and recovery requirements, surrogate-
based optimization was conducted to minimize energy
consumption. The results correlated well with those from
rigorous process optimization. This demonstrated the
reliability of MAPLE for performance-based screening of large
materials databases.

3. Computer-aided design of
metal–organic frameworks

The chemical space of MOFs is vast and highly versatile,
arising from the combination of metal nodes, organic
linkers, and framework topologies. This design space is
inherently complex, offering almost limitless potential
structures. Consequently, extensive research efforts are
dedicated to exploring this complex design space to identify
novel MOF structures with superior properties for carbon
capture applications.
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This section focuses on materials design approaches for
MOFs, highlighting the transition from exhaustive search in
an open-loop manner to optimization-guided materials
discovery in a closed-loop manner (Fig. 4). In both
strategies, structure generation and evaluation are two
critical components. Novel MOF structures can be generated
through the functionalization of existing structures,
recombination of known building blocks, or sampling from
the learned latent space of generative models. Once
generated, the material properties and process performance
of these novel MOF structures can be evaluated using
molecular simulations, structure–property relationship
models, rigorous process models, and surrogate process

models, as introduced earlier. On this basis, the optimal
MOF structures can be identified.

3.1. Open-loop design: exhaustive search

Constructed from 8 metal nodes, 94 organic linkers, and
various functional groups, Boyd et al.42 systematically
generated a library of 325000 hypothetical MOFs for capturing
CO2 from wet flue gases. CO2/N2 selectivity and CO2

working capacity of each material were evaluated using
GCMC simulations, resulting in a reduced list of 8325
materials that can potentially surpass zeolite 13X under dry
conditions. Based on further considerations such as

Fig. 3 The MAPLE framework for rapid simulation, optimization, and adsorbent screening of adsorption processes. By leveraging inputs such as
adsorption isotherm parameters and operating conditions, the artificial neural network is used to train surrogate models to predict key
performance indicators. Adapted with permission from Pai et al.84 Copyright 2020 American Chemical Society.

Fig. 4 General materials design workflows: (A) exhaustive search in an open-loop manner and (B) optimization-guided discovery in a closed-loop manner.
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material rigidity, ease of synthesis, and hydrolytic stability
of the metal–organic coordination, two hydrophobic MOFs
were selected for synthesis. Experimental results confirmed
that both materials outperformed commercial materials
such as zeolite 13X and activated carbon, and their
performance in carbon capture was not affected by water.
This demonstrated that the proposed generate-and-evaluate
method can effectively discover superior MOF structures for
post-combustion carbon capture.

Park et al. proposed the GHP-MOFassemble framework to
design MOF structures with high adsorption capacity and
synthesizable linkers for carbon capture.85 Based on organic
linkers extracted from high-performing structures in the
hMOF database, DiffLinker86—a diffusion model developed
for molecular design—was used to generate new organic
linkers. The synthesizability of these linkers was assessed
using the synthetic accessibility score (SAscore)87 and the
synthetic complexity score (SCscore).88 Synthesizable organic
linkers were then assembled with pre-selected metal nodes,
creating a database of 40 000 new structures. MOF screening,
based on CO2 adsorption capacity predicted by crystal graph
convolutional neural network,89 identified 364 MOF
candidates. Further validation through molecular dynamics
and GCMC simulations showed that 6 of these candidates
exhibit CO2 adsorption capacity higher than 2 mmol g−1,
surpassing most structures in the hMOF database.

Leveraging generative flow networks (GFlowNets),
Cipcigan et al. generate diverse and novel reticular materials
for carbon capture applications.90 Using available metal
nodes and organic linkers from pormake,91 they trained the
GFlowNets to generate new MOF structures with improved
gravimetric surface area. From 1709 126 generated structures,
those with high surface area were selected for further
evaluation. GCMC simulations confirmed that all selected
structures exhibited very high CO2 working capacities,
ranking in the 90th percentile of the CoRE MOF 2019
database. Furthermore, through structural relaxation and
detailed analysis, two materials were validated to surpass all
structures in the CoRE MOF 2019 database in terms of CO2

working capacity. This demonstrated the potential of
GFlowNets as a powerful tool for designing promising MOFs
for carbon capture applications.

