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Features of heterogeneously charged systems at
their liquid–liquid critical point

Daniele Notarmuzi†*a and Emanuela Bianchi †*ab

Recently synthesized colloids and biological systems such as proteins, viruses and monoclonal

antibodies are heterogeneously charged, i.e., different regions of their surfaces carry different amounts

of positive or negative charge. Because of charge inhomogeneity, electrostatic interactions between

these units through the surrounding medium are intrinsically anisotropic, meaning that they are

characterized not only by the attraction between oppositely charged regions but also by the repulsion

between like-charged areas. Recent experiments have shown that the liquid–liquid phase separation of

these systems can be driven by anisotropic electrostatic interactions, but it is not clear how the emer-

ging aggregates are affected by charge imbalance and charge patchiness. The ability to experimentally

control these two quantities calls for a theoretical understanding of their interplay, which we address

here at the critical point. We consider a coarse-grained model of anisotropically charged hard spheres

whose interaction potential is grounded in a robust mean field theory and perform extensive numerical

Monte Carlo simulations to understand the aggregation behavior of these units at the critical point.

Stemming from the simplicity of the model, we address the interplay between charge imbalance and

charge patchiness with the use of three parameters only and fully rationalize how these features impact

the critical point of the model by means of thermodynamic-independent pair properties.

1 Introduction

Colloidal particles featuring engineered surface patterns serve
both as self-assembling units for crafting new materials with
target structures and properties1–4 and as simple models to shed
light on the aggregation behaviors observed in biological sys-
tems, such as globular proteins, viral capsids and antibodies.5–9

Particle models with built-in directional attraction, often
referred to as patchy colloids, have shown a plethora of diverse
collective behaviours, such as the formation of finite clusters
with well-defined geometries, the assembly of exotic two- and
three-dimensional crystals and the emergence of disordered
networks with incessantly rearranging topology, to name just a
few examples.10–16 In the context of the liquid–liquid phase
separation (LLPS), i.e., the separation into a dilute and a dense
disordered phase, patchy colloid models have provided insight
into the stability of the LLPS, with particular reference to
globular proteins:17–21 when the particle bonding valence is
limited (due to the built-in particle functionality), then the
LLPS becomes metastable with respect to the liquid–crystal

transition and a large region of the phase diagram is domi-
nated by a homogeneous, low-density liquid (often referred to
as empty liquid) and, on gradually reducing the temperature, by
a disordered arrested network (also referred to as an ideal/
equilibrium gel).8,22–24

Particle models with directional repulsion on the top of the
built-in directional attraction have been recently put forward to
take into account the possibility of charge heterogeneity on the
particle surface25–33 for charged patchy colloids34–38 as well as
globular proteins.39–41 Models aiming at elucidating the role of
charge patchiness have been used to investigate a variety of
phenomena spanning from the bulk aggregation of charged
Janus and patchy colloids42–44 to the protein adsorption on
polyelectrolyte chains or brush layers.45,46 The competition
between attractive and repulsive charge–charge interactions
has also been investigated in the context of the LLPS:47,48 in
particular, we have recently shown that the interplay between
the net particle charge and the surface patchiness controls the
critical parameters of the LLPS in systems of model particles
with a null dipole moment and a linear quadrupole moment.47

We consider here a broader and more systematic selection of
systems with the aim of fully elucidating the trends of all
thermodynamic parameters at the critical point on smoothly
varying the surface anisotropy and the charge imbalance.

The paper is organized as detailed in the following. In
Section 2, we introduce the coarse-grained model, its microscopic
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background, features and parameters. In Section 3, we briefly
discuss the details of our Monte Carlo simulations and the
methods used to determine the critical points. In Section 4, we
present our results. Namely in Section 4.1, we discuss the critical
parameters and fields on varying the interplay between directional
repulsion and directional attraction as well as on changing the
surface patchiness; we then relate the behaviour of the observed
critical temperatures to (i) a thermodynamic-independent pair
quantity that estimates the particles’ availability to form bonds
(Section 4.2) and (ii) the reduced second virial coefficient at the
estimated critical points (Section 4.3); moreover, we relate the
behaviour of the observed critical density to the morphology of the
aggregates at the critical point by (i) comparing the energy
distributions of random versus simulated pairs of particles (Sec-
tion 4.4) and (ii) evaluating the number of bonds formed in the
systems (Section 4.5). We draw our conclusions in Section 5.

2 The model

We consider a dielectric sphere containing three point charges, a
negative one positioned at the center of the sphere and two
positive ones, equally charged and symmetrically placed at a
distance a from the center. This distribution of charges gives rise
to a linear, axially symmetric quadrupole. The resulting electro-
static pair interaction is thus anisotropic and, given a set of
microscopic parameters, it can be explicitly computed under
linear approximation within a mean-field approach.27,49 We refer
to this potential as ‘‘DLVO-like’’ as in the limit of a single, central
charge such a mean-field interaction coincides with the well-
known DLVO potential between homogeneously charged spheres.
The inverse patchy particle (IPP) model discussed in the following
represents the coarse-grained version of the aforementioned
DLVO-like potential and as such can be regarded as representative
of the effective interactions in heterogeneously charged systems
such as globular proteins and patchy colloids.27,49

Within the IPP model, each particle has a radius sc = 0.5 4 a,
which sets the units of length and is endowed with three
interaction sites, positioned exactly as the three charges of the
mean-field description. Each interaction site is the center of an
interaction sphere. The off-center spheres emerge from the
surface of the central sphere, thus defining the polar patches
and the complementary equatorial belt, which is the part of the
particle surface not covered by the patches. This geometry
mimics the heterogeneous pattern of the surface charge distri-
bution of the mean field model: the equatorial regions of two
different IPPs as well as two patches of two IPPs mutually repel
each other, while a patch of one IPP is attracted to the equatorial
region of different IPPs. This consideration also explains the use
of the ‘‘inverse’’ patchy particles notion: unlike conventional
patchy systems, the patches of IPPs cannot bond to each other
but rather repel each other.

