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Reweighting configurations generated by
transferable, machine learned models for protein
sidechain backmapping†
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Multiscale modeling requires the linking of models at different levels of detail, with the goal of gaining

accelerations from lower fidelity models while recovering fine details from higher resolution models.

Communication across resolutions is particularly important in modeling soft matter, where tight couplings

exist between molecular-level details and mesoscale structures. While multiscale modeling of biomolecules

has become a critical component in exploring their structure and self-assembly, backmapping from

coarse-grained to fine-grained, or atomistic, representations presents a challenge, despite recent advances

through machine learning. A major hurdle, especially for strategies utilizing machine learning, is that

backmappings can only approximately recover the atomistic ensemble of interest. We demonstrate

conditions for which backmapped configurations may be reweighted to exactly recover the desired

atomistic ensemble. By training separate decoding models for each sidechain type, we develop an

algorithm based on normalizing flows and geometric algebra attention to autoregressively propose

backmapped configurations for any protein sequence. Critical for reweighting with modern protein force

fields, our trained models include all hydrogen atoms in the backmapping and make probabilities

associated with atomistic configurations directly accessible. We also demonstrate, however, that

reweighting is extremely challenging despite state-of-the-art performance on recently developed metrics

and generation of configurations with low energies in atomistic protein force fields. Through detailed

analysis of configurational weights, we show that machine-learned backmappings must not only generate

configurations with reasonable energies, but also correctly assign relative probabilities under the generative

model. These are broadly important considerations in generative modeling of atomistic molecular

configurations.

1 Introduction

Models at multiple resolutions have become a crucial
component in molecular-level simulations of biological and
soft-matter systems. These range from simulations involving
quantum-level details to classical representations of

individual atoms to “coarse-grained” (CG) models in which
atoms, or entire molecules, are treated as individual particles.
To capture self-assembly phenomena, such as protein
aggregation, simulations must include large numbers of
macromolecules interacting over long time scales, which
necessitates CG representations. While an emphasis has been
placed on the development of accurate CG models,1,2 the
reintroduction of atomic-level details, or “backmapping”,
remains a significant challenge.
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Design, System, Application

Computational design of biological molecules and materials requires modeling and simulation methods that bridge multiple length and time scales.
Probabilistic backmappings represent a way to facilitate such multiscale simulations through rigorous coupling of atomistic models to the results of less
computationally demanding coarse-grained models. This promises to enable the efficiency of lower-resolution models while exactly recovering ensembles
associated with a finer resolution. In this work, we explore the use of probabilistic backmapping models for recovering atomistic details of proteins from
coarse-grained simulations. Specifically, we design transferable models for backmapping protein sidechains that are sensitive the local environment of the
coarse-grained bead. Our models are amenable to reweighting generated configurations into atomistic ensembles defined by modern protein force fields.
We focus our analysis on conditions for which these methods will be efficient, and hence of practical utility. Such methods will facilitate the exploration of
conformational ensembles of large biomolecules, as well as the self-assembly behaviors of collections of biomolecules, which currently require coarse-
grained simulations that, out of computational necessity, neglect important atomistic details.
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Most approaches to backmap to all-atom (AA)
configurations from CG representations have been
deterministic.3–6 However, this ignores the inherent many-to-
one mapping involved in coarse-graining that inevitably leads
to a loss of information. Instead, there exists an ensemble of
fine-grained configurations related to any one low-
dimensional representation. More formally, any
backmapping from a CG configuration R to an AA
configuration r can be represented by a conditional
probability density P(r|R). To enhance sampling, a CG model
can be used to access low-dimensional configurations at a
longer time and length scales than accessible to an AA
model. Once free energy barriers insurmountable to the AA
system are crossed in CG simulations, atomic detail may be
restored by sampling from P(r|R).

Two primary complications arise in typical backmapping
approaches. The first lies in the implicit assumption that the
CG model perfectly captures the low-dimensional behavior of
the AA ensemble. If this is not the case, an accurate sampling
of the true AA ensemble may only be achieved through
redistribution of backmapped configurations across state
space during further simulations. This would require
crossing of free energy barriers that, based on the decision to
utilize a CG model, were established as too high for an AA
system to cross in a reasonable amount of compute time.
Strategies to rigorously sample the AA ensemble, despite
deficiencies in the CG model, have been established in the
form of “resolution exchange”.7–9 While a cheaper
Hamiltonian, such as a CG model, enhances sampling by
proposing configurations that are accepted or rejected in the
atomistic ensemble, such techniques suffer from the
necessity of simultaneously simulating many intermediate
states.10,11

The second complication stems from the failure of a
learned backmapping to perfectly capture the true P(r|R).
Clearly this is rarely true for deterministic backmappings,
where P(R|r) = δ(R − M(r)) for a mapping function M(r).
Recently, machine learned models have benefited both the
development of CG models12–16 and backmappings.17–26 Most
notably, a number of backmapping strategies predict
ensembles of AA structures rather than single
configurations.27–32 Any trained model, however, will be
imperfect, both in its prediction of real molecular structures
and configurations of high likelihood in an AA ensemble
derived from molecular dynamics (MD) or Monte Carlo (MC)
simulation with a specific force field. Specifically, machine
learned models do not automatically satisfy the constraints
imposed by a well-defined thermodynamical ensemble (i.e., a
Boltzmann distribution).

A number of approaches, all based on metropolization or
reweighting, have been established to rigorously sample a
thermodynamic ensemble given imperfect samples from a
machine-learned model. Boltzmann generators33 learn to
approximately convert a simple probability density, such as a
standard normal distribution, to a Boltzmann ensemble via
normalizing flows.34,35 While amenable to either

metropolization36,37 or reweighting,33 no dimensionality
reduction is applied. Instead of mapping from an analytical
ensemble, related techniques38 learn to transform between
Boltzmann ensembles at different temperatures. Variational
autoencoder-based MC (VAE-based MC)39 also learns a model
probability density, but does so by learning both a low-
dimensional ensemble and a probabilistic backmapping.
Though VAE-based MC proposes new AA configurations by
first transitioning through a CG space, the moves can be
configured to exactly satisfy detailed balance in the target
ensemble. It is important to highlight that all of the above
models are only amenable to metropolization or reweighting
due to explicit learning of a function to predict probabilities
of configurations under the learned probability density. A
notable deficiency lies in the system-specific training that is
required for all of these techniques, which precludes
transferability to new molecules.

In this work, we focus on developing general, transferable
backmappings to transition between CG and AA
representations of proteins. Specifically, we learn a
probabilistic backmapping for each amino acid type. Our
approach is similar in spirit to that of Jones et al.29 in that
the resulting model is autoregressive and relies on the local
environment around a CG beads during backmapping.
Unlike their work, which is based on denoising diffusion
models, the probability density of a configuration under our
models is readily calculable. Another key difference is the use
of internal, or bond-angle-torsion (BAT), coordinates in this
work instead of Cartesian coordinates, which is in line with a
recent publication by Yang and Gómez-Bombarelli.31 Those
authors also do not supply closed-form probability densities
as part of their model, with stochastic sampling only
occurring on a reduced-dimensional space of atomic
coordinates rather than the full set. As we will demonstrate,
working in an internal coordinate system makes for
interpretable probability densities, leads to simple loss
functions, and renders the application of bond constraints
trivial.

