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The widespread application of machine learning (ML) to the chemical sciences is making it
very important to understand how the ML models learn to correlate chemical structures
with their properties, and what can be done to improve the training efficiency whilst
guaranteeing interpretability and transferability. In this work, we demonstrate the wide
utility of prediction rigidities, a family of metrics derived from the loss function, in
understanding the robustness of ML model predictions. We show that the prediction
rigidities allow the assessment of the model not only at the global level, but also on the
local or the component-wise level at which the intermediate (e.g. atomic, body-
ordered, or range-separated) predictions are made. We leverage these metrics to
understand the learning behavior of different ML models, and to guide efficient dataset
construction for model training. We finally implement the formalism for a ML model
targeting a coarse-grained system to demonstrate the applicability of the prediction
rigidities to an even broader class of atomistic modeling problems.

1 Introduction

In data-driven chemistry, computational and experimental data'* is exploited to
deduce new insights that are beneficial for the mechanistic understanding of
chemical processes. Data-driven chemistry relies on machine learning (ML)
models,*® which exhibit greater flexibility and scalability to larger datasets
compared to pre-existing regression methods. One crucial aspect to consider in ML
is that the models are intrinsically statistical, and hence their predictions are always
made with a degree of uncertainty.®** This can be exploited to understand when and
when not to trust the model predictions by reliably quantifying their uncertainties.

In this application domain, ML models are often built to predict a quantity as
a sum of constituent terms rather than directly predicting the global, physical
observable associated with a given chemical system. Examples include predicting
the local energies of constituent atoms as opposed to the total energy of an entire
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system,'>"” or combining predictions at multiple length-scales.’*>** Such approaches

enhance the transferability of ML models, and offer a heuristic understanding of
complex chemical phenomena as projections over interpretable components of the
system.””>® However, they contribute a degree of arbitrariness to the ML models, as
the global target properties can be decomposed in many different ways.”*>*
Consequently, the interpretability and transferability of the ML model are also
connected to the quality and robustness of these intermediate predictions.

To better understand the implications of arbitrariness in the target decom-
position, some of us have recently proposed prediction rigidities as metrics to
quantify the robustness of ML model predictions.”**® Prediction rigidities are
derived from a constrained loss formulation to quantify the degree of sensitivity,
or “rigidity”, of a ML model when the value of one prediction is perturbed away
from that obtained from the unconstrained model. From a practical perspective,
they allow for an understanding of how stable the ML model predictions are with
respect to changes in the model architecture or dataset makeup. One can easily
derive several different versions of the prediction rigidity depending on where the
constrained loss formulation is applied. This allows for a form of “introspection”
of the ML models, even at the level of intermediate (e.g. atomic, body-ordered, or
range-separated) predictions. The prediction rigidities are also versatile in that
the precise details of model training, e.g. incorporation of multiple loss terms,
weighting of different training samples, can be exactly accounted for.

In this work, we demonstrate the utility of prediction rigidities in ML for
chemical sciences under a wide range of atomistic modeling scenarios. First, the
theory behind the prediction rigidities is briefly revisited. Next, a practical
extension of the prediction rigidities to neural network-based ML models is
demonstrated, which we then use to explore the learning dynamics of such
models. This is followed by a section where the global and local prediction
rigidities are used to guide the efficient construction of a training set, where these
metrics make a difference in resolving degeneracies and decreasing the error for
the systems of interest. Subsequently, we analyze the learning behavior of multi-
component models (e.g. a body-ordered model, a multi-length-scale model),
showing that orthogonalization of different components can improve their
interpretability. Finally, the wide applicability of the PRs is showcased by
implementing the formalism for a coarse-grained ML model of water and
observing that one can use the metrics to monitor convergence and to detect
potential failures.

2 Theory

In this section, we present the theoretical background of prediction rigidities for
atomistic ML models. As there exist two previous publications where the general
derivation of prediction rigidities was presented in detail,***" here we exclusively
focus on how the prediction rigidities can be formulated for ML models in the
field of chemical sciences.

2.1 Prediction rigidity (PR)

The name “prediction rigidity”, hereon abbreviated as PR, comes from the
mathematical construction devised by Chong et al.*® to quantify the response of
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a regression model, in terms of its loss, to a small perturbation Ae, (where %
denotes a specific sample) in the prediction that is imposed through a Lagrange
multiplier. By taking a constrained loss minimization approach, one obtains an
expression for the change in model loss with respect to the optimum:

1
Ay = 5R*Aei + 0[A&]. 1)

A% is proportional to the square of Aey, and the corresponding coefficient Ry
defines the PR. Several different types of PR can be defined by targeting different
terms in the model (e.g. local, component-wise, etc.) with Aey, all sharing the
following structure:

] -1
Ry = (g4 H,'gy) (2)
where
Fiag/
Ho= Swaw ., 3)

is the Hessian of the loss # with respect to the weights w computed at the
optimum w,. Note that H, does not depend on the specific sample or prediction
type. Only the vector g, does, and it can be easily adjusted to target different
prediction types as outlined in Table 1. Additionally, the PRs do not require the
target values used for regression when the model is trained with a squared loss.
From eqn (2), it is evident that the PR has the meaning of the inverse norm of g,
using the matrix H," as the metric tensor. Note that similar expressions can be
identified in the formulations of pre-existing approaches for uncertainty quan-
tification and active learning.’"*