The sphere associated with the central site has a radius sc +
d/2, while the off-center spheres have a radius sp constrained by
sp + a = sc + d/2. The above constraint, which is a direct
consequence of the screening conditions of the solvent, forces

the off-center spheres to extend exactly up to the extension of the
central sphere, i.e., d is the sole parameter characterizing the
interaction range of the model: if the center-to-center distance
between two IPPs is r, then r o 2sc implies an infinite, hard-
sphere repulsion, while r 4 2sc + d implies that the two particles
do not interact at all. The geometry of an IPP is hence specified by
two parameters, d and a, given the constraint on sp. An alternative
way to characterize the model is to replace a with the semi-
opening angle of the off-center spheres, g, which quantifies the
surface area covered by a patch. The constraint on sc translates in
the expression g = arccos[(sc

2 + a2� sp
2)/2asc]. See Fig. 1 (panels a

and b) for a detailed representation of the geometric parameters
of the model. Note that the patch size, g, and the interaction
range, d, can be directly related to physical quantities, namely to
the measured surface extension of experimental IPPs and to the
Debye screening length of their dispersion media.27,49

As our coarse-grained description aims at accurately repro-
ducing the DLVO-like description while being computationally
efficient, the distance- and orientation-dependent pair inter-
action energy is written in the form27,49

U r;Oð Þ ¼
X
ab

eabwab r;Oð Þ: (1)

In the above expression, r is the center-to-center distance
between two IPPs, O is their mutual orientation, a and b identify
the three interaction sites of the two particles, i.e., they run over the
central site and both the off-center sites, eab characterizes the
energy strength of the ab interaction, i.e., the interaction strength
between the a site of one particle and the b site of the other particle,
and finally, wab takes into account the interaction geometry of the
specific pair configuration. While the values of eab are constant and
characterize a specific set of microscopic parameters, the functions
wab characterize the dependence on the mutual orientation and
distance of the specific pair configuration. Such a dependence is
chosen to be represented by the relative overlap volume between
the interaction spheres associated with the interaction sites a and b
of the two particles.27,49 From an operational point of view, given a
distance 2sc r r r 2sc + d and a relative orientation O, the
summation in eqn (1) accounts for (i) the relative overlap between
the spheres of radius 2sc + d associated with the two central sites,
weighted by ec,c, where c,c stands for center–center; (ii) the relative
overlap between the four spheres of radius sp associated with the
off-center sites of one particle and the two spheres associated with
the central sites of the other particle, weighted by ec,oc, where c,oc
stands for center-off center; (iii) the relative overlap between the
spheres associated to the off-center sites of the two different
particles, weighted by eoc,oc, where oc,oc stands for off-center-off-
center; the relative overlap stands for the overlap volume between
two spheres, normalized by the maximum possible overlap volume,
i.e., the volume of the smallest sphere.

eab can be directly related to the charge balance between the
different regions of the particle surface by a mapping between
the IPP potential resulting from eqn (1) and the mean field,
DLVO-like potential derived for a dielectric sphere with a given
set of point charges.27,47,49 Here, however, instead of mapping
the IPP model to specific parameter sets of the DLVO-like
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description, we explore the role played by the net particle
charge in a systematic fashion by varying the energy strengths
arbitrarily. To this aim, we fix the value of the interaction
potential U when the particles are in contact (r = 2sc) and in
one of three specific reference configurations, named EE, EP,
and PP (Fig. 1 shows the three reference configurations in the
legend of panels c and f): in the EE configuration, the symmetry
axes of the particles are parallel; in the EP configuration, they
are orthogonal, and in the PP configuration, they are coinci-
dent. Once the desired energy strength of these configurations
is defined and stored in an array u = {uEE,uEP,uPP}, the array e =
{ec,c,ec,oc,eoc,oc} can be computed by solving

W�1u = e (2)

where W�1 is the inverse of the matrix whose elements, WAB
a,b are

the sum of all overlap volumes between all a,b sites for the
given AB configuration. The AB configurations are the reference
configurations EE, EP, and PP. Specifically, the matrix W takes

the form

WEE
c;c WEE

c;oc WEE
oc;oc

WEP
c;c WEP

c;oc WEP
oc;oc

WPP
c;c WPP

c;oc WPP
oc;oc

���������

���������
: (3)

To clarify with an example, given two particles i and j, the
element WEP

c,oc is the sum of the overlap volumes between all
possible combinations of center–off center interaction sites,
i.e., the overlap between the interaction spheres associated with
the first and second off-center sites of particle i( j) and the
interaction sphere of the central site of particle j(i), given that
the particles are in the EP configuration, for a total of four
contributions. The other elements of the matrix are computed
in the same way: given one of the reference configurations,
there is a single contribution for the center–center elements
and four contributions for the off-center–off-center elements.
Once the matrix is constructed, the multiplication of it with one