Unlike both of the works discussed above,29,31 our model
predicts not only heavy-atom coordinates, but also the
positions of hydrogens. While bonds involving hydrogens are
typically constrained in biomolecular force fields, flexibility
in their angles and dihedrals is essential for hydrogen
bonding. As such, it is also important to probabilistically
sample hydrogen degrees of freedom as well during
backmapping. Transferable backmappings including
hydrogens have been reported for polystyrene based on its
backbone and monomer building blocks.23,40 In those works,
however, the predicted probability density for atom locations
is discretized on a fine spatial grid. This not only complicates
sampling of realistic molecular structures (the authors
instead generate atom locations as averages over the
probability density), but also limits transferability across
system densities or pressures. Shmilovich et al.30 applied the
same discretization scheme, including hydrogens, to develop
non-transferable backmapping models of specific proteins.
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However, the models are not only conditioned on the
generated CG sample, but also an atomistic configuration
from a previous time step, further complicating
metropolization or reweighting.

Reweighting has previously been reported for probabilistic
backmappings (including hydrogens) trained for specific
proteins,28 but the resulting models lack the transferability of
this work or those discussed above. Specifically,
Chennakesavalu et al.28 independently trained models on
MD data for each protein studied. The same authors recently
developed a transferable backmapping strategy using a
transformer to globally couple sampling of sidechain
configurations,27 but did not assess reweighting for that
process. We instead train on data from the Protein Data
Bank41 and demonstrate that configurations with reasonable
energies may be generated for a chosen AA force field.
Though architectures capable of backmapping multiple CG
representations42 have recently been presented, our models
depend explicitly on a single chosen representation. In this
work, this is the entire backbone, with center-of-mass beads
representing the sidechains, whereas other authors, for
example, have used learned mappings27 or only alpha
carbons.29,31 This complicates direct comparisons of model
performance, but is a necessary aspect of selecting a CG
representation on which to condition AA coordinates.

A description of our model, including fine details of our
chosen CG resolution, is contained within Methods. We
also describe therein the details of the reweighting
performed in this work, highlighting a previously
unappreciated subtlety involving probabilistic

backmappings. In Results and discussion, we present the
performance of our model. While our results are at or
above the state-of-the-art in terms of previously derived
metrics,29,31 we highlight difficulties in producing
energetically favorable protein structures that can be used
to sample a Boltzmann ensemble defined by a typical AA
force field. While energy minimization is common in many
machine-learning based methods for backmapping
sidechain positions,24,25,43 it does not yield samples from a
well-defined probability density that can be metropolized or
reweighted. This point is eloquently discussed by Lyman
and Zuckerman9 and is not treated at length here.

2 Methods
2.1 Coarse-grained representation

Our CG representation is inspired by the Rosetta centroid
representation44 and is shown schematically in Fig. 1. All
backbone heavy atoms are included in the CG
configuration, as well as the β-carbon of the sidechain and
the hydrogen bonded to the backbone nitrogen. Rather
than a centroid representing the sidechain, however, we
place a single bead at the center of mass of all of the
sidechain atoms. The trained backmapping model can
produce all-atom structures for any identical topology,
regardless of the CG force field or exact mapping function.
Results will be best, however, for CG models that most
accurately represent the structural ensemble of CG
configurations observed in the training set.

Fig. 1 Schematic of the backmapping process. The input starts with a single coarse-grained representation and iterates over producing an AA
structure for each residue. In the output structure, different independent samples of AA configurations are shown in different shades of gray.
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2.2 Backmapping model

We independently train a backmapping model using
Tensorflow45 (version 2.13 or later) for each sidechain residue
type in the canonical set of amino acids. This includes
alternative protonation states and alternative forms of
histidine, but excludes the standard capping groups (ACE,
NHE, and NME) and cysteine residues involved in disulfide
bonds. It is assumed that termini are uncapped and carry
positive and negative charge on the N-terminus and C-
terminus, respectively. A single model is trained to backmap
hydrogen atoms for all N-terminal residues except for proline,
which requires a separate model to be trained due to the
different number of hydrogen atoms. A full list of residue
types considered and the number of training samples for
each are provided in Table 1.

A schematic of the overall backmapping workflow is
shown in Fig. 1. Each backmapping model consists of two
main steps: building a description of the local environment
of a sidechain bead to be backmapped and construction and
sampling from a probability density for all internal (bond-
angle-torsion, or BAT) sidechain coordinates. The first step is
accomplished through geometric algebra attention46 acting
on the relative coordinates of particles near the sidechain
bead. This ensures a local description that is translationally

and rotationally invariant, as well as equivariant to
permutations of particle identities. Backmappings for
N-terminal hydrogens and glycine do not utilize the first step,
and are thus termed “unconditional” due to lack of
conditioning on the local environment. In the case of glycine,
a CG bead representing the center of mass of the two
“sidechain” hydrogens is still present, but this information is
ignored in the backmapping. The second step conditions
masked autoregressive normalizing flows47 on the local
description to produce a probability density of the sidechain
internal degrees of freedom. A sample is drawn from this
distribution and the corresponding Cartesian coordinates are
added to the overall backmapped structure. Full
backmappings always proceed by drawing samples from
unconditional models (N-terminal hydrogens and glycine)
first. Residues are then decoded from the N-terminus to the
C-terminus for simplicity, as we do not expect the order to
play a significant role in the results. The overall model is
autoregressive due to each residue being decoded in turn,
with the probability of subsequent residue configurations
conditioned on those of previously decoded atoms. Each
sampled sidechain configuration of residue i can be assigned
a conditional probability of P(ri|R, r<i). The overall
conditional probability of the entire protein AA configuration
given the CG configuration is then P(r|R) = ΠiP(ri|R, r<i).