2.2 Versatile formulation for arbitrary losses

Given the versatility in their mathematical construction, the PRs can easily
account for different loss forms. Here, we take the case of ML interatomic
potentials (MLIPs) as a practical example, since it is one of the most widespread

Table1 Types of prediction rigidities presented in this work, along with the purpose they
serve and the corresponding gy used in their derivations

Form of g,
Name and purpose Prediction type in (2)

PR Prediction rigidity - for assessing Global prediction, Yy 0¥y
the confidence on the global oW
predictions of ML models Wo

LPR Local prediction rigidity - for Local prediction for ay;
assessing local predictions of e~nvironment 5 ow "
models that incorporate a locality Yo =3 ¥
ansatz je*

CPR  Component-wise prediction }jredictipn component, aYe
rigidity - for separately assessing Yc Yo =Y¢, +Yc, +.. w
different prediction components of  (e.g. body-orders, multiple Wo
models that incorporate several length-scales)

additive prediction components
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applications of ML for chemical sciences.'>*>'**-% MLIPs are trained on first-
principles energies, often in conjunction with the forces and/or stresses. The
loss for the model corresponds to

s =3t (4)

where
ti=2g (E,- - E,->2 + 4/‘2( i *f,-.a)z Ay (55— Sig)’ (5)
) 5

Here E, f, and s are energy, forces and stresses, « and § correspond to different
force and stress components, and A denotes the weight applied to each loss term.

In such a case,
fZ (af,a) w5 Z(aw) aa,ﬁ>7 ©

JE;
H= Z/(AE< w)
which follows from using a generalized Gauss-Newton approximation of the
Hessian. This avoids prohibitively expensive calculations of the second deriva-
tives of the model. More information on this approximation and on its applica-
tion to arbitrary loss functions can be found in Appendix A.

2.3 Formulation for neural networks

The PR can be formulated in a simple, closed form for both linear and kernel
models. In the case of “deep” neural network (NN) models that are widely used for
their enhanced flexibility and scalability to large datasets, the formulation is less
obvious. Although the application of PRs to NN models can be attempted by treating
the entire NN as a pseudo-linear model,* the quadratic scaling of the pseudo-
Hessian matrix with respect to the number of NN parameters makes it impractical.

Recently, Bigi et al.*® have proposed a different approach to conveniently
obtain the PRs of NN models. Grounded on the theories of the Laplace approxi-
mation and neural tangent kernel (NTK), they properly justify the exclusive use of
the last-layer latent features of the NN in calculating the PRs when the model is
linear in the final readout layer for prediction. Note that similar last-layer
approaches can be found in other related works."*¢* The last-layer PR is then
given by modifying (2) so that only the weights of the last layer are considered for
the derivatives in eqn (3), and in the definitions of g, in Table 1. For instance,
assuming a loss function given by a sum of squared errors, the last-layer PR is
given by

R o (fI (FTF + ) "f*) B 7)

where F is a matrix (of dimensions Niuin X Nreatures) CONtaining the last-layer
latent features for every sample in the training set, f, are the analogous
features for sample * under consideration, and the ¢’I term is a regularization
term. Likewise, the last-layer local prediction rigidity (LPR) is given by

R (fT(FTF+;21) f) , 8)
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where f; are the last-layer latent features for environment j.

In the following section, we present the application of this approach to NN-
based atomistic ML models in performing uncertainty quantification and
assessing their learning dynamics. We remark that the computational cost to
obtain these last-layer PRs is typically small, no re-training or modification to the
NN model is needed, and that the formalism can also be applied to the trained NN
models.

3 PRs of NN models

In this section, we study the last-layer PRs of three representative NN-based
atomistic ML models: a Behler-Parrinello NN** that takes the smooth overlap
of atomic positions (SOAP)* as input (hereon referred to as SOAP-BPNN),
a polarizable atom interaction NN (PaiNN),"* and MACE.* The first two models
were trained on the QM9 dataset*® to predict the total energies of the molecules,
using smaller subsets of 10 000 training, 1000 validation, and 5000 test samples.
For MACE, a different dataset composed of Si;, clusters with 8000 training, 1000
validation, and 1000 test samples was employed, also using the total energies as
targets. Full details of model training and dataset acquisition can be found in the
ESL+

3.1 Last-layer PRs of NN models

We start by establishing the validity of a last-layer approximation when
computing the PR of NN-based models. To do so, we show that the inverse of the
last-layer PR can be used to quantify the model uncertainty in the total energy for
the three architectures.*® Results in Fig. 1 show the correlations between empir-
ical errors of the model on the test set vs. their estimates using the inverse of the
PR. A linear correlation between the actual and estimated errors can be clearly
observed for all three models, and across the entire range of consideration, which
shows the validity of the last-layer PR as a metric to quantify the robustness of NN-
based atomistic model predictions.

We also consider the last-layer LPR of the three NN-based models. As there
exist no physical targets for the local energies, we performed ten additional
training runs for each NN model on a 10-fold sub-sampled dataset, and analyzed
the variance in the local predictions with respect to the committee average. Fig. 2
shows that in all three cases, a clear inverse trend between the local energy
variance and the last-layer LPR exists, indicating that the local predictions for the
high LPR environments are more robust, and vice versa. These results corroborate
the efficacy of the last-layer approximation in also computing the LPR of NN-
based atomistic ML models.