Fig. 1 Inverse patchy particle (IPP) model. (a) IPP particle sketch for g = 551: the left green arrow represents the particle radius sc = 0.5, the right green
arrow represents the particle interaction radius sc + d/2, the white dashed vertical line represents the symmetry axis of the model which, together with
the white dashed diagonal line, defines the half-opening angle g, also shown in green, quantifying the patch extension. (b) IPP particle sketch for g = 301.
(c) Pair interaction energy as a function of the center-to-center distance for g = 301 and different energy sets: while uPP = 0.5 is fixed (as much as uEP =
�1.0), uEE assumes the values = 2.0, 1.0, and 0.0, as labeled. The EE reference configuration is shown by the upper pair of particles, while the lower pair of
particles depicts the EP reference configuration. (d) Pair interaction energy as the symmetry axis of one particle is rotated from EE (y = 0) to EP (y = p/2)
and back to EE (y = p), for g = 301 and for the three uEE values in the legend of panel (c). (e) Same as in (d) but for g = 551. (f) Same as in (c) but for uPP = 2.0,
1.0, and 0.0 and uEE = 0.5. The reference PP configuration is shown by the upper pair of particles. (g) Same as in (d) but starting from the PP configuration,
the three curves correspond to the uPP values in the legend of panel (f). (h) Same as in (g) but for g = 551.
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of the arrays e or u is made by suppressing the indices shared
between the array and the matrix, i.e., the product WAB

abe is made
by suppressing the indices a,b (resulting into the array u, with
indices AB) and vice versa. Taking again the configuration EP as
an explicit example, uEP = WEP

c,cec,c + WEP
c,ocec,oc + WEP

oc,oceoc,oc.
In this work, we fix the interaction range to d = 0.2sc and

systematically vary the patch size and the net particle charge of
the particles in order to assess the effect of the interplay
between the geometry of the patches and the strength of the
electrostatic interactions on the liquid–liquid critical point. In
particular, we vary g in the range [301,551] in steps of 51, while
we create a regular grid of values for uEE and uPP, where uEP =
�1.0 sets the energy scale: we vary uEE and uPP independently in
steps of 0.5 within the range [0,2]; we also add – for all g values
and selected uEE (namely, 0, 1 and 2) – two values of uPP

(namely, 4 and 6) to bridge towards IPPs with charge imbal-
ances already studied in the literature.50 Note that a few data
points (at large patch sizes and large uEE values) are missing
due to the emergence of crystallization in the sample.

3 Methods
3.1 Grand Canonical Monte Carlo simulations

We perform Grand Canonical (GC) Monte Carlo (MC) simula-
tions with a code adapted from the publicly available code
published with ref. 51. Our code as well as the analytics tools
used to produce the data presented in this paper are available
at ref. 52. In a GCMC simulation, the system energy E and the
particle number N are allowed to fluctuate so as to estimate
their probability distributions, while the volume of the cubic
simulation box is fixed by its linear size L = 8. An MC step
corresponds to Nmax MC moves, where Nmax is the maximum
number of particles allowed in the simulation box. The moves
used in an MC step are insertion/deletion of a particle, and a
single particle rototranslational (RT) move, i.e., the contempor-
ary translation and rotation of a single particle.51 An insertion/
deletion move is attempted with a probability of 0.01, while an
RT move with a probability of 0.99. The maximum translation
length (0.05) and maximum rotation angle (0.1) are chosen to
result in an average acceptance rate of the RT move of about
30% around the critical point. The average acceptance rate
strongly fluctuates between high values in the diluted phase
and low values in the dense phase.

3.2 Identification of the critical point

For each model, we first perform a large number of short
simulations at different values of the temperature T and of
the chemical potential m, so as to approximately locate the
phase separation region. We then select a few values of T and m
and perform 12 independent GCMC simulations per state
point. Each simulation begins with N0 = 180 particles and
equilibrates for 2.5 � 106 MC steps, a value that is a posteriori
checked to guarantee a sufficiently large equilibration time for
all systems. The total run time per simulation is set to 5 � 107

MC steps, during which the values of N and E are collected

every 103 MC steps and a configuration is saved every 5 � 104

MC steps, thus resulting in a total of 57 � 104 values of E and N
per state point and 11 400 configurations.

At each state point, we calculate the scaling variable
M ¼ N þ sE, where s is a fitting parameter with non-universal
values. As, at the critical point, the probability distribution of M

coincides (up to vanishing second order corrections) with the
distribution of the magnetization of the Ising model,53 the histo-
grams produced by a simulation of the state point (T,m) are
reweighted,54 so to identify new values of (T0,m0) and an optimal
value of s such that the distribution of M, rescaled to have unit
variance, matches the Ising magnetization distribution, computed
as in ref. 55. We perform simulations until the norm of the
difference between the reweighted distribution of M and the Ising
magnetization distribution is lower than 0.140. The final values of
T0 and m0 are then defined to be the critical ones, Tc and mc. We then
define the critical density, rc, and the critical energy density, uc, as
the average of their respective distributions at (Tc,mc), computed via
histogram reweighting. After the identification of (Tc,mc), for some
selected systems we also perform simulations at the critical point,
in order to gather data for the structural properties of the critical
phases. To verify whether a simulation is sufficiently close to the
critical point we check that the distribution of M coincides with the
Ising magnetization distribution without any reweighting. The
structural properties of the models characterized by (uEE, uPP) =
(0.0, 0.0) and (uEE, uPP) = (0.5, 2.0) are computed by using config-
urations sampled at the critical point.

4 Results
4.1 The critical point

The behaviour of Tc, mc, rc and uc is shown in Fig. 2 for all
investigated IPP systems, where the critical temperature and
the critical density of four sets of systems – listed in the figure
caption – are reported from ref. 47 for completeness.