To describe the local environment, the 150 closest atoms
and/or CG particles within 0.8 nm of the sidechain bead to
be decoded are selected. If fewer than 150 particles are
selected, the resulting set of coordinates is padded to this
number, as required for input to the geometric algebra
attention layer. One-hot encodings of selected particles are
also provided as input to the geometric algebra attention
layer. These one-hot encodings are based on all protein
atom types and residue types in the AMBER14SB force
field.48 Though an arbitrary choice, this only applies labels
to produce one-hot encodings—any AA force field may be
used in the reweighting described below. Before being
passed into the geometric algebra attention layer, a dense
network mapping one-hot encodings to the working
dimension, or embedding dimension, is applied.
Embedding dimensions depend on the residue being
backmapped and are set to 10 times the number of heavy
atoms in the residue's sidechain. This allows more
information about the local environment and sidechain
configuration to be represented for larger residues. Our
geometric algebra attention layers consist of 2 blocks
containing dense networkings mapping to value and score
functions of a vector attention layer, followed by a layer of
dense networks, as described in ref. 46. All dense networks
consist of a single hidden dimension matching the
embedding, or working, dimension for vector attention.
Vector attention layers in both blocks utilize up to rank 2
information and do not pool over all particles, applying
dense networks separately to each working-dimensional
output from all 150 contributing particles. We apply a final
vector attention layer that does sum contributions over all

Table 1 For each residue type for which a trained model was developed,
the number of unique PDB structures and resulting training examples are
shown

Residue type Unique PDBs Training examples Training epochs

Conditional models
ALA 19 853 605 911 20
ARG 19 676 376 400 40
ASH 81 311 2000
ASN 19 365 321 967 20
ASP 19 499 442 164 30
CYM 0 0 N/A
CYS 11 907 71 239 100
GLH 80 389 2000
GLN 19 266 297 947 20
GLU 19 609 508 513 30
HID 15 613 135 058 30
HIE 9595 32 159 300
HIP 2195 8640 2000
HYP 0 0 N/A
ILE 19 627 425 069 20
LEU 19 990 707 399 20
LYN 0 0 N/A
LYS 19 809 447 455 30
MET 15 976 134 222 30
PHE 19 272 302 636 40
PRO 19 376 348 694 30
SER 19 888 495 184 20
THR 19 594 428 342 20
TRP 16 100 111 425 100
TYR 19 041 271 049 40
VAL 19 734 541 893 20
Unconditional models
GLY 20 006 546 274 10
NPRO 1233 1961 10
Nterm 19 499 39 796 10
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particles to yield our description of the local environment
around a sidechain bead.

The local description is provided as input to a dense
network that maps to the parameters of starting distributions
for a normalizing flow to act on. Bonds and angles are
represented by Gaussian distributions and torsions by von
Mises distributions. All distributions are implemented
through tensorflow-probability49 (version 0.21) and are
independent of each other prior to the application of a
normalizing flow. A masked autoregressive normalizing
flow47 is applied to these distributions and consists of 3
blocks of rational quadratic spline flows.50 Each of the blocks
takes the local description as conditional input to ensure its
relevance even through a deep architecture. Within the first
block, autoregressive masks apply to sidechain degrees of
freedom in sequential order, while in the last block the order
is reversed. Within the middle block, the order is “random”,
though for reproducibility we set the random seed to 42 for
all models and runs. Rational quadratic splines are
constrained to the interval (−π, π), which contains the low-
variance Gaussian distributions of bonds and angles when
bonds are measured in Angstroms. We used 20 spline knots
and dense layers, each containing a single hidden layer of
dimension 100, to produce rational quadratic spline
parameters for transforming each dimension. The dense
layers are masked to ensure an autoregressive distribution.51

The code supporting this work is split into two separate
repositories. One provides a generic suite of tools for
developing and training normalizing flows, custom
probability densities, and overall variational autoencoding or
backmapping models.52 The second repository53 includes all
of the specific implementations of models, as well as code
for generating the training data, performing simulations, and
analyzing the full decoding model.

2.3 Datasets

Training samples were pulled from structures in the Protein
Data Bank (PDB).41 We consider all protein structures with
fewer than 10 distinct proteins and less than 5000 atoms
deposited before August 12, 2023. We cluster sequences
based on 50% sequence similarity, with only the structure
with the highest combined resolution saved for each cluster.
Since some PDB entries with multiple sequences appeared
multiple times, the results are pruned to only include a given
PDB identifier only once. For structures with multiple
models, such as from NMR experiments, we utilize only the
first model. This resulted in 36 524 PDB structures, which
includes protein complexes.

To prepare data for training, we pass every raw PDB
structure through the pdbfixer tool.54 This removes non-
protein atoms, such as bound drug molecules or waters, then
identifies missing atoms, including hydrogens, before adding
them to the structure based on geometric criteria. Structures
are immediately removed if they contain non-standard
residues, have more than 10% of residues missing, or have

more than 1% of their included residues missing heavy
atoms. We exclude all residues with atoms other than
hydrogens added by this tool from backmapping targets of
subsequent training sets. However, we include all atoms in
the resulting structures in the portion of training sets used to
condition the backmapping (i.e., for determining the local
environment of a CG bead). Residues completely missing
from PDB structures are not filled in by the pdbfixer tool and
are excluded from the training dataset in every sense. This
mainly excludes terminal residues or those along highly
flexible loops appearing in low-resolution structures. The
resulting set of 20 327 structures is the “clean” dataset. The
“energy minimized” dataset contains the 20 325 clean dataset
structures that were energy minimized without errors for
1000 steps in OpenMM55 using the AMBER14SB force field48

in vacuum.

2.4 Training

Inputs for each training example include the Cartesian
coordinate of the sidechain bead to decode, positions of all
atoms and sidechain beads in the CG structure, positions of
atoms for a random set of sidechains, and a one-hot
encoding specifying the atom or sidechain bead types.
Random selection of residues for including sidechain atoms
emulates the process of backmapping residues in a random
order. The AMBER14SB force field48 is used to assign atom
types for the purpose of defining the one-hot encoding, while
one-hot encodings of sidechain beads correspond to the
residue type in the same force field. Targets of a training
example are the BAT coordinates of the atoms in the
sidechain to be decoded. The output of a backmapping
model is actually a tensorflow-probability distribution object,
which enables either sampling or computation of its log-
probability over a sample. For training purposes, we simply
maximize the log-probability of targets under the predicted
backmapping distribution. For generation of new structures,
we instead sample from the predicted backmapping
distribution.

Numbers of training examples for each residue type are
displayed in Table 1. Backmapping models for all residue
types are trained for varying numbers of epochs (shown
in Table 1) based on the size of the training data set and
complexity of the sidechain. We use 10 epochs for all
unconditional models. For all models, we use an ADAM
optimizer56 with the default settings in Tensorflow45

(version 2.13 or later) and a batch size of 64. Training
data is split 90/10 into training and validation sets. We
only save the model weights for the epoch yielding the
lowest loss on the validation set to avoid overfitting.
Training typically took between 24 and 72 hours using 40
GB NVIDIA A100 GPUs for training conditional models.
NVIDIA T1000 GPUs on a desktop workstation were
sufficient for training all unconditional models in less
than a day.
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2.5 Simulations

OpenMM55,57–59 (version 8.0) serves as the engine for all-
atom simulations of 1UAO (chignolin). We use the
AMBER14SB forcefield with the gbn2 (ref. 60) (igb8 in
AMBER) implicit solvent model. There is no cutoff and all
bonds involving hydrogens are constrained.61 We perform
a simulations of the unrestrained protein as well as one
with the atoms involved in the CG representation
harmonically restrained. For the unrestrained protein, we
enhance sampling through temperature replica exchange
implemented through OpenMMTools.62,63 Langevin
dynamics with a timestep of 2 fs and collision frequency
of 1 ps maintains the temperature of each replica and
propagates dynamics. Six replicas at temperatures assigned
exponentially between 300 and 450 K are run in parallel
with configurations swapped every 1 ps. We equilibrate
each replica for 1 ns before a production run of 1 μs,
only using configurations saved every 10 ps from the
lowest temperature replica at 300 K for further analysis.
Restrained simulations occur at fixed temperature of 300
K and also with Langevin dynamics, but with a reduced
timestep of 1 fs to accommodate the strong harmonic
restraints. Spring constants are 200 000 kJ mol−1 nm−2 and
applied to each CG atom position in the energy
minimized configuration of the most dominant model in
the PDB. Equilibration is also for 1 ns before a
production run of 100 ns with configurations saved every
10 ps.