3.2 Assessing the learning dynamics

We now consider the impact of training details on the PR distribution. In NN-
based models, the training is almost always carried out via numerical optimiza-
tion, as opposed to linear or Gaussian process regressors that are commonly
trained in an analytical, deterministic manner. Hence, we first investigate the
changes in the model along the optimization “trajectory” by computing the last-
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Fig. 1 Trends between empirical errors and estimated model uncertainties for SOAP-
BPNN, PaiNN, and MACE. The top row presents the absolute error vs. estimated error. The
bottom row shows the plots of squared error vs. estimated variance (inverse of PR), where
each point is an average over 50 (SOAP-BPNN and PaiNN) or 25 (MACE) test set samples
with similar estimated variance values. Results for SOAP-BPNN and PaiNN are on the QM9
dataset, and for MACE are on the Si;g dataset. In all plots, y = x line is shown in black. In the
top row, isolines that enclose fractions of the total probability equivalent to g, 20 and 3o of
a Gaussian distribution (approximately 68%, 95%, 99%) are shown in gray.*3°

layer LPR of the local environments in the test set for several intermediate
checkpoints of a SOAP-BPNN model along its optimization trajectory.

Fig. 3a shows that the randomly initialized model at epoch 0 already captures the
overall trend in the LPRs observed in the final model. As the learning progresses, the
LPR distribution quickly converges, as apparent from the lack of clearly distin-
guishable markers for epochs between 120 and 220. In fact, the average relative
change in the LPRs with respect to the original model drops below 5% at epoch 120,
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Fig. 2 Variance in the local energy predictions vs. last-layer LPR for SOAP-BPNN, PaiNN,
and MACE. Results for SOAP-BPNN and PaiNN are on the QM9 dataset, and for MACE are
on the Sijo dataset. The LPRs are normalized to the maximum observed value from the test
set in each case. Each point corresponds to an average over 100 local predictions with
similar LPR values.
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Fig. 3 Dependence of the last-layer LPR distribution of 100 test set molecules on (a)
model optimization trajectory, and (b) training set size, for the SOAP-BPNN model trained
on QM9. The left panels show raw LPR distributions, where the local environments are
ordered by the LPR distribution of the final model trained on the full dataset to numerical
convergence. Right panels show the average (normalized) LPR differences of the inter-
mediate models from the final model.

and below 1% at epoch 160. We conjecture this to be connected to the Gaussian-
process neural network theory in the last-layer approximation,* ™ whereby the
NTK calculated with last-layer weights remains approximately constant during
training and independent of random initial values in the limit of infinitely wide
neural networks. Within this theory, the equivalence between the linear and
Gaussian process formalisms implies the approximate invariance and initialization-
independence of the LPR (and all other PRs) for sufficiently wide neural networks.

Next, we consider the dependence of the PR distribution on dataset size by
training additional SOAP-BPNN models using smaller training subsets of 500,
1000, 2233, and 5000 structures while keeping the validation set fixed. Resulting
changes in the last-layer LPR of local environments in the test set are presented in
Fig. 3b. Here, apart from the increasing trend due to the growth of the training
set, notable differences in the relative LPR distributions are observed across the
models, with average normalized (by LPR; of each model, where j is the highest
LPR environment for the original model) relative LPR differences of 41%, 52%,
32% and 55% with respect to the original model. This is explained by how the
smaller subsets of the training set can describe entirely different loss landscapes
for the model. It also highlights the importance of judicious dataset composition
in achieving a robust description for the systems of interest, which is further
investigated in the next Section.

4 PR-guided dataset construction

In this section, we demonstrate the utility of the PRs in guiding efficient dataset
construction for ML model training. Such an effort becomes important when
computational resources are limited, the desired level of theory - and thus the
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computational cost of additional reference calculations - is high, and/or it is
necessary to refine a pre-trained ML model on a curated set of additional struc-
tures, as in the fine-tuning of universal or foundation models for a specialized
application.***® We target such scenarios in two separate case studies: in the first,
we consider the case of fine-tuning a trained model to extend its applicability to
another system of interest. In the second, we consider how the PRs can be
exploited in the active learning of atomistic ML models, where one seeks to
identify the structure(s) that best resolve the uncertainty within each iteration of
the active learning process.

4.1 PR-guided dataset augmentation

As a case study, we consider extending the applicability of a ML model trained on
the total energies of bulk carbon structures to surface-containing structures. For
this, a linear Laplacian eigenstate ACE (LE-ACE) model* is trained on a set of 800
bulk, high density (p > 3.0 g cm ) amorphous and liquid carbon structures taken
from the GAP-17 carbon dataset.”® We attempt to make this model transferable to
surface-containing structures by adding a few additional structures and re-
training the model, where the additional structures are selected from a larger
candidate pool of bulk amorphous carbon structures that span the entire density
range. While there exists an obvious approach of directly incorporating the
surface-containing structures, we limit the choice to bulk structures for the sake
of highlighting the utility of our proposed metrics. This creates a challenging
scenario where we attempt to achieve model applicability for one system by
incorporating a few samples from another system. Full details of model training
and target-oriented dataset augmentation are provided in the ESL

Here we devise an iterative, PR-guided dataset augmentation strategy where,
given a candidate pool, the structure that most increases the PR for the target
systems is selected at each iteration. The added structure is promptly taken into
account by updating H, as multiple structures get selected. We demonstrate this
strategy for the present case study by selecting up to 10 bulk structures that best
improve the PR of the surface-containing systems. For reference, we also perform
random selection from the entire candidate pool, as well as random selection of
low-density structures (p < 2.0 g cm™?) that are more likely to contain surface-
resembling local environments as a less naive baseline. Both random selection
approaches are repeated 10 times with different random seeds.