As already suggested from the selection of systems studied
in ref. 47, the critical temperature (a-panels of Fig. 2) mono-
tonically increases with g for any combination (uEE, uPP) of the
electrostatic repulsion, where uEE and uPP have nonetheless a
different quantitative impact on Tc. The repulsion between the
equators has in fact the strongest effect: on increasing uEE (from
panel aI to aV of Fig. 2), Tc significantly decreases for each given
g. It must be noted that, as uEE increases, the increase in Tc with g
becomes less and less pronounced at any fixed uPP and we
observe a change in the curvature in the g-dependence of Tc

from convex to concave. In contrast, the repulsion between the
polar regions plays a significant role only when the EE repulsion
is small and, even in that case, only at large gs (panels aI–aIII of
Fig. 2). On increasing uEE, the effect of uPP at large gs reduces
until it becomes negligible (panels aIV and aV of Fig. 2). Overall,
the interplay between geometry and electrostatics leads to strong
variations in Tc, from a minimum of 0.0883 to a maximum of
0.1372, a value that is 55% larger than the minimum.

The critical chemical potential (b-panels of Fig. 2) shows
qualitatively different trends. In particular, mc displays a more
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pronounced dependence on the PP repulsion: an increase in
uPP implies an increase in mc, meaning that all curves are
shifted upward, regardless of uEE and g. The dependence on

uEE is also monotonic, with mc increasing on increasing uEE,
where the EE repulsion has nonetheless a smaller effect with
respect to the PP repulsion. In contrast to Tc, mc does not

Fig. 2 Critical behaviour of all investigated IPP systems. From top to bottom: Critical temperature Tc (row a), critical chemical potential mc (row b), critical
density rc (row c), critical energy density uc (row d). From left to right: Values of uEE increase from uEE = 0.0 to uEE = 2.0 in steps of 0.5 per panel (labeled I to V).
Different colors and symbols refer to different values of uPP as reported in the legend of panel (aIV). Note that four sets of data are reported from ref. 47 for
completeness, namely: (uEE, uPP) = (0, 0) (filled blue circles in panels aI and cI, referred to as ro (‘‘repulsions off’’) in ref. 47), (uEE, uPP) = (0, 0.5) (empty downward
orange triangles in panels aI and cI), (uEE, uPP) = (2, 0) (empty blue circles in panels aV and cV) and (uEE, uPP) = (2, 0.5) (empty downward orange triangles in
panels aV and cV, referred to as ref (‘‘reference’’) in ref. 47).
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increase monotonically with g at all values of the EE repulsion:
while for large values of uEE, mc monotonically increases with g
(see e.g. panel bV of Fig. 2), as uEE diminishes, mc shows instead
a non-monotonic g-dependence (see e.g. panels bI of Fig. 2). A
minimum of mc at an intermediate g implies that inserting a
particle with a smaller or larger patch in the system is more
costly. In the purely attractive case (i.e. uEE = uPP = 0), the curve
is almost symmetrical with respect to its minimum, suggesting
that particles with intermediate gs can be inserted at a lower
cost due to geometric reasons. On increasing only the PP
repulsion, the minimum does not move in g, but it becomes
increasingly costly to insert a particle with a large patch
compared to one with a small patch, confirming that it is the
number of unfavorable configurations due to the PP repulsion
to determine mc: the larger and more repulsive the patches are,
the more costly it is to insert the particles on average. When uEE

also increases, mc gradually returns to being monotonic, as the
EE repulsion outweighs the PP repulsion. The distinct behavior
of the chemical potential compared to the other critical para-
meters and fields is thus an effect of the increased sensitivity of
mc to the PP repulsion.

Similar to Tc, the critical density (c-panels in Fig. 2) is a
monotonically increasing function of g for any combination
(uEE,uPP) of the electrostatic repulsion, consistently with the
trends observed in ref. 47 for a small selection of IPP systems.
Again like Tc, the increase is more pronounced when uEE is

small and it flattens as the EE repulsion increases, while the
increase of uPP weakly affects rc, regardless of uEE or g. The
remarkable changes in rc caused by the interplay between
electrostatic repulsion and patch geometry imply that the
largest value of the critical density, 0.430 (obtained for uEE =
0.0, uPP = 2.0 and g = 551), is 98% larger than the smallest value,
0.219 (obtained for uEE = 2.0, uPP = 0.0 and g = 351).

The critical energy (d-panels in Fig. 2) mirrors the behaviour
of rc, which comes as no surprise given the strong correlation
between these variables at the critical point.56 For uEE = 0.0, uc

rapidly decreases as g increases, reaching a minimum value
�0.469 for uEE = 0.0, uPP = 2.0 and g = 55 (the system with the
largest rc). The maximum value is�0.232 for uEE = 2.0, uPP = 0.0
and g = 35 (the system with the smallest rc). Again in analogy to
the critical density, uc is weakly affected by the PP repulsion at
any g and uEE, while it increases with the EE repulsion at any g.

Fig. 3 allows a better understanding of the behaviour of rc

and uc by displaying the critical distributions of these variables, as
obtained after histogram reweighting. For small values of uEE and
uPP (for instance uEE = uPP = 0), the distributions become wider
and wider on increasing g, with the weight of extremely large
densities increasing systematically with the patch size, subtracting
weight to regions of low density (panel a of Fig. 3). This behaviour
is mirrored by the increase in the weight of very low-energy
regions and by the contemporary reduction of weight associated
with regions of relatively high energy (panel d in Fig. 3).