2.6 Coarse-grained models

To generate simulations of only the CG representation, we
use three different methods. The first two are based on
clustering 10 000 configurations sampled every 100 ps
from the MD simulations of chignolin described above.
We computed root-mean-squared distances (RMSDs)
between alpha carbons for all pairs of aligned structures
using MDTraj,64 then perform hierarchical clustering
through scipy.65 Each configuration is assigned to a
cluster such that its alpha carbon RMSD to all other
members of the cluster is less than 2.0 Å. To
probabilistically generate CG structures, a cluster is
selected randomly, followed by uniformly sampling a
configuration belonging to that cluster. Random cluster
selection occurs either proportional to the cluster
population, or uniformly. The former is termed the
“cluster by population” CG model, while the latter is the
“cluster uniform” CG model. Clearly, these models only
sample a reduced set of the CG phase space of chignolin.
However, they yield CG configurations observed in the all-
atom simulations with known probabilities, which allows
reweighting.

To allow full sampling of CG phase space and include
CG configurations not observed in the AA chignolin
simulations, we also developed a CG model by training a
normalizing flow. This model reproduces the internal

degrees of freedom (bonds, angles, and torsions) of the
CG representation of chignolin observed during the AA
simulations. Details for normalizing flows are identical to
those described for sidechain backmappings, except that
we instead use 5 blocks of masked autoregressive rational
quadratic spline flows. To enable learning internal
coordinates only, we treat sidechain beads as bonded to
beta carbons. We train the CG flow model for 100 epochs
with a batch size of 256 and 10% of configurations
reserved for validation. To demonstrate successful training,
marginal distributions of all CG degrees of freedom are
shown in Fig. S1.†

2.7 Reweighting

To rigorously sample AA configurations in a specific
thermodynamic ensemble and according to an AA potential
energy function, reweighting of backmapped configurations
is necessary. Generally, an average of a quantity X(r) that
depends on configuration r under one ensemble may be
written in terms of samples from another ensemble through
reweighting

Xh i1 ¼
ð
P1 rð ÞXdr ¼

ð
P2 rð ÞX P1

P2
dr ¼ X

P1

P2

� �
2

(1)

Angle brackets indicate an average over the ensemble
indicated by the subscript, with the corresponding
probability given by Pi(r) in ensemble i. Note that the above
also works for unnormalized probability densities if written
as

Xh i1 ¼
X
P1

P2

� �
2

P1

P2

� �
2

(2)

If we sample AA configurations by first sampling from a CG
representation then backmapping, we must account for
conditional probabilities.

〈X〉1 =
R
XP1(r)dr (3)

=
R R

XP1(r)P1(R|r)dRdr (4)

¼
ð ð

XP2 Rð ÞP2ðr|RÞ P1 rð ÞP1ðR|rÞ
P2 Rð ÞP2ðr|RÞdRdr (5)

= 〈Xw〉2 (6)

Note that the subscript of 2 on the expectation implies
averaging over AA configurations by first sampling from a CG
distribution P2(R), then sampling from the backmapping
distribution P2(r|R). In the last line, we have defined the
weight on each AA configuration r sampled from CG
configuration R to be
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w ¼ P1 rð ÞP1 R|rð Þ
P2 Rð ÞP2 r|Rð Þ (7)

If any of the probability densities are unnormalized, we
obtain the reweighting expression used throughout this work

Xh i1 ¼
Xwh i2
wh i2

(8)

where the normalized reweighting weight is given by

W ¼ w
wh i2

(9)

Ensemble 1 is the AA ensemble of interest and ensemble 2
combines a CG model with a probabilistic backmapping
model.

In the above, it is interesting to consider the presence of
the encoding, or CG mapping, probability P1(R|r) in w. Its
presence derives from the necessity of writing P1(r) =

R
P1(r, R)

dR. From Bayes' theorem, we can choose from P1(r, R) = P1(r)
P1(R|r) or P1(r, R) = P1(R)P1(r|R). We have chosen the former
due to our assumption that, typically, the potential energy,
and hence the Boltzmann weight proportional to P1(r) in the
AA ensemble, is known, along with some mapping, R = M(r),
to the CG representation. If the CG representation is
deterministic, however, P1(R|r) = δ(R − M(r)). While the typical
choice in most coarse-graining schemes, this will make
reweighting effectively impossible unless the backmapping is
designed so that all configurations sampled through P2(r|R)
map to the same CG configuration. If this is not the case, the
delta function in the numerator will effectively always be zero
for continuous degrees of freedom. If probabilistic
backmappings are desired, the above motivates consideration
of stochastic encodings during the training and
implementation of CG models.

Practically, however, P1(R|r) may be chosen arbitrarily if a
fixed CG mapping is provided. This follows from integrating
out the R degrees of freedom in eqn (4). More appropriate
choices will lead to improved weights and better use of
generated configurations. In ref. 28, a uniform distribution
was implicitly selected, as this yields a constant that need
not be considered when reweighting unnormalized
distributions. In this work, we will use delta functions for
atoms already present in the CG representation, since these
will be unchanged in the mapping or backmapping process,
and Laplace distributions for sidechain beads. While an
optimal choice for P1(R|r) is unclear, we hypothesize that
P2(R|r) will perform well as it will correctly account for the
distribution of M(r) observed when drawing from P2(r|R). We
approximate P2(R|r) by fitting Laplace distributions to the
deviations between the location of the CG bead being
backmapped and the center of mass of sidechain samples
over the entire dataset (Fig. S2†). Scale parameters (related to
the variance) come from fitting for each residue type, while
the center of the distributions of deviations are fixed to zero.
This effectively acts to penalize configurations that deviate
too significantly from the backmapped CG configuration.