Fig. 4a shows that the PR-guided strategy unsurprisingly yields significantly
higher PRs for the surface-containing structures. Random selection of low-density
bulk structures exhibits higher PRs than complete random selection, but is much
less effective. In Fig. 4b, the PR-guided strategy efficiently diminishes the root
mean squared error (RMSE) for the surface-containing structures by 0.297 eV with
only one additional structure. The RMSE remains low for the proposed strategy
from there on, with the lowest RMSE of 0.107 eV observed at four additional
structures. Both random selection approaches perform poorly in diminishing the
RMSE for the surface-containing structures, exhibiting large fluctuations and
higher RMSE than the initial model in some cases. All in all, the PR-guided
dataset augmentation strategy successfully identifies a small set of structures
that best decrease the error for the target systems, without any explicit model
training or reference calculations. The strategy goes beyond simple chemical
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Fig. 4 Results of dataset augmentation for the linear LE-ACE carbon model in extrapo-
lating to surface-containing systems while only being trained on the bulk systems. Panel
(@) shows the PR and panel (b) shows the energy RMSE of surface-containing carbon
structures when up to 10 additional samples are added to the training set. Three
approaches for structure selection are considered: random selection, random selection of
low-density (p < 2.0 g cm ™) samples only, and the iterative PR-guided selection. Plots for
the random selection cases are the average of results from 10 random seeds.

intuition, as it selects the samples among the low-density ones that are the most
adept at reducing the RMSE for the target systems. Our proposed strategy would
be even more useful when there does not exist a clear, chemically intuitive
approach of selecting the additional structures for fine-tuning.

4.2 Active learning

Active learning is a ML technique where the model predictions are continuously
assessed during their application, and if the predictions do not satisfy a certain
criterion, new training samples are added and the model is re-trained.** The
simplest realization of this strategy based on the PR formalism would be to
estimate the uncertainties as the inverse of the PR during inference, identify the
samples where the predictions fall below a certain confidence threshold, and add
them to the training set to increase the reliability of the model. In Appendix B, we
show that this approach is guaranteed to achieve the desired effect, since adding
a sample to the training set results in an increase of its PR by one.

In atomistic ML, however, active learning is often employed at the local level to
identify the environments for which the model exhibits high uncertainty, and add
new samples that best improve the model accuracy for those environments. Here,
the simplest approach may still be to directly add the structure that contains the
local environment of high uncertainty. Nevertheless, this is not always possible:
in cases where the ML models are used to simulate large bulk chemical systems,
reference calculations for the problematic structures of interest would be
prohibitive. An alternative approach is to exploit the locality of atomistic ML
models and add smaller structures that still contain the local environment of high
uncertainty. This then raises the question of what would be the best approach to
obtain the smaller representative structures. In this subsection, we use the LPR to
assess different approaches of obtaining the small representative structures for
active learning.

For the case study, we use a linear LE-ACE model** trained to predict the total
energies of 500 randomly selected carbon structures from the entire GAP-17
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dataset.”® We then consider performing a single active learning iteration for the
model, targeting a liquid carbon structure with 13 824 atoms from a large-scale
molecular dynamics (MD) simulation. Further details regarding model training
and acquisition of the MD structure are given in the ESIL.t After identifying the
local environment with the highest uncertainty (lowest LPR) in the large structure,
we investigate the following strategies of small representative structure
construction (see Fig. 5a for illustrations):

o Cluster carving:* the local environment is simply treated as a non-periodic
spherical cluster with the high uncertainty atom at the center.

e Periodic embedding:***® a cube tightly containing the local environment of
interest is extracted to generate a smaller periodic system.

e High-symmetry (HS) embedding: the local spherical environment is removed
from the original structure and embedded into a high-symmetry, crystalline
structure.

In the case of periodic embedding, the unit cell dimensions are adjusted so
that close-contact distances between atoms are above 1 A to avoid non-physical
atomic configurations. In the HS embedding, the unit cell dimensions of the
HS structure are expanded to a minimum size that includes both the local envi-
ronment of interest and a local environment from the high-symmetry structure,
whilst satisfying the close-contact criterion. Exceptionally, in this case, the HS
structure used for embedding (diamond in our case study) is also added to the
training set. In both embedding approaches, “buffer atoms” that exist outside of
the fixed local environments are randomly displaced by sampling from
a Gaussian distribution with ¢ = 0.2 A. Apart from the listed strategies, inclusion
of the entire target structure is also considered as a baseline.