3.2. Closed-loop design: optimization-guided discovery

The generation and evaluation of material structures are
essential for discovering new materials with improved
properties. However, the performance of optimal candidates
is often constrained due to the limited exploration of the
design space. Additionally, in the open-loop design, the
desired properties cannot be directly targeted during the
structure generation. To address these challenges, results
from the evaluation phase should be fed back into the
generation phase, closing the loop of materials design. By
incorporating optimization algorithms, the generation of
materials can be guided to satisfy desired properties,

enabling property-oriented materials design with significantly
reduced computational costs. This closed-loop, optimization-
guided approach allows for efficient exploration of large
design spaces compared to exhaustive search methods,
discovering new MOF structures with optimized properties.
This approach is also referred to as inverse materials design,
which begins with the desired functionality and searches for
ideal material structures within the design space using
optimization techniques.95

Evolutionary algorithms, such as genetic algorithms (GAs),
can be used to iteratively optimize material structures and
improve their properties. Chung et al.35 developed a GA to
efficiently identify top-performing MOFs for precombustion
CO2 capture from thousands of candidates. Each MOF
structure was represented as a sequence of integer chemical
identities, and the integer combination was optimized by the
GA to improve material properties. Using a database of
55 163 hypothetical MOFs, the optimization-guided search
was conducted with three different objectives: CO2 working
capacity, CO2/H2 selectivity, and APS. Compared to an
exhaustive search, the optimization-guided approach
significantly reduced the number of required GCMC
simulations, as only 730 MOFs were evaluated across all three
tasks. Experimental synthesis and analysis of the best MOF
confirmed its high CO2 working capacity and CO2/H2

selectivity, demonstrating the effectiveness of GAs in
optimization-guided MOF discovery.

Deng and Sarkisov96 developed a computational design
workflow using GA to optimize MOF structures for post-
combustion CO2 capture. Starting with a library of building
blocks and topologies, they generated tens of thousands of
MOF structures using pormake.91 The GA then optimized the
combination of building blocks and topologies to design new
structures, while MOF-NET91 efficiently predicted N2 and CO2

adsorption capacities. To validate the performance of the
optimized structures, high-fidelity GCMC simulations and
process optimization were conducted in a modified
Skarstrom cycle. Most of the designed MOFs presented
significantly better performance than zeolite 13X in terms of
energy consumption and productivity, demonstrating the
effectiveness of GA in MOF design.

Functionalization is a key strategy to improve the
functional properties of MOFs. Collins et al.97 developed
MOFF-GA—a customized genetic algorithm (GA)—to optimize
functional groups in MOF structures. Validated on a diverse
set of 48 MOFs, MOFF-GA effectively identified the best
functionalized structures while exploring only a small
fraction of the vast search space. During the functionalization
process, geometry optimization was performed for newly
generated structures, and their CO2 adsorption properties
were evaluated using GCMC simulations. When applied to
optimize the CO2 adsorption capacity of 141 experimentally
characterized MOFs for post-combustion CO2 capture, MOFF-
GA identified 1035 functionalized structures with exceptional
capacities exceeding 3 mmol g−1 at 0.15 atm and 298 K.
These results highlight MOFF-GA as an efficient approach for
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designing high-performance MOFs for carbon capture
through functionalization.

Zhang et al.98 developed a computational framework to
design MOFs tailored for carbon capture. Specifically, organic
linkers were first generated using the Monte Carlo tree search
(MCTS) implemented in ChemTS,99 and then they were
combined with 10 different metal node and topology
combinations to construct new MOF structures. The
adsorption properties of each generated structure were
evaluated using GCMC simulations, with the results fed back
into the MCTS algorithm to refine the structure generation.
This approach was demonstrated very efficiently, as the
design and GCMC validation of five MOFs can be completed
within one hour. On average, the optimal MOF was identified
within 86.1 MCTS cycles, achieving a 134.63% improvement
in CO2 adsorption capacity compared to the original MOF.
These findings highlight the effectiveness of the proposed
approach in designing MOFs with significantly improved
properties. In a recent study, the researchers successfully
extended their approach to design MOFs for efficient carbon
capture under humid conditions.100