Fig. 3 Critical distributions of sample IPP systems obtained using histogram reweighting. (a) Critical distributions of the density r for uEE = uPP = 0.0 and
different values of g. (b) Critical distributions of r for g = 301, uPP = 0.0 and different values of uEE. (c) Critical distributions of r for g = 301, uEE = 0.0 and
different values of uPP. (d), (e) and (f) as in (a), (b) and (c), respectively, but for the critical distributions of the energy density u.
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In contrast, when the opening angle and the PP repulsion are kept
fixed and small, but the EE repulsion increases, we observe the
opposite trend (panels b and e in Fig. 3). In this case, the weight
moves toward regions of low density (high energy) with increasing
uEE, implying a decrease (growth) in rc (uc). Finally, variations in
uPP are substantially ineffective in altering the probability distri-
butions of r and u for a given set of g and uEE values (panels c and
f in Fig. 3) and indeed their average weakly depends on the PP
repulsion.

As further confirmation that the behavior of the critical
energy can be explained by the strong correlation between uc

and rc at the critical point, we show in Fig. 4 the joint probability
density function of particle and energy density, computed from
simulations at the critical point. The shape of the distributions
confirms the existence of a strong correlation between these
variables: regardless of g, the distributions are extremely narrow
along a slightly curved line, so that the value of one variable is
almost entirely determined by the value of the other, with
extremely small fluctuations around the conditioned average.
Moreover, the distributions clearly show that low values of u are
systematically associated with large values of r and vice versa,
hence confirming that the two opposite monotonic trends (with
g and on increasing uEE) shown in Fig. 2 are due to the strong
correlation between the critical fields.

4.2 Bonding volume versus critical temperature

A well-established result in the study of the critical point of
patchy systems is that the critical temperature can be related to
the amount of physical space around a single particle that is
available for bonding. This quantity is referred to as bonding
volume Vb and can be defined as57

Vb ¼
ð
Y �U r;O1;O2ð Þ½ �dO1dO2

16p2
dr (4)

where Y is the Heavyside stepfunction, r is the distance
between particles 1 and 2, and O1(O2) is the random orientation
of particle 1(2). The above integral can be estimated by first
performing the integrals with respect to dO1dO2: this operation
provides an estimate of the amount of physical space available
for one particle to bond when the other particle is at a distance

r; subsequently, the integration over r can be performed,57,58

leading to the value of Vb for the selected set of model
parameters. Numerically, a completely general procedure for
integrating a generic function f (r,O1,O2) over drdO1dO2

requires assigning a random orientation to both particles,
hence sampling O1 and O2, a random distance r within the
integration range and a random angular position (y,f). Cru-
cially, the sampling of (y,f) as well as the sampling of the
random orientations must be uniform over the unitary sphere.
In this way, an integral of the form appearing in eqn (4) can be
estimated with a single sampling as59

4p rmax � rminð Þ
XZ
i¼1

ri
2

Z
f ri;O1i;O2ið Þ; (5)

where rmax and rmin are the largest and smallest values of the
norm of the vector r within the integration domain, (ri,O1i,O2i)
is the i-th point sampled in the configuration space and Z is the
number of points sampled. In the case of the bonding volume
of IPP systems, the function f must be replaced by Y[�U] and
the sampling over the unitary sphere can be perfomed just
twice, as the potential depends only on the relative orientation
of the pair. Hence, we assign a random orientation to particle 2,
a random angular position to it and and finally a random
distance between the particle, sampling withing the interaction
range [2sc, 2sc + d].

Fig. 5 displays Vb for the systems considered in Fig. 2. As
expected, the behaviour of Vb reproduces the same trends
observed for Tc: it strongly decreases on increasing uEE (from
panel a to e) and it is always a monotonically growing function
of g; furthermore, it is weakly affected by uPP. In contrast to Tc,
the curvature of Vb goes from concave to convex on increasing
uEE. Moreover, again in contrast to Tc, Vb still decreases on
increasing uPP at large values of uEE and g.

It is worth noting that while in conventional patchy colloids,
Vb is in a straightforward relation with the number and size of
the attractive patches,23,24 in IPP systems Vb emerges as a
consequence of the interplay between electrostatics and geo-
metry, both of which contribute to control the particle bonding
valence. As complex as this interplay may be, Vb represents a
powerful tool to estimate the critical temperature behaviour of

Fig. 4 Joint probability density functions of energy density u and particle density r at the critical point for uEE = uPP = 0.0 and three different values of g =
30, 40, 50 from left to right.
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sets of IPPs, since it is a thermodynamic-independent para-
meter based on pair properties.

4.3 Second virial coefficient and effective particle’s valence

The second virial coefficient, b2(T), is defined as60

b2ðTÞ ¼ �
1

2

ð
exp �bUðr;O1;O2ð Þ � 1½ �dO1dO2

16p2
dr (6)

and quantifies the contribution of the pair-wise interaction to
the equation of state of an ideal gas. The reduced second virial
coefficient, b�2ðTÞ, has been proposed by Noro and Frenkel as a
scaling variable to extend the van der Waals law of corres-
ponding states to systems with variable attraction range60 and,
since then, it has been used to map phase diagrams of different
models in a large variety of systems, from proteins61 to
colloids.62 The reduced second virial coefficient is defined as

b�2ðTÞ ¼ b2ðTÞ
�

2pseff 3
�
3

� �
(7)

where 2pseff
3/3 is the second virial coefficient of a system of

hard spheres with diameter seff, and seff can be calculated as

seff ¼
ð1
0

½1� expð�bUrepðrÞÞ�dr; (8)

where Urep(r) is the repulsive part of the potential, i.e.,
U(r)Y[U(r)]. Defined in this way, seff quantifies the extension
of the repulsive region of a generic potential in terms of a
system of equivalent hard spheres by weighting, in a
temperature-dependent fashion, the strength of the repulsion
between particles.