In Fig. 5b, both original structure inclusion and cluster carving exhibit LPR
enhancements slightly below 0.2%. From the LPR perspective, since the original
structure contains a large number of atoms, there is large, unresolved arbitrari-
ness in how the total energy of the structure is partitioned into the local
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Fig. 5 LPR enhancements for the local environment of high uncertainty when different
strategies are employed to acquire the additional samples for active learning. Panel (a) is
a schematic that visually explains the different strategies of obtaining the additional
structures. Blue atoms comprise the identified local environment of high uncertainty. In
high-symmetry (HS) embedding, atoms in the HS local environment are shown in red. In
both embedding cases, buffer atoms are shown in light gray. Note that the systems are not
in scale with one another. Panel (b) presents the LPR enhancements when a single
additional structure is used, except for the case of HS embedding where the diamond
structure used for embedding is also added. Panel (c) shows the LPR enhancements vs. the
number of added samples. In the case of original structure inclusion and cluster carving,
the same sample is added multiple times.
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contributions. In the case of cluster carving, lack of information on the local
environments other than the one of interest leads to the unresolved arbitrariness,
especially given that the other local environments encompass the cluster surface
that most likely does not appear in the original training set. As a result, the LPR
enhancements for these two approaches are rather low.

The two embedding strategies result in comparably larger LPR enhancements
of 0.5% for periodic embedding and 0.8% for HS embedding. In the periodic
embedding case, using a much smaller unit cell tightly bound to the local envi-
ronment of interest results in a smaller number of atoms, and this allows the
model to better resolve the uncertainty in the local environment of interest. In the
case of HS embedding, the strategy benefits from similar factors as well as the
coexistence of a local environment from the HS structure, diamond. By addi-
tionally including the diamond structure, the LPR for the diamond environment
is fully resolved,? and hence the LPR of the target local environment gets further
enhanced.

Results in Fig. 5¢ show that inclusion of multiple structures can further resolve
the uncertainty in the target environment. In the case of periodic embedding,
inclusion of 10 structures as opposed to 1 increases the LPR enhancement from
0.5% to 7.7%. This is explained by the presence of buffer atoms and their random
displacement between multiple structures, which effectively resolves their local
degeneracies. For this particular case study, the LPR enhancement for HS
embedding becomes lower than periodic embedding with a few more added
samples due to a larger number of buffer atoms (see Fig. 5a). These results reveal
the clear benefits of adopting an embedding approach and adding multiple
structures at each iteration of the active learning process to best resolve the local
uncertainties encountered by atomistic ML models. Note that first-principles
calculations for 10 small representative structures would still be immensely
cheaper than that for the original structure. In practice, a threshold can be
implemented to ensure that enough structures are used to sufficiently resolve the
uncertainties in the identified local environment at each active learning iteration.
Lastly, one can envision more realistic methods of imposing the displacements
on the buffer atoms (e.g. constrained MD*).

5 Component-wise prediction rigidity

In many cases, a single type of descriptor falls short in adequately describing the
system of interest. Atomistic ML models are hence often constructed by using
a concatenation of multiple sets of features that describe the same system in
different ways. A straightforward example is given by body-ordered expansion
approaches,'***%%% where the descriptor is a combination of several components
that describe the same local environment in terms of increasingly large groups of
neighbors. Another example is the use of a long-range descriptor in conjunction
with a short-range descriptor to allow the ML model to learn the chemical system
at multiple length scales.'®**>*

In common model architectures, these different components in the descrip-
tors contribute to the prediction separately. That is, the global prediction of the
model is expressed as a sum over the prediction components, which shares
a resemblance with classical force fields. In this case, one can compute the
component-wise prediction rigidity, or the CPR, for the individual prediction
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components (see Table 1). The CPR then allows one to diagnose the model by
considering the prediction components individually, allowing for a more practical
understanding of where the model succeeds or fails, which model component
needs improvement, and whether the decomposition is robust and hence
interpretable.

For the remainder of this section, we consider the CPR of a linear atomic
cluster expansion (ACE) model* as well as a multi-length-scale model that
combines SOAP* and long-distance equivariant (LODE)* descriptors. In both
cases, we first use the CPR to expose the non-orthogonality of conventional
approaches in computing the descriptors and its implication on the learning
behavior of the resulting model. We then compute the CPR for the case where the
different components of the descriptors are made orthogonal with respect to one
another, revealing the clearly distinct learning behavior of the ML models as
a result of such treatment.

5.1 Body-orderedness of linear ACE models

ACE is a many-body expansion formalism™ that involves the reformulation of the
canonical many-body expansion into another expansion that also includes “self-
interactions” (i.e. higher body-order contributions where the same atom is
counted multiple times),* allowing for much greater efficiency in computing the
descriptors. While the success of the ACE formalism is evident from the
literature,*** ML models adopting the ACE formalism describe the chemical
systems with the spurious self-interactions included. Here, we use the CPR to
investigate the impact of the self-interactions in the nature of ACE models and its
implication on their learning behavior.

We consider linear ACE models® where the highest correlation order v,y is 4.
An initial model is first trained on a dataset of 500 randomly generated silicon
pentamers, training on their total energies. Next, successively modified training
sets are obtained by replacing 50 samples with dimers, then another 50 with
trimers, and finally 50 more with tetramers. Separate linear ACE models are then
trained on each of the modified datasets. Details of model training and silicon
cluster generation are given in the ESI.f Here, one can interpret the models based
on the fact that the ACE feature vector is a concatenation of multiple blocks that
each correspond to a different ». Then, since the weights applied on different »
blocks are strictly independent, each block can be seen as a separate prediction
component. One can then individually compute the CPRs for the individual »
components, as well as their energy contributions. Note that, based on this
interpretation, the successive inclusion of lower n-mers to the training set aims to
resolve the degeneracies in the energy partitioning between the different »
components.