Reinforcement learning (RL) is a machine learning
technique that learns to make decisions to achieve the most
optimal outcomes. Park et al. introduced a deep
reinforcement learning approach for designing MOFs with
desired properties.101 The RL framework consists of two key
components: an agent for decision-making (i.e., structure
generation) and an environment for evaluation (i.e., property

estimation). The agent assembles MOF structures by selecting
metal clusters, organic linkers, and topologies, while the
environment evaluates their properties and returns rewards
of property improvement to the agent. This iterative process
refines structure generation until the agent designs MOFs
with the desired properties. Applied to carbon capture, the
RL framework successfully designed a set of MOFs that have
high CO2 enthalpy of adsorption and can selectively adsorb
CO2 from humid air. Notably, some of these MOFs exhibited
higher calculated CO2 enthalpy of adsorption and CO2/H2O
selectivity than previously reported MOFs. This demonstrated
the potential of RL as a powerful tool for designing MOFs
with improved targeted properties.

Generative models, such as variational autoencoders
(VAEs)102 and generative adversarial networks (GANs),103 can
be used as key components in enabling closed-loop materials
design for targeted properties. Leveraging a VAE, Yao et al.
developed an automated discovery platform for property-
oriented MOF design.102 MOF structures were represented by
edges, vertices, and topologies decomposed from reticular
frameworks, which in turn enables their reconstruction
(Fig. 5). Using 372 edges identified from the CoRE MOF 2019
database, an augmented dataset of around 300 000 edges was
generated through functionalization. Combining this edge
dataset with vertex and topology datasets, a dataset
containing approximately two million MOF structures was
constructed. To enable property-oriented design,
computational simulations were performed on around 45 000

Fig. 5 Schematic of the automated materials design platform empowered by supramolecular variational autoencoder. Reproduced with
permission from Yao et al.,102 Springer Nature.
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randomly selected MOFs to train the VAE, alongside the
augmented structure dataset. The trained model was then
used to generate and optimize MOF structures with improved
properties for CO2 separation from natural gas. Confirmed
via GCMC simulations, the generated top-performing MOF
achieved a CO2 adsorption capacity of 7.55 mol kg−1 and a
CO2/CH4 selectivity of 16. Overall, this generative model
enables optimization-guided materials discovery, accelerating
the design of materials with tailored adsorption properties
for carbon capture.

Very recently, building on the “deep dreaming”
methodology implemented in inverse molecular design,92

Cleeton et al.93 extended the concept to the inverse design of
MOFs. In their design framework, MOF structures are
represented using SELFIES string representations94 due to
their guaranteed chemical validity when decoded into
molecular structures. A machine learning model based on
long short-term memory networks was trained to predict
material properties. The model architecture was then inverted
for deep dreaming to design new MOFs with improved
property values. Specifically, the model weights and biases
were frozen, and the input representations were iteratively
optimized toward desired properties, such as specific heat
capacity and CO2/N2 Henry selectivity. For MOF design, deep
dreaming achieves high validity (∼95.5%) and uniqueness
(∼99.4%) of the generated structures. However, its design
scope is narrow since the optimization is limited to the
linkers only. Despite this limitation, deep dreaming
represents one of several emerging strategies in inverse
design and has shown promise for designing new MOFs with
targeted properties relevant to carbon capture applications.

4. Conclusions and perspectives

Significant progress has been achieved in recent years in
discovering promising MOFs for diverse carbon capture
applications through various computer-aided screening and
design approaches. These include property- and
performance-based materials screening, as well as materials
design in both open-loop and closed-loop manners. However,
challenges remain in improving the reliability and efficiency
of these computational approaches. In the following, we
discuss possible solutions to these challenges and outline
future research directions to advance computer-aided
materials screening and design, aimed at discovering high-
performance MOFs for practical carbon capture applications.

Accuracy of molecular simulations

Accurately describing interatomic interactions is essential
for reliable molecular simulations. In classical GCMC
simulations, this is typically achieved using a force field, i.e.,
a set of equations and parameters that describe both short-
range and long-range interactions. Short-range repulsion
and dispersion interactions are described using Lennard-
Jones (LJ) potentials, while long-range electrostatic
interactions are described using Coulomb potentials.104

Consequently, the accuracy of GCMC simulations strongly
depends on the choice of force field, particularly the LJ
parameters and partial atomic charges. In computational
studies, different combinations of LJ parameters and charge
assignment schemes are employed, depending on factors
such as feed composition, material characteristics, and
resource availability.