Though it is not pursued here, we prove that reweightings
are also possible through stochastic backmappings with
unknown probability densities, as long as a probability may
be assigned to the path used to generate a given
configuration. This is the case in denoising diffusion
models66 as well as stochastic normalizing flows.37 For these
cases, it is useful to introduce an additional stochastic
variable z representing the “noised” or transformed space of
r. Following ref. 37, the backward and forward path
probabilities, implicitly conditioned on CG configuration R,
are given by Pb(r → z) and Pf(z → r). Their ratio is defined as

ω z; r|Rð Þ ¼ Pb r→ zð Þ
Pf z→ rð Þ (10)

By inserting the definition of the backward path probability
into 4 and integrating over z, we can follow the same
procedure as before

〈X〉1 =
R R R

XPb(r → z)P1(r)P1(R|r)dzdRdr (11)

¼
ððð

X Pf z→ rð ÞP2 Rð ÞP2 z|Rð Þ × Pb r→ zð ÞP1 rð ÞP1 R|rð Þ
Pf z→ rð ÞP2 Rð ÞP2 z|Rð Þ

� �
dzdRdr

(12)

¼ X
P1 rð ÞP1 R|rð Þω z; r|Rð Þ

P2 Rð ÞP2 z|Rð Þ
� �

2
(13)

= 〈Xŵ〉2 (14)

In the above, we have made use of the property of path
probabilities that

R
Pb(r → z)dz = 1, or a constant if

unnormalized. Now, the subscript 2 on the expectation
indicates sampling of P2(R), sampling from P2(z|R), and
sampling of a path from z to r. We have defined the weight
for a given sample generated by following this procedure as

ŵ ¼ P1 rð ÞP1 R|rð Þω z; r|Rð Þ
P2 Rð ÞP2 z|Rð Þ (15)

If any of the probability densities or path probabilities are
unnormalized,

Xh i1 ¼
Xŵh i2
ŵh i2

(16)

and the normalized reweighting weight is given by

Ŵ ¼ ŵ
ŵh i2

(17)

The presented derivation generalizes the reweighting
procedure presented in ref. 37 to conditioning on a CG
coordinate.

3 Results and discussion
3.1 Per-residue model performance

As shown in Fig. 2, trained models generate distributions of
sidechain dihedral angles that match the training dataset.
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Models trained for all residue types produce probability
densities for sidechain degrees of freedom that match
similarly well. For the key dihedrals shown in Fig. 2, the
maximum Jensen–Shannon (JS) divergence between training
data and model-generated marginal distributions is 0.017 for
dihedral 1 of tryptophan. The JS divergence ranges from 0 to
ln 2 with lower values indicating more closely matching
distributions. While this does not guarantee matching of
higher-dimensional probability densities over all sidechain
degrees of freedom, we expect the autoregressive nature of
our model to capture such correlations. In later sections, we
will test this further by examining energies of generated
configurations, which are highly sensitive to correlations
between degrees of freedom.

Crucially, Fig. 2 demonstrates that the local environment
of a residue directly impacts the distribution of its degrees of
freedom. To assess this, we draw many samples from
probability distributions generated from a small set of
randomly selected training configurations. Especially for
charged residues, like aspartic acid, the resulting
distributions are sharp, indicating a strong influence of the
local environment on the predicted probability density.
Bulkier residues, like tryptophan, demonstrate weaker
dependence on the local environment, typically exhibiting
broader distributions. Difficulties are most pronounced for
long, flexible, sidechains, like lysine and arginine, due to the
highly collective nature of dihedral angles in determining an
orientation of the amine groups. While performance likely
depends on the distance and nearest neighbors cutoffs
employed (8 Å from the decoded CG bead), it may also
suggest a limit to the number of degrees of freedom that may

be backmapped successfully, with additional CG beads
required to represent these residues.

Another measure of the sensitivity of a model to the input
local environment is the distribution of center-of-mass CG
bead locations of generated all-atom configurations. Fig. S2†
shows distributions of deviations from the reference CG bead
location in all three Cartesian coordinates, which are
identical, as expected, revealing no bias based on the local
orientational reference frame. Broader distributions of CG
bead locations are observed for bulkier and more flexible
sidechains. Interestingly, we observe the largest deviations
for arginine, which also showed the most insensitivity of its
backmapping distributions to the provided training
examples. This corroborates our assessment that the model
for arginine more poorly utilizes information concerning the
local environment. Examination of these distributions is also
key when considering the encoding distribution during
reweighting. A tighter distribution is indicative of better
adherence to the imposed deterministic encoding. Generated
configurations are then expected to be of higher probability
in the original ensemble.

3.2 Evaluation on protein test set

To assess the ability of our sidechain backmapping models
to collectively generate entire AA protein structures from CG
representations, we utilize the same protein test set of ref. 29,
excluding the 4 proteins in the set with disulfide bonds. For
consistency with the training set, the protein structures are
prepared by the same methods as the training data. This
involves addition of all missing atoms, including hydrogens,

Fig. 2 Distributions of key dihedral angles for aspartic acid (a), tryptophan (b), and arginine (c). Dihedral 1 ends in the first atom bonded to the
beta carbon, while dihedral 4 is the next such atom along the sidechain (dihedrals 2 and 3 involve the orientation of other atoms, typically
hydrogens, bonded to the beta carbon). Solid black lines represent the distribution over all training samples while dashed gray lines are model
outputs from inputs over the entire training set. Colored lines represent 10000 samples drawn from different single training configurations.
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as well as energy minimization. For each test set structure,
100 independent AA configurations are sampled and
compared to the reference structure used for generating the
CG model input.

Table 2 demonstrates that our model, trained on the
energy minimized dataset, performs at a similar level to
those developed in ref. 29 and 31 under the same evaluation
metrics used by Jones et al.29 As expected, bond scores, which
assess the percentage difference of backmapped bond
lengths from the reference structure, exhibit excellent
performance. Our model performs slightly better than that of
Jones et al.,29 though this could be anticipated by our
model's direct prediction of internal bond-angle-torsion
coordinates instead of Cartesian. Our model performs better
than that of Yang and Gómez-Bombarelli,31 which also uses
internal coordinates but backmaps from a more minimal CG
representation. A number of differences hinder comparisons
to these other models with respect to all metrics. For
instance, we backmap all hydrogens, whereas ref. 29 and 31
only backmap heavy atoms. As such, we also provide all
metrics computed without consideration of hydrogens (or
bonds involving hydrogens), which negligibly impacts our
bond score.

The diversity score introduced by Jones et al.29 measures
the variability (via root-mean-squared distance (RMSD) of all
atoms) between generated structures compared to the RMSD
of generated structures to the reference (see eqn (1)–(3) in
ref. 29). Our model consistently produces negative values of
this metric, which indicates greater RMSD between generated
structures than their RMSD from the reference. While this is
indicative of outstanding diversity in generated structures, it
also implies that the average of the generated structures does
not coincide with the reference. This might be expected due
to prediction of BAT coordinates. Small shifts in torsions can
lead to large shifts in Cartesian distances, and hence RMSD,
between atoms, resulting in an enhanced diversity score.