The top row of Fig. 6 shows the CPRs and energy predictions of conventional,
self-interacting ACE models. The CPRs remain low across all » components for the
four models considered, with no resolution taking place as the lower n-mers are
added to the training set. In the total energy predictions for silicon dimers, the
three models that have seen the dimer configurations during training are able to
recover the reference dimer curve accurately. However, the v = 1 component of the
energy has no resemblance to the dimer energy in all four cases, which is a clear
indication of the arbitrary partitioning reflected by the low CPR.
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Fig. 6 Difference in the learning behavior of linear ACE models before and after purifi-
cation of the feature vectors. Results for the self-interacting ACE are shown in the top row,
and for the purified ACE are shown in the bottom row. The left column shows the
differences in the CPR for a test set of silicon pentamers as the original training set of
silicon pentamers is amended to include dimer, trimer, and tetramers, successively. The
middle column shows the predicted energies along the Si—-Si dimer curve, when the entire
feature vector is used for energy prediction. The right column shows only the v = 1 (two-
body) component of the predicted dimer energies. In the latter two columns, total energy
of the dimers from DFT calculation is shown with a dashed gray line for reference.

Recently, Ho et al.®® have introduced a “purification” operator for ACE, which
eliminates the self-interactions and allows for the exclusive consideration of
canonical contributions to the many-body expansion in the computation of ACE
features. To investigate the effect of purification on the learning behavior of ACE
models, the above exercise was repeated for the purified ACE models. In the
bottom row of Fig. 6, one sees that the purified ACE models are capable of
resolving the partitioning degeneracy between different » components, as evident
from the significant increase in the CPR of the » component when samples of the
corresponding n-mers are included in the training set. Interestingly, the final
addition of tetramers also leads to a notable increase in the CPR for » = 4, which
corresponds to the pentamers. This is a sign that the degeneracy across all of the »
components has been largely resolved. Such a trend in the CPR is reflected by
a distinct behavior in the energy predictions: in the case of purified ACE models,
both the total energy predictions and the » = 1 energy components are capable of
recovering the reference dimer curve.

These results altogether reveal that the matching of the v feature blocks with
their respective body-orders is not possible in the presence of self-interaction
terms in conventional ACE models. As an example, the models learn the dimer
energetics by using not only the » = 1, but also all of the other » components. It is
only with purification, which removes the spurious self-interaction terms, that the
ACE models become capable of learning in an explicitly body-ordered manner.

5.2 Range separation in multi-length-scale model

Many atomistic ML models employ a locality ansatz where the global property is
expressed as a sum of local contributions, based on the nearsightedness principle
of electronic matter.®” This means that the models are incapable of incorporating
structural information beyond a fixed radius around the central atom. While such
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a description is sufficient in many cases, there exist several instances where it
cannot be, most notably when long-range physics is present within the target
system. To overcome this deficiency, several strategies have been proposed,®"*
one of which is the use of long-range atomic descriptors such as LODE."*****
LODE replaces the Gaussian or delta functions placed on the atoms with
Coulomb potentials that possess 1/r tails. This allows the model to account for
the long-range interactions while retaining the atom-centered approach in
describing the chemical systems. In practice, LODE is often used in conjunction
with a short-range descriptor, such as SOAP, to allow the ML models to account
for multiple length scales.

Here, we investigate the differences in the ML model learning behavior before
and after strict range separation, i.e. eliminating any double counting of atoms
between prediction components that correspond to different length scales. To
this end, two distinct implementations of SOAP+LODE models are considered: in
the first case of non-orthogonal SOAP+LODE, the LODE descriptor is simply
computed in reciprocal space, accounting for the contributions from all atoms in
the periodic system. This results in a double counting of the atoms within the
short-range (SR) cutoff set at 2.8 A, where they contribute to both SOAP and LODE
descriptors. In the second case of range-separated SOAP+LODE, the above-
mentioned LODE descriptor is further treated by subtracting the contributions
from the atoms within the SR cutoff. A dataset composed of 100 water dimer
configurations and their total energies is used for model training. In all config-
urations, dimers are separated by more than 3 A so that only the long-range (LR)
prediction component of the model can capture the intermolecular interactions.
Then, to understand the effects of range separation, extrapolative energy
predictions of the models on 100 monomer configurations are considered.
Further details on the model training and dataset construction are provided in
the ESLt

The left panel of Fig. 7 shows changes in the CPR with respect to the training
set size. In the case of non-orthogonal SOAP+LODE, both the SR and LR predic-
tion components exhibit low CPR values throughout all considered training set
sizes, and the values remain very close to one another. In contrast, range-
separated SOAP+LODE shows a marked difference in the CPR at lower number
of training samples, with a higher CPR for the LR component. As the training set
size grows, the two converge to a high CPR value, corresponding to a difference of
seven orders of magnitude when compared to the non-orthogonal case. The water
monomer energy prediction results reveal that the non-orthogonal SOAP+LODE
models extrapolate poorly to the monomers, yielding worse predictions as the
training set size grows. Conversely, the extrapolative performance of the range-
separated SOAP+LODE models improve with the training set size, and the final
model is able to make accurate predictions with an RMSE of 7.6 meV (as opposed
to 939 meV of non-orthogonal SOAP+LODE).