A generalized law of corresponding states for conventional
patchy systems has been proposed under the observation that
systems with the same number of patches tend to display
similar values of b�2 at the critical temperature.63 A natural
question to ask is whether the generalized law of corresponding
states holds for IPP systems. To answer this question, we must

calculate b2 and seff. For the first one, one can rely on the
observation that eqn (6) has the same form as eqn (4), thus, if
the Heavyside function is replaced by the Meyer function [1 �
exp(�bU)], we can use eqn (5) for measuring b2. Eqn (8),
however, does not have the same form of eqn (4) and hence a
different strategy is required. The difficulty arises in front of the
observation that the potential of IPP systems has a repulsive
component that is not radial but rather depends on the relative
orientation between the particles and hence the radial integral
in eqn (8) is not appropriate to quantify seff: an evaluation of
Urep necessarily requires the exploration of the whole configu-
ration space, i.e., an integration with respect to dO1dO2dr, with
the consequence that the resulting integral has the dimension
of a volume. Simply replacing the integration with respect to r
in eqn (8) with one over the configuration space and then
taking the cubic root of the resulting integral is clearly inap-
propriate, as for isotropic potentials it would not yield the same
result of eqn (8). Hence, we generalize the definition of seff as

seff ¼
ð1
0

1� exp �bUrep r;O1;O2ð Þ
� �

4pr2
dO1dO2

16p2
dr: (9)

Note that eqn (9) reproduces exactly the same results of eqn (8)
for isotropic potentials as well as for conventional patchy
systems. The integral in eqn (9) is evaluated using again
eqn (5) where the generic function f is replaced by the function
[1 � exp(�bUrep)]/(4pr2).

The comparison of the second virial coefficients of different
IPP systems, however, is not straightforward even once the
measures of b2 and seff are well-defined. The observation made
in ref. 63 relates the second virial coefficient of different patchy
systems to the number of patches per particle. Under the single
bond per patch condition, such a quantity corresponds to the
maximum number of energetic bonds per particle,63 often
referred to as particle functionality. As in IPP systems the

Fig. 5 Bonding volume Vb for all systems studied in Fig. 2. The value of uEE increases from uEE = 0.0 to uEE = 2.0 in steps of 0.5 per panel (from a to e).
Different colors and symbols refer to different values of uPP, as shown in the legend of panel (e). Markers are filled when uEE = uPP and empty otherwise.
Note that four sets of data are reported from ref. 47 for completeness, namely: (uEE, uPP) = (0, 0) (filled blue circles in panel a, referred to as ro (‘‘repulsions
off’’) in ref. 47), (uEE, uPP) = (0, 0.5) (empty downward orange triangles in panel a), (uEE, uPP) = (2, 0) (empty blue circles in panel e) and (uEE, uPP) = (2, 0.5)
(empty downward orange triangles in panel e, referred to as ref (‘‘reference’’) in ref. 47).
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particle functionality is not a built-in feature of the model, we
need to determine the maximum number of bonds that an IPP
can in principle form. For the purpose of our discussion in
Sections 4.4 and 4.5, we distinguish between geometric and
energetic bonds: a geometric bond, Gb, forms between two
particles when their distance r is 2s r r r 2s + d; an energetic
bond, Eb, is a geometric bond with pair energy U o 0. Note that
in conventional patchy systems, all bonds are energetic bonds.
While the maximum number of geometric bonds that an IPP
can form is 12, the so-called kissing number in three dimen-
sions, the maximum number of energetic bonds is the particle
functionality, which we thus label fmax

E . To infer fmax
E , we devise a

specific MC sampling with 12 particles positioned around a
central particle along the vertices of a regular icosahedron,
where each of the external particles is within a distance r o 2sc

+ d from the central one. These 12 particles are roto-translated
by selecting one at random and moving its center of mass by a
vector with three different random components between �D/2
and D/2. The move is accepted if the particle remains within the
interaction range of the central particle and if no overlap is
created, nor with the central particle nor with the 11 remaining
external particles. Basically, any move that keeps the number of
geometric bonds equal to 12 without creating overlaps is
accepted. D = 0.17 is selected so as to have an average accep-
tance rate of the move around 30%. In this way, we create a
large number of random configurations where the central
particle has 12 possibly bonded neighbours. Note that this first
stage of the MC is not concerned with the specific interaction
potential of IPP systems and can simply be seen as a way to
sample configurations where the kissing number of the central
sphere is 12 given a square well potential with interaction range d.
In particular, the value D = 0.17 is independent of the interaction
potential of the IPP model for which the measure is being
performed. In the second stage of the MC, the IPP potential is
activated and the measure of fmax

E is performed. In this second

stage, external particles are first moved in the same exact way as
they were moved in the first stage, so as to have again an average
acceptance rate of around 30%. Moves are accepted according to
the same criterion described earlier. If a move is accepted, a
random orientation is assigned to the newly positioned particle
and the IPP potential between it and the central particle is
computed, so to evaluate if the new position and orientation of
the moved particle forms an energetic bond with it. This scheme
allows the monitoring of the evolution of the total number of
energetic bonds formed by the central particle as the remaining
12 are roto-translated (with respect to it) and acquire a random
orientation. fmax