Our clash score performance is significantly worse when
including hydrogen atoms, but falls in between that of ref. 29
and 31 when considering only heavy atoms. The clash score
measures the fraction of residues with any sidechain atoms
overlapping (within 0.12 nm) with atoms of another
sidechain. Such atoms lead to large energies and forces
under standard molecular dynamics protein force fields.
Improvement without hydrogens considered shows that most
observed overlaps involve hydrogens. A larger clash score
compared to ref. 29 is likely due to our use of BAT
coordinates, though could also be associated with less
expressive decoding distributions compared with denoising
diffusion models. While internal coordinates significantly

simplify application of bond constraints and yield reasonable
distributions of bonds, angles, and torsions, both important
for reweighting, their use in generative models can lead to
unfavorable non-bonded interactions.39

In terms of computational time to generate new
structures, Fig. S3† indicates that our overall model
performs similarly to that developed by Jones et al.29 It is
perhaps surprising that the normalizing flow architectures
presented here are not faster than the denoising diffusion
probabilistic models of ref. 29. However, we do observe 1–2
orders of magnitude speed-up for unconditional models,
such as for glycine, which differ in that they do not include
a geometric algebra attention layer to capture the local
environment. Better optimizing the architecture for defining
the local environment, or the size of the local environment
considered, may be a route towards improved
computational speed.

To assess the relevance of a model for producing
structures consistent with a defined thermodynamic
ensemble, it is important to also consider energies and
forces in addition to the metrics defined above. Out of
2000 generated structures, 23 exhibited potential energies
comparable to the energy minimized reference structures,
with energies typically increasing with the number of
residues in a protein (Fig. S4†). We explore the source of
these high energies, broken down for each residue type, by
comparing the median of the maximum force on a residue
to both its median coordination (alpha carbons within 1
nm of the residue's alpha carbon), and distance from the
reference CG bead (Fig. 3). It seems plausible that residues
in more crowded environments might experience higher
maximum forces upon backmapping. Surprisingly, Fig. 3
demonstrates that, even for residues that seem to ignore
their local environment according to Fig. 2, there is little
correlation between maximum force and coordination.
Rather, residue types with large deviations from the CG
bead reference also exhibit large forces. To account for
differences in propensities of residues to exist on the
interior or exterior of a protein, we also plot the median
max force (over 100 backmapped samples) for each residue
in all test set proteins against their coordination (Fig. S5†).
No correlations arise, even across widely varying
coordinations for the same residue type. These results
point to a sensitivity of backmappings to their local
environment. However, larger, more flexible molecules are
more difficult to backmap. As a result, these residues are
less precisely backmapped and deviate more from their
reference CG bead locations, resulting in steric clashes
regardless of their proximity to other residues.

Table 2 Model performance based on the metrics defined in ref. 29 and discussed in methods

Bond score (%) (higher better) Clash score (%) (lower better) Diversity score (lower better)

All atoms 99.84 ± 0.04 12.30 ± 3.23 −0.132 ± 0.013
No hydrogens 99.68 ± 0.08 2.52 ± 0.86 −0.210 ± 0.018
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3.3 Detailed study with chignolin: backmapping

For an in depth analysis of our backmapping models, we
apply them to all-atom MD trajectories of chignolin (PDB ID
1UAO) in implicit solvent (see Methods) that have been
mapped to their CG configurations. All model-generated
distributions capture the dominant modes from MD
simulation, but sample additional modes (Fig. 4 and S6†)
that are observed in the full training dataset. The best match
with simulation occurs for dihedral 1 of threonine residues,

which shows strong orientational preferences due to
hydrogen bonds. The JS divergence is 0.004 for both
threonines, approximately an order of magnitude lower than
the JS divergences of other residue sidechain dihedrals. In
most cases, the generated configurations differ from the
training dataset. To isolate the effect of changes in the
backbone configuration, we have also generated
configurations from a trajectory with the CG atoms (which
here includes beta carbons) restrained to the native
configuration. Restraints on all backbone atoms involved in
the CG representation are tight to effectively keep the
backbone atoms in a single configuration. As such, only the
sidechain CG bead positions change in the restrained
simulation. Fig. S7† demonstrates that there is little
difference in the performance compared to backmapping of
the unrestrained trajectory in Fig. 4 and S6.† Overall,
however, backmapped configurations cover the phase space
of dihedral angles sampled from MD simulations, which
bodes well for reweighting.

Fig. 5 reveals that total energy distributions of
backmapped configurations also exhibit significant overlap.
Unfavorable, high-energy configurations are most typically
due to atomic overlaps that lead to large nonbonded
(Lennard-Jones and electrostatic) energies. The observed
bimodal distribution of nonbonded energies is likely due to
localized distributions of torsion angles in sidechains—for
two nearby sidechains, some combinations of key dihedral
angles will lead to overlaps with near certainty, while others
make overlaps nearly impossible. Overall, though, total
energies are lower than observed in simulations. It is clear
from Fig. 5 that this is due to too-favorable bonded energies
offsetting unfavorable nonbonded (Lennard-Jones and
electrostatic) energies. Energies of bonds, angles, and
torsions are lower in generated configurations due to the use

Fig. 4 For representative residues in chignolin, distributions of the
first and fourth dihedrals are compared between the MD simulation
(blue), generated configurations from models trained on energy-
minimized PDB structures (orange) or trajectory-trained models (red),
and the training data set (black-dashed). See Fig. 2 for a description of
sidechain dihedrals 1 and 4. Distributions for all residues are shown in
Fig. S6.†

Fig. 3 By residue type, median maximum force on a residue (top), median distance of the center of mass of a backmapped sidechain from its
reference CG bead (middle), and median coordination (bottom) for all backmappings of the protein test set. Median maximum forces of the
energy-minimized test set structures are shown in orange. While median CG distances correlate with median maximum forces, median
coordinations do not.
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of energy-minimized training data. For comparison, the MD
simulation data is used to train additional sidechain
backmapping models for all residue types (excluding glycine)
in chignolin. The same unconditional models trained on
energy-minimized PDB data are used for glycine and
N-terminal hydrogens. As expected, “trajectory-trained”
models overlap nearly perfectly with the dihedral

distributions from simulations shown in Fig. 4 and S6†
(maximum JS divergence of 0.016 for dihedral 1 of TRP9).
Since configurations from the temperature of interest, rather
than energy minimized, are used to train these models, they
also produce distributions of bond, angle, and torsion
energies that overlap well with those from MD simulations
(Fig. 5). Models trained on trajectories also produce lower
nonbonded energies. We attribute this to the removal of
spurious dihedral modes causing atomic overlaps, but note
that trajectory-trained models are not transferable to proteins
other than chignolin.

Notably, both models trained on energy-minimized data
and chignolin trajectories produce populations of bonds and
angles with very high energies. High energies for bonds and
angles are possible due to normalizing flows leaving small
amounts of probability density outside the set of favorable
bond and angle values. This is inevitable since the flows are
bijective and fixed to the domain [−π, π], while the Gaussian
distributions used to model bonds and angles contain highly
improbable regions outside this domain. For most bonds
and angles, the probability of sampling a value outside the
minimum or maximum of the training data set values is
around 0.01%. While this seems small, the probability of
sampling any bond or angle outside the favorable energy

range, assuming independent sampling, is 1 − PðNbondsþNanglesÞ
inside ,

which grows quickly with the size of the sidechain. This
explains the unexpectedly large populations of high bond
and angle energies in Fig. 5. It also explains the increase in
potential energy with protein size, though with longer
sequences the probability of atomic overlaps will increase as
well. Since distributions of bonds and angles are well-
approximated by Gaussian distributions, our results suggest
that these degrees of freedom should be excluded from
normalizing flows, which may only be necessary for dihedral
angles. For torsions, no high-energy population is observed
due to the use of von Mises distributions, which keep all
torsions within a fixed domain exactly matching their
possible values.