The results here can be explained as the resolution in the degeneracy between
the SR and LR components of range-separated SOAP+LODE that takes place as
more samples are added. Since the water dimer dataset spans a range of different
separation distances from 3 to 10 A, when the separation is large, the LODE block
of the range-separated SOAP+LODE descriptor converges to zero, allowing SOAP
to obtain an accurate description of the individual monomers. Such effects are
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Fig. 7 Differences in the learning behavior of SOAP+LODE models trained on water
dimers before and after range separation. The left panel shows the CPRs of the models for
the short-range (SR) and long-range (LR) prediction components. The right panels show
the extrapolative energy predictions on water monomers made by the two models. Note
that in the case of non-orthogonal SOAP+LODE, not all data points are present within the
displayed energy range. Zero of the energies are set to the monomer dataset mean.

promptly captured by the different trends in the CPR observed for the non-
orthogonal and range-separated SOAP+LODE models.

Both case studies presented in this section demonstrate that without carefully
considering the overlap between different prediction components, ML models
may utilize the available features in an unexpected manner, where multiple
prediction components are used to learn the physics that can be sufficiently
described by only one. While feature orthogonalization does not guarantee
a significant improvement in accuracy,*® one should still recognize the benefits in
ensuring that each prediction component is used for its originally engineered
purpose. The CPR provides an easy strategy to individually gauge the robustness
of intermediate predictions made by the model.

6 Application to coarse-grained ML

In the computational simulation of proteins and other macromolecules, coarse-
graining techniques are often employed to study the system of interest at a signifi-
cantly reduced cost by combining rigid and/or unreactive groups of atoms into
pseudo-atoms, or beads, and sampling their configurations through an effective
potential built to match the statistical behavior of the all-atoms simulation.”>”*
Recently, such approaches have also been combined with ML interatomic poten-
tials, allowing researchers to benefit from the highly versatile functional forms
offered by the ML techniques in studying the large-scale systems of interest.”””
Here, one should note that the conventional coarse-graining approach of
“force-matching”’®”® leads to the absence of an explicit energy target for model
training. The quality of the model can then be ascertained by verifying that
thermodynamic properties, such as configurational distributions, match those of
an all-atoms simulation. Another aspect to recognize is the large noise from the
non-bijective relationship between all-atomic and coarse-grained systems. As
multiple all-atomic configurations with different energetics can be represented by
the same coarse-grained configuration, a large noise is expected to be present in

336 | Faraday Discuss., 2025, 256, 322-344  This journal is © The Royal Society of Chemistry 2025


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4fd00101j

Open Access Article. Published on 23 2024. Downloaded on 07/11/25 22:42:32.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

View Article Online
Paper Faraday Discussions

the reference data, and the ML models are expected to learn the underlying
“potential of mean force” (PMF).” Given these complications, it is ever more
crucial to devise methods that can reliably provide the uncertainties associated
with the predictions of ML models for coarse-grained systems.*

In this final section, we demonstrate the applicability of the PR formalism for
MACE models trained on coarse-grained water, a system explored by several
others in previous ML studies.?® To generate the training data, we performed
classical all-atoms MD simulation for an NVT ensemble at 300 K. The trajectories
are coarse-grained by taking the center of mass of each water molecule as the bead
position, and separately summing the force components of the constituent atoms
to compute the three force components of each bead. The MACE models are
trained on training set sizes of 50, 100, 1000, and 10 000 configurations, where
each configuration contains 128 beads that provide 384 force targets in total. For
each training set size, random sampling and model training is repeated four
times. Fixed validation and test sets of 1000 configurations each are used. The
trained models are used to run 1 ns simulations of a 128-bead coarse-grained
water system under the same conditions as the reference all-atoms simulation.
The accuracy of the models is considered by calculating the relative PR of the
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Fig. 8 Coarse-grained water MD simulation results of the trained MACE models. The top
row shows the PR along a single MD trajectory normalized by the average PR for the test
set. The light line shows the raw PR values, and the dark line shows the moving average
over 200 timesteps. Red line marks the average PR of the test set computed for each
model. The middle row shows the pair correlation function g(r), and the bottom row
shows the average [ = 4 local Steinhardt order parameter q4 distribution, computed for
four coarse-grained MD runs of different models trained on randomly sampled data. The
reference distribution of the all-atoms simulation is also shown in both rows.
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resulting trajectories with respect to the test set average, as well as comparing the
pair correlation function, g(r), for two-body correlations, and the average [ = 4
local Steinhardt order parameter g, distributions®® for higher body-order
correlations. Full details of dataset generation, model training, and MD simula-
tions are provided in the ESI.}

In the top row of Fig. 8, the MACE models exhibit different degrees of deviation
in the relative PR from the reference data for the different training set sizes. As the
training set size increases, the models better distinguish and learn the underlying
PMF, and as a result, PRs for the simulated system trajectory converge to that
observed for the test set configurations. A similar trend is also captured in the g(7)
and g, distributions presented in the middle and bottom row of Fig. 8, respec-
tively. At 50 training configurations, both g{(r) and g, distributions of the coarse-
grained model MD trajectories notably deviate away from the reference distri-
bution. As the training set size increases, they get closer and closer to the refer-
ence, until at 10 000 configurations, good agreement between the coarse-grained
MD trajectories and the reference is observed. These results reveal that the PRs
are useful in assessing the robustness of coarse-grained ML model predictions
and tracking their training convergence. For this application, the PR provides only
a qualitative indicator of convergence, as it is not possible to convert it into
a calibrated uncertainty estimate, given the intrinsic error in the forces associated
with the coarse-graining procedure. Still, it can be very useful, and more infor-
mative than the validation force error that saturates quickly to the limiting coarse-
graining error: when going from 50 to 10 000 training configurations, it drops only
slightly from 150 to 145 meV A~ In Appendix C, we further show that the LPR of
the models can validly detect the local uncertainty along a MD trajectory.