E is estimated as the largest number of bonds
formed by the central particle along the simulation. In principle,
this measure provides a lower bound on the quantity of interest,
so we attempted to move a random particle for a total of 4 �
1011 times, corresponding to having successfully moved each of
the 12 external particles 1010 times each. This large number of
measures makes us confident that our estimator of fmax

E well
captures the maximum number of energetic bonds a particle
can form. Note, in particular, that two successive configurations of
the simulation are clearly correlated, but we are not interested in
the probability distribution of the number of energetic bonds
formed by the central particle, rather our focus is on the max-
imum number of energetic bonds that have non-zero probability.
Hence, there is no reason to disregard any sampled configuration
because of correlations: in principle, the measure becomes exact if
the entire configuration space is sampled, even if the sampling is
made of a series of strongly correlated configurations.

Fig. 6 shows the reduced second virial coefficient at the
critical point as a function of fmax

E for the IPP systems under
investigation in this work. The behavior of the latter is clearly
correlated with the bonding volume: fmax

E diminishes as uEE

increases (from panel a to e) and is rather insensitive to
uPP. Interestingly, the variability of b�2 Tcð Þ against variations
of uPP depends on uEE. At small EE repulsion the patch–patch

Fig. 6 Reduced second virial coefficient at the critical temperature, b�2 Tcð Þ, as a function of the maximal functionality, fmax
E , for all systems studied in

Fig. 2. Values of uEE increase from uEE = 0.0 to uEE = 2.0 in steps of 0.5 per panel (from a to e). Different colors and symbols refer to different values of uPP

as shown in the legend of panel (a). Markers are filled when uEE = uPP and empty otherwise. For each uEE and uPP, the smallest b�2 Tcð Þ corresponds to g =

301 and then g increases by 51 pointwise, up to g = 551, when b�2 Tcð Þ reaches its largest value.
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interaction seems to weakly affect b�2 Tcð Þ, while changes in uPP

become more relevant in determining b�2 Tcð Þ for large equator–
equator repulsion, meaning that the charge imbalance strongly
impacts the behavior of b�2 Tcð Þ for a given geometry. Despite the
spectrum of values spanned by b�2 Tcð Þ of IPP systems being
consistent with the values observed for conventional patchy
systems,63 it is not possible to apply the generalized law of
corresponding states proposed by Foffi and Sciortino,63 meaning
that it is not possible to identify classes of IPP systems with the
same corresponding states a priori on the basis of their bonding
functionality. However, the larger values of b�2, observed for small
values of uEE, are consistent with experimental measurements on
monoclonal antibodies,64,65 globular proteins61,66 and folded
domains of intrinsically disordered proteins.67

In the following, we focus on the microscopic characteriza-
tion of the aggregates at the critical point to better understand
the behaviour of the described critical quantities.

4.4 The role of the patch–patch repulsion

The above discussion leads to the observation that the parameter
uPP is less relevant for the critical behaviour of our systems. The
reason for this is rooted in the ability of the particles to self-organize

into configurations where the PP repulsion is completely avoided.
To show this, we calculate the probability distribution of the
interaction energy of random pairs of bonded particles and com-
pare it to the probability distribution of the pair interaction energy
measured in the simulations at the critical point for several systems.

Fig. 7 shows the probability distribution of the pair energy of
geometric bonds for a variety of systems. Distributions in
panels a, b, d, and e for the systems (uEE, uPP) = (0.0, 0.0),
(0.5, 0.0), (0.0, 2.0), (0.5, 2.0) (and all gs), respectively, are
computed by creating random geometric bonds. Specifically, while
one IPP is fixed in its position and orientation, the other is
assigned a random position within the interaction distance and
a random orientation. Panel c shows the average of these distribu-
tions as a function of g, while panel f reports the distribution for
the systems (uEE, uPP) = (0.0, 0.0) and (0.5, 2.0) at the two extreme
values of g = 301 and 551. For consistency with ref. 47, the system
with (uEE, uPP) = (0.0, 0.0) is referred to as IPPro, where the subscript
stands for ‘‘repulsion off’’, and the system with (uEE, uPP) =
(0.5, 2.0) is named IPPref, where the subscript stands for ‘‘refer-
ence’’, as these values of the electrostatic repulsion have been
observed in previously studied IPP systems.27,49,50,68

The probability distributions of randomly generated config-
urations estimate the number of possible pair configurations

Fig. 7 Impact of patch–patch repulsion on the energy of IPP systems. (a) Distributions of the energy of geometric bonds for randomly generated pair
configurations of IPPs with uEE = uPP = 0.0 and different values of g. (b) Same as in (a), but for IPPs with uEE = 0.5 and uPP = 0.0. (d) Same as in (a), but for
IPPs with uEE = 0.0 and uPP = 2.0. (e) Same as in (a), but for IPPs with uEE = 0.5 and uPP = 2.0. (c) Average of the distributions shown in panels a, b, d and e.
(f) Distributions of the energy of geometric bonds for configurations observed in simulations at the critical point for IPPro and IPPref systems, i.e., systems
with uEE = 0.0, uPP = 0.0 and uEE = 0.5, uPP = 2.0 respectively, for g = 30 and g = 55. Inset: Average of the distributions shown in panel f.

Paper Soft Matter

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

9 
 2

02
4.