3.4 Detailed study with chignolin: reweighting

Due to overlap of dihedral and potential energy distributions,
we would expect reweighting to prove successful for
chignolin. Around 40% and 65% of configurations generated
by energy-minimized-trained and trajectory-trained models,
respectively, have lower energy than the maximum energy
observed in the MD simulation of chignolin. To assess
reweighting, we require CG models. While the centroid
representation force field of Py-Rosetta67 is a natural choice,
we found that the phase space of CG configurations under
this model overlaps poorly with that generated by the all-
atom AMBER14SB force field. With little overlap in CG space,
there is little hope of producing relevant AA structures,
regardless of the performance of the backmapping.

To ensure overlap of CG configurations, we examined
three different methods for probabilistically generating CG

Fig. 5 Probability densities of potential energies of chignolin, broken
down into contributions from bonds, angles, torsions, nonbonded
interactions (LJ and electrostatic), and implicit solvation for MD
simulations (blue) and generated configurations from models trained
on energy minimized PDB structures (orange) or chignolin trajectories
(red). Primary axes are truncated to more easily compare to simulation
distributions while insets show densities utilizing base-ten logarithms
of the potential energy to include the full generated distributions.

MSDEPaper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

5 
 2

02
5.

 D
ow

nl
oa

de
d 

on
 2

1/
10

/2
5 

16
:3

0:
18

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4me00198b


Mol. Syst. Des. Eng., 2025, 10, 298–313 | 309This journal is © The Royal Society of Chemistry and IChemE 2025

configurations, which are described in Methods. Briefly, the
first two “CG models” are based on clustering a reduced set
of MD simulation configurations, which results in reduced
coverage of CG phase space but ensures that all generated
CG configurations are observed in the AA trajectory. We
sample from clusters either proportional to their population
or uniformly. As observed in Fig. 6a, the former preserves the
locations and relative probabilities of free energy basins,
while the latter flattens the free energy landscape. A

normalizing flow trained to generate BAT coordinates of the
CG representation of chignolin fully covers CG phase space
and preserves most features of the free energy landscape
shown in Fig. 6a, but produces some configurations that are
highly unlikely in a MD simulation.

Successful reweighting of configurations generated
through sequential sampling of the CG and backmapping
distributions should recover the AA free energy landscape in
the 2D space of end-to-end distance of terminal alpha
carbons and root-mean-squared deviation (RMSD) from the
folded structure (Fig. 6a). Using eqn (9), we can reweight
generated configurations to the AA ensemble of the
AMBER14SB force field at 300 K, even correcting relative
sampling of coordinates only involving CG configurations,
such as those shown in Fig. 6a. However, Table 3
demonstrates that, out of 1 000 000 AA configurations
generated by any combination of CG and backmapping
models, very few effectively contribute to the calculation. In
other words, only a small fraction of the weights computed
from eqn (9) are appreciably greater than zero. This means
that effectively only these configurations will contribute to
any calculations of molecular properties. Well-converged
results might require hundreds of independent samples all
contributing significant weight, hence requiring on the order
of hundreds of millions of generated configurations. This is
surprising given that configurations generated through our
protocols still exhibit substantial dihedral and potential

Table 3 Fractions of samples effectively contributing to reweightings
(the effective sample size68 divided by the total number of samples)

CG model or residue Energy min models Traj-trained models

Full protein backmappings
Cluster by pop 1.0 × 10−0.6 1.0 × 10−0.6

Cluster uniform 1.0 × 10−0.6 1.0 × 10−0.6

Flow 3.1 × 10−0.6 2.5 × 10−0.6

Individual residue backmappings
GLY1 2.2 × 10−0.4 2.4 × 10−0.4

TYR2 6.4 × 10−0.5 1.8 × 10−0.4

ASP3 1.6 × 10−0.5 3.5 × 10−0.4

PRO4 1.1 × 10−0.5 8.7 × 10−0.5

GLU5 6.6 × 10−0.5 1.6 × 10−0.4

THR6 2.5 × 10−0.5 3.0 × 10−0.4

GLY7 1.7 × 10−0.4 8.0 × 10−0.4

THR8 4.2 × 10−0.5 2.9 × 10−0.4

TRP9 2.9 × 10−0.5 6.3 × 10−0.5

GLY10 3.8 × 10−0.4 5.5 × 10−0.5

Fig. 6 (a) Potentials of mean force along terminal alpha carbon end-to-end distance and alpha carbon RMSD to the native structure. From top to
bottom, data is from AA simulations with the AMBER14SB force field, the “cluster by population” CG model, the “cluster uniformly” CG model, and
a normalizing flow trained on CG representations of the AA trajectory (b) the unweighted log-probability in the desired ensemble (e.g., negative
potential energy) is compared to the probability under the generative model, using fit Laplace distributions for P1(R|r) and the probabilities for the
trained CG flow model and each backmapping model type.
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energy overlap with the MD simulations (Fig. S8–S10†). While
cluster-based CG sampling changes potential energy
distributions by small amounts (Fig. S8 and S9†), sampling
from the normalizing flow CG model results in higher
potential energies (Fig. S10†), likely due to CG coordinates
themselves not matching the CG model. Even so, energy-
minimized-trained models generate 13% and the trajectory-
trained models generate 21% of configurations below the
maximum energy sampled in the MD simulation.

Clearly, overlap of potential energies is necessary for
reweighting, but is not sufficient. Fig. 6b demonstrates that the
unnormalized probability of the generated configurations,

approximately provided by
P2 Rð ÞP2 r|Rð Þ

P1 R|rð Þ , is not well-correlated

with the probability in the desired ensemble P1(r) ∝ e−βU. Many
low-energy configurations are assigned low probability in the
generative ensemble, with the primary contribution coming
from the backmapping probability P2(r|R). Indeed, low energy
configurations can be assigned a wide range of probabilities by
our generative models—nearly the full width of all assigned
probabilities. As a result, the only contributing configurations
are those that are high probability in the AA ensemble of the
force field yet low probability in the generative ensemble,
removing many low energy configurations.