A recent systematic study by Cleeton et al.104

demonstrated that both LJ parameters and partial atomic
charges influence the reliability of simulations results and,
therefore, the ranking of MOFs in PSA-based carbon capture
processes. Notably, the choice of charge assignment scheme
was found to have a more decisive impact. Based on these
findings, the authors advocate for using partial charges
derived from ab initio calculations, particularly when
electrostatic interactions dominate (such as CO2 and H2O
adsorption in MOFs). Moreover, GCMC simulations of H2O
adsorption are more approximate and challenging due to the
complex nature of water-MOF interactions.105 In such cases,
employing high-fidelity charge assignment schemes becomes
even more critical to accurately capture adsorption behaviors.
When ab initio charge calculations are computationally
prohibitive, machine learning methods offer an attractive
alternative. Recent ML models, such as message passing
neural network,106 PACMOF,107 PACMAN,108 and MEPO-
ML,109 have shown the ability to predict partial charges with
accuracy comparable to ab initio methods. These ML-based
approaches enable efficient yet accurate MOF screening and
design for carbon capture, where electrostatic interactions
play a critical role in adsorption behavior.

Stability, synthesizability, and commercialization

Although many MOF candidates demonstrate exceptional
performance in molecular simulations and experimental
validations, maintaining their stability and functionality
under industrial conditions remains a significant challenge.
This is particularly true for carbon capture applications,
where MOF structures are often prone to degradation under
harsh environments such as high temperatures, humidity,
and acidic gases. The evaluation of MOF stability primarily
relies on experimental techniques such as thermogravimetric
analysis (TGA) and powder X-ray diffraction (PXRD). However,
these methods are not easily scalable for evaluating the large
number of MOFs. To address this, researchers have leveraged
reported experimental stability data to train machine
learning models that capture structure–stability relationships,
enabling the prediction of diverse stabilities such as thermal,
solvent removal, and water stabilities.110–114 In addition to
stability, synthesizability is also a major bottleneck. Many
high-performing MOFs are difficult to synthesize because of
diverse challenges such as difficulties in synthesizing organic
linkers.115 Systematically evaluating MOF synthesizability is
still an open and important problem. Although several
metrics such as synthetic accessibility (SA),87 synthetic
Bayesian accessibility (SYBA),116 synthetic complexity score
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(SCScore),88 and retrosynthetic accessibility score (RAscore)117

are available to estimate the ease of synthesizing organic
molecules, their applicability is limited to full MOF
structures. As a result, the assessment of MOF
synthesizability still relies on expert intuition, which limits
the scalability of computational MOF screening and design.
To mitigate this, a computational tool called MOFSynth,118

was recently developed to predict the likelihood of MOF
synthesizability, serving as an initial filter to eliminate
candidates with poor synthesizability. Thus, incorporating
both stability and synthesizability considerations is essential
for accelerating the discovery of promising, stable, and
synthesizable MOFs for industrial-scale deployment of carbon
capture technologies.

Despite the promise of MOFs in carbon capture, only a
handful of MOFs have successfully transitioned from
fundamental research to commercialization. To successfully
realize this transition, five key topics must be addressed in
applied research, including synthesis, forming, processing
(washing and activation), prototyping, and compliance.119

Successfully overcoming these hurdles requires considerable
resources, a multidisciplinary team, and close collaboration
between academic institutions and industry partners.

High-quality experimental databases

Computational development of reliable materials for carbon
capture can significantly benefit from experimental insights.
However, collecting high-fidelity experimental data remains
challenging and resource intensive. Over the past decade, the
NIST/ARPA-E Database of Novel and Emerging Adsorbent
Materials120 has been developed to include adsorption
experiments and isotherms for various gases (both pure and
mixture) and adsorbent materials, digitized from the literature.
Additionally, related research has improved the querying and
analysis of material properties within this database.121,122

Despite these significant efforts, issues regarding data
reusability still exist. For example, adsorption and desorption
measurements were sometimes mis-integrated into a single
isotherm, and adsorption data for pure components and
mixtures was occasionally mislabeled. In such cases,
problematic experimental data can significantly affect the
reliability of computer-aided discovery of adsorbent materials.
To address this, numerical data underlying key figures should
be provided along with the publication to enhance
reproducibility and data reusability. This can help us integrate
large synthetic datasets with small experimental datasets to
facilitate reliable materials discovery.