7 Conclusion and outlook

Throughout this work, we have established the PRs as a highly versatile set of tools
to understand, and enhance, the robustness of ML model predictions, presenting
many concrete examples for data-driven chemistry. We have shown that the PRs can
quantify the robustness of local and global predictions for various NN architectures.
We then revealed that the PR distribution for a NN model with a fixed architecture
shows dependence on dataset makeup while being largely insensitive to the opti-
mization details. Next, we have presented the utility of the PRs in guiding target-
oriented dataset augmentation and active learning, where the metrics can be
used to identify a set of structures that can best reduce the error for a target system
or resolve the uncertainty for a local environment.

We have also extended the PR formalism to the case where the model predictions
are made as a sum over several prediction components. There, our metrics uncov-
ered that without proper orthogonalization of the features, model learning behavior
can deviate significantly from expectations, and that, for example, commonly
adopted body-ordered or range-separated architectures cannot be interpreted in
terms of clearly-separated contributions. Finally, we have demonstrated the wide
applicability of the PRs by applying the formalism to NN models for coarse-grained
water and showing that the PRs correlate well with the accuracies in the macroscopic
observables from the MD simulations performed with the trained models.

The underlying mathematical formulation for PRs can be applicable to a wide
variety of ML models, even those trained on experimental reference data. It is,
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however, presently limited to regression models where the prediction is made
linearly with respect to the (last-layer) features. Future research efforts should
extend the formalism to models with non-linearity in the prediction layer, such as
classification models. All in all, the PRs are ideal metrics to adopt for improving the
interpretability and transferability of data-driven techniques, which we hope will
contribute to reliable machine learning practices in the field of chemical sciences.
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Appendices
Appendix A Prediction rigidities for generic loss functions

Although the main text focuses on the ubiquitous case of a sum of squared error
loss, it should be noted that prediction rigidities can be calculated for any loss
functions. In any case, computing H, can be prohibitively expensive and requires
an implementation of the second derivatives of the model. Therefore, an
approximation of the Hessian is often used in practice, where

dyi ! azfi dy;
H~;(W) IWOWT Ow’ ©)

This pseudo-Hessian, also known as generalized Gauss-Newton Hessian, does
not contain any second derivatives of the model, and it is equivalent to the full
Hessian in the important case of a linear model trained with a loss function
corresponding to the sum of squared errors. We recommend this formulation for
most application of the PRs.

Appendix B Proof that PR for a sample increases by one upon its addition to
the training set

Assume a loss given by a sum of squared errors. We rename, without any loss of
generality,

dy;

a—“i = Xi, (10)
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where X is the matrix that stacks all the (dy;/dw) ' and ic @. The PR before the
addition of the structure % is given by
-1
b — (XI (xTX)*lx*) , (11)
while the PR after the addition of the structure is
-
071 = <XI (XTX + X*XI)AX*) . (12)
The difference between the two is therefore
al—b'=a'(b-a)p =
a’ (xI (XTX)flx* —x; (XTX+ x*xl)flx*>b" =
a (XI ((XTXY1 - (XTX+ x*xI)_l)x*)b" =
a’ <XI (XTX+ x*xl)flx*xl (XTX)flx,,)b’l =
alabb™ =1,

where the matrix identity A™* — B™" = A"(B — A)B™" has been used twice (the first
of which is applied on the two scalars a and b). Trivially, this proof also holds in
the case where the same regularization term is added to X"X and XX + XxX]
before the inversion.Appendix C Utility of LPR in coarse-grained ML

In the ML models for coarse-grained systems, the LPR quantifies the robustness
of local predictions made for individual coarse-grained beads in the system. To
showecase its utility, an energetically unstable MD trajectory is obtained with the
MACE model trained on 1000 reference configurations from Section 6, and the
LPRs are computed for the initial configuration and the configuration at which
energy instability is first observed. In Fig. 9, one can see that the LPR distribution
for the initial configuration is relatively uniform without any outliers. In the
problematic configuration, the LPR values are lower for the beads that are in close
contact with one another (<2.5 A), which the model has never seen during training

log4o(LPR)

-1.5 0

Fig. 9 Bead configurations from a MD trajectory that becomes energetically unstable
from t = 0.4 ns. Each bead corresponds to a single water molecule. The initial configu-
ration is shown on the left, and the first energetically unstable configuration is shown on
the right. Beads are colored by their LPRs. The LPR values are normalized to the mean of
the initial configuration. In both cases, interatomic distances smaller than 2.5 A are
expressed as bonds.
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and are hence the sources of energy instability. Apart from the beads that are
involved in the close-contact network, several other beads are also observed with
notably lower LPR values, which indicates that the LPR is capable of detecting
local uncertainties beyond what can be deduced from simple chemical intuitions.
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