Are low correlations between generated and target
ensemble probabilities due to a lack of coordination between
models for each sidechain? Despite the autoregressive nature

of the backmapping, the independent training protocol lends
plausibility to individual backmapping distributions being
improperly conditioned on previously backmapped atoms.
Fig. 7 displays dihedral distributions obtained by
backmapping select residues of chignolin independently
from a single energy minimized structure. Distributions for
all other residues backmapped in the same way are shown in
Fig. S11.† All other sidechain atoms except that being
backmapped are present and all CG degrees of freedom are
held fixed. Again we find that a larger phase space of
dihedral angles are sampled by our models compared to AA
TREMD simulations with all atoms restrained tightly to their
energy minimized positions, except for those of the sidechain
to be backmapped, which are restrained to their center-of-
mass position (CG bead site). At least for the trajectory-
trained models, however, reweighting of these dihedral
distributions is possible and results in overlap with
distributions from simulations (Fig. 7 and S11†). Reweighting
improves JS divergences between trajectory-trained models
and simulations from 0.41 to 0.08 for dihedral 1 of GLU5 and
from 0.22 to 0.08 for dihedral 1 of TRP9, whereas no
improvement is observed when reweighting models trained
on energy-minimized data. Despite a 1–2 order of magnitude
increase in effective fractions of contributing samples
compared to backmapping an entire protein (Table 3),
reweighting backmappings of individual residues in a static
configuration remains challenging. Partly, this is due to
additional difficulties associated with P1(R|r) when
backmapping a single configuration. In this case, P2(R) is
rigorously 1 since only a single CG configuration is used,
meaning that P1(R|r) = δ(R − M(r)) exactly. We cannot choose
this distribution arbitrarily since we only want to include

Fig. 7 For select residues in chignolin, distributions of the first
dihedral from the backbone (ends in the first atom bonded to the beta
carbon) are shown from trajectories (blue) with tight restraints on all
atoms outside the indicated residue sidechain, as well as a restraint on
the sidechain atoms to their CG bead location in the energy-
minimized PDB structure. Training data for each model type (based on
energy-minimized PDB structures on the left or chignolin trajectories
on the right) are in dashed black. Distributions from generated
configurations are shown in orange, while reweightings of those
distributions are shown in red.

Fig. 8 The unweighted log-probability in the desired ensemble (e.g.,
negative potential energy) is compared to the probability under the
generative model for configurations of individual residue sidechains
produced from a single CG configuration. In this case, P2(R) = 1.
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those configurations consistent with the CG configuration to
be decoded. We approximate this by using sharply peaked
Laplace distributions for all residues, with the scale
parameter set to 0.01. The resulting restraint is consistent
with our use of a tight harmonic restraint on the CG bead
position in our restrained MD simulations, but diminishes
the number of useable backmapped samples.

While a sharper P1(R|r) does make reweighting more
difficult, Fig. 8 shows that probabilities under the generative
model still lack correlation with probabilities under the
ensemble of interest (results for all residues in chignolin are
shown in Fig. S12†). Lack of correlation for individual
sidechain backmapping models propagates to backmappings
of the full chignolin peptide, keeping fractions of effectively
contributing samples low. This suggests that the largest
improvements to reweighting full proteins will come from
improving component sidechain models, particularly by
ensuring that configurational probabilities assigned by the
generative model correspond to Boltzmann weights in the
ensemble of interest.

A related conclusion could be that reweighting is difficult
because the phase spaces of model-generated and MD
ensembles subtly lack overlap. Excellent overlap of bond,
angle, and torsion energies with only partial overlap of non-
bonded energies provides evidence for this interpretation
(Fig. 5). While reasonable on their own, the specific
combinations of bonds, angles, and torsions generated are
not consistent with the MD ensemble since they do not
produce low non-bonded energies. Due to the high
dimensionality of configurational space, such subtle
differences in probability densities are hard to diagnose.
However, we would then expect fewer issues for smaller
sidechains, such as threonine or aspartic acid. The lack of
correlation observed in Fig. 8 and S12† suggests this is not
the case and that future efforts should focus on better
aligning configurational probabilities under the model with
those of simulations.

4 Conclusions

We have presented a machine-learning approach for
probabilistic backmapping of protein sidechains that may be
applied to any sequence of canonical amino acids. The
primary goal of the trained models is to generate structures
consistent with the distribution of atomistic configurations
conditioned on their local environment of both CG and AA
particles. Direct access to learned conditional probabilities is
a distinguishing feature of these models, as it allows for
reweighting of generated structures. Reweighting allows for
computation of average properties under other ensembles,
such as those defined by different force fields at specific state
conditions (e.g., temperatures or pressures). Classical protein
force fields represent the current standard for understanding
configurational ensembles of proteins at atomistic resolution.
It is critical, then, to evaluate whether machine-learned
models generate structures with distributions that match

potential energies produced by molecular simulations
utilizing modern protein force fields. To reach parity with
MD or MC simulations, as well as enable reweighting of their
generated structures, machine-learned models must
demonstrate overlap in both configurational and potential
energy space. Excitingly, our backmapping models do
produce ensembles of configurations with significant
potential energy overlap with molecular simulations of
chignolin.

However, our analysis demonstrates that generating low
potential energy configurations across the entire
configurational space is not enough to allow reweighting of
AA configurations generated by machine-learned models.
Such models must also correctly assign probabilities such
that generated configurations are correctly ranked according
to their probability in the desired ensemble. Previous
sidechain backmapping models that exclude hydrogens29,31

have not been able to evaluate potential energies in the AA
ensemble of popular modern atomistic force fields, and
hence have not performed reweighting. In the work of
Chennakesavalu et al.,28 reweighting of chignolin is
performed after short stochastic dynamics runs to relax
configurations, followed by empirical reweighting of
configurations based on potential energy histograms. While
this ensures overlap of potential energy distributions and
large contributions from all generated configurations, it
assumes that generation probabilities of all configurations
within a histogram bin are equal. In our models, this
approximation is not appropriate and may lead to incorrect
weights because similar potential energy configurations
display widely varying generative probabilities. While our
models are competitive based on recently developed metrics
for assessing backmapping performance (Table 2), and we
observe significant potential energy overlap for small
proteins, we have crucially demonstrated that the
probabilities under the model must also correspond to the
desired ensemble.

While they do not enable reweighting to modern protein
force fields, our trained models may have utility in other
applications. Though it remains to be investigated, these
models could be used as highly collective MC move
generators for protein sidechains. This might prove
particularly useful for more efficiently performing alchemical
mutations of residues. Alternatively, the conformational
ensembles of small subsets of sidechains at protein–protein
interfaces could be quickly explored with our methods. In
these proposed applications, detailed balance, and hence
proper sampling in the desired ensemble of interest, could
be maintained due to the accessibility of generational
probabilities. Though difficulties with reweighting suggest
that MC acceptance rates will also be low, we plan to explore
the use of our models within MC simulations in future work.
Understanding how well-defined thermodynamic ensembles
can be generated from machine-learned models is of vital
importance for meaningfully incorporating these models into
molecular simulations.
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Data availability

Trained models, as well as code to create training data sets,
train models, perform described analyses, and perform
simulations is available at https://github.com/Monroe-
Molecular-Simulation-Group/sidechain-decoding. This code
makes use of a more general software package available at
https://github.com/Monroe-Molecular-Simulation-Group/vae-
mol-sim. Trajectories, as well as large training and analysis
data sets, are available upon request.
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