Several studies have used data mining to collect
experimental data from the literature.111,123,124 Natural
language processing techniques were typically used to
automatically analyze and extract experimental data, enabling
the efficient digitization of large volumes of information into
databases. However, challenges of data reusability arose
during such digitalization processes. Due to challenges such
as diverse data types, a small fraction of the extracted data

was incorrect, potentially misguiding the downstream
materials development and analysis. Therefore, the
establishment of high-quality experimental databases still
necessitates human-machine collaboration to ensure the
accuracy and reliability of the digitalization process.

On the other hand, the structural fidelity of MOF databases
remains a critical issue for reliable materials screening.
Incorrect assignment of metal oxidation states can significantly
affect a MOF's electronic structure, learning to drastically
deviate properties in molecular simulation.125 For instance,
mediocre MOFs may be mistakenly identified as top
candidates. To address this problem, computational tools such
as MOSAEC125 and MOFChecker126 have been developed to
automatically detect structural errors and filter out problematic
structures. By incorporating such validation tools, the reliability
of MOF candidates identified through computational screening
and design can be significantly improved.

Active materials discovery

Molecular simulation can exhaustively identify optimal
candidates, whereas it is computationally prohibitive for large
materials databases. Therefore, adaptive strategies are essential
to efficiently search for optimal materials with minimal
resource consumption. A possible approach is Bayesian
optimization, which integrates machine learning, uncertainty
quantification, and informed decision-making to automatically
and efficiently identify optimal materials.127,128 By
implementing Bayesian optimization, an iterative process
consisting of molecular simulation, surrogate modeling of the
simulations, and selection of candidates for evaluation is
conducted until a promising material is identified. In this way,
the computational costs are significantly reduced as only the
most promising candidates identified by Bayesian optimization
are evaluated using time-consuming molecular simulations.

Structure–property relationship models have significantly
accelerated property-based materials screening. However, the
accuracy of such models heavily relies on the availability of
data, which is resource-intensive to collect. In this context,
adaptive strategies such as active learning can help to
develop accurate models with minimal data demand.78

Taking advantage of active learning, the model development
requires fewer molecular simulations to obtain an accurate
model covering the material space of interest. This can
significantly reduce the costs associated with data generation
while maintaining the high accuracy and applicability of
models for subsequent materials screening. These adaptive
strategies enable active materials discovery, showing great
potential to accelerate the development of high-performance
materials for adsorption-based carbon capture applications.

Integrated material and process design

For performance-based large-scale materials screening,
candidates that survive property-based preselection (i.e.,
structure–property relationships) are further evaluated with
process simulation and optimization (i.e., property–
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performance relationships) to determine their optimal
performance in carbon capture processes. To account for the
interplay between materials and varying operating
conditions, process simulation and optimization should be
directly integrated with the selection of materials. This allows
for the simultaneous identification of the optimal material
and its tailored operating conditions for practical adsorption
processes.129,130 By considering the entire structure–property–
performance hierarchy, this approach enables process-
informed materials discovery through integrated material
and process design.

Current closed-loop materials design workflows primarily
target specific material properties. By incorporating process
simulation and optimization, the focus can shift from
property-oriented to performance-oriented design, ensuring
that materials are optimally designed with actual process
performance in mind. Diverse key performance indicators
(KPIs) on the process level—such as product purity and
recovery, energy consumption, productivity, capital and
operating costs, and environmental impact—can be
considered in evaluating carbon capture systems. Trade-offs
between these often-competing objectives can be identified
through multi-objective optimization and can be represented
as a set of Pareto-optimal solutions, offering design schemes
for diverse industrial carbon capture scenarios. Furthermore,
as implemented in the PrISMa (process-informed design of
tailor-made sorbent materials) platform,131 techno-economic
analysis and life-cycle assessment can be integrated to
provide a holistic evaluation of material performance, thereby
accelerating the development and deployment of carbon
capture technologies toward a net-zero future. This
performance-oriented closed-loop materials design can be
further accelerated by data-driven models, which rapidly
assess the feasibility and efficiency of separation systems by
incorporating considerations from both material and process
scales.132,133 Ultimately, this approach enables a fully
integrated material and process design in a closed-loop
manner, advancing the discovery of high-performance
adsorbent materials for carbon capture applications.
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