 D
ow

nl
oa

de
d 

on
 0

1/
11

/2
5 

16
:4

2:
29

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4sm00750f


This journal is © The Royal Society of Chemistry 2024 Soft Matter, 2024, 20, 7601–7614 |  7611

with a given energy. In the absence of any electrostatic repulsion
(panel a in Fig. 7), the probability of a given energy is higher, the
greater (less negative) the value of the energy U[Gb] is: while
perfect EP configurations (with U[Gb] = � 1) are relatively rare,
the distributions show a long regime of exponential growth at
intermediate energies (with �1 o U[Gb] o 0, where the ampli-
tude is higher for larger gs) and a peak at U[Gb] = 0. When either
the EE (panel b) or the PP (panel e) repulsion is present,
configurations with U[Gb] 4 0 become possible: the largest
energies can be reached only if either the EE or the PP inter-
action, respectively, contributes to U. While configurations
where the EE repulsion contributes to the bond energy are
relatively abundant (with 0 o U[Gb] o uEE), configurations
where the PP repulsion plays a role are exceedingly rare: as soon
as U[Gb] 4 0, the probability has a substantial drop, larger for
small gs, and then exponentially decays (note the log-lin scale)
with a rate that seems g-independent. This behaviour is con-
firmed also when both uEE a 0 and uPP a 0 (panel d), where the
significant drop in the probability occurs as soon as U[Gb] 4 uEE.

In summary, configurations that provide a large PP contri-
bution to U[Gb] are not numerous, meaning that it is relatively
simple for a pair of IPPs to avoid such configurations when
forming a geometric bond in a simulation. This speculation is
confirmed by the distributions shown in panel f: for IPPref

systems, the probability that U[Gb] 4 0.5 is very close to zero,
thus explaining why PP repulsion rarely impacts the critical
parameters and fields. From comparing IPPro and IPPref sys-
tems in panel f, we further note that the presence of electro-
static repulsion facilitates the formation of low energy bonds
both at large and small gs and greatly reduces the probability of
configurations with zero energy. The weight in the distributions
of those configurations that have zero energy in IPPro is
partially transferred to configurations with U[Gb] 4 0, but a
large fraction of this weight is actually moved to configurations
with very low energy.

As a result of the described differences between randomly
generated pair configurations and pairs measured in simula-
tions, the average energies of a geometric bond, hU[Gb]i,
(reported in panel c for random pairs and in the inset in panel
f for pairs in simulations) show opposite trends: while hU[Gb]i
decreases with g for random pairs, it instead increases with g in
the simulations. In particular, panel c shows that the EE
repulsion has the largest effect on the average energy of a
geometric bond: when this repulsion is off, then hU[Gb]i o0,
while a very mild EE repulsion causes a shift of hU[Gb]i to
higher and mostly positive values. In contrast, the PP repulsion
mainly tunes the rapidity with which the average energy
decreases as g increases. In contrast, the inset in panel f shows
that hU[Gb]i is always negative in simulations of both IPPro and
IPPref and increases with g; on increasing g, bonds become thus
weaker. Moreover at any fixed g, the average energy of the
system with only directional attraction is always higher than
the average energy of the system with directional attraction and
directional repulsion; this is due to additional morphological
constraints introduced by the electrostatic repulsion leading to
more optimized EP configurations.47

4.5 Geometric versus energetic bonds

We now compare the probability that a particle forms n geo-
metric bonds to the probability that a particle forms n energetic
bonds. Fig. 8 (panels a, b and d, e) displays these probabilities
for IPPro (top) and IPPref (bottom) systems. In the absence of
electrostatic repulsion (panels a and b), the distributions of
both n[Gb] and n[Eb] show a remarkable dependence on g, with
large patches allowing more (geometric as well as energetic)
bonds than small patches. Only a fraction of geometric bonds is
also energetic: the probability of having a small number of
energetic bonds is slightly higher than that of having the same
number of geometric bonds, while for a large number of bonds,
the probability is higher that they are geometric rather than
energetic (see the difference between the two cases reported in
panel c). This trend is suppressed as g increases, when the two
distributions become increasingly similar, suggesting that large
patches allow for a greater ability to form energetic bonds. Note
that, on increasing g, the numerous energetic bonds formed
tend to be weaker as shown in the inset in panel f in Fig. 7. The
presence of electrostatic repulsion significantly alters the
described scenario: the dependence on g is almost entirely
suppressed, meaning that for large patches, the electrostatic
repulsion acts against the formation of many energetic bonds.
In other words, the fraction of geometric bonds which is also
energetic does not significantly vary with g due to electrostatic
repulsion (see also panel f).

The insets of panels b and e in Fig. 8 show the average
functionality of IPPro and IPPref systems at criticality. In con-
ventional patchy systems, the functionality f of a particle is
defined as the maximum number of bonds that a particle can
form, and it corresponds to the number of patches per particle
when the single bond per patch condition is satisfied. In IPP
systems, however, the single bond per patch condition is not
guaranteed, and hence, we define the functionality as the
average number of bonds per particle actually formed in
simulations. As we distinguish between geometric and ener-
getic bonds, we also distinguish between geometric and ener-
getic functionalities, fG and fE, respectively. Both quantities can
be measured by averaging (over the whole system) the number
of bonds each particle forms. Importantly, this definition
implies that f depends on the thermodynamic conditions under
which the system is. Data show that both functionalities
increase with g for both systems, but in the absence of repul-
sion (inset in panel b), the increase is such that the gap between
fG and fE becomes smaller as g increases; this behaviour reflects
the fact that the distributions of n[Gb] and n[Eb] become
increasingly similar as g increases. In the presence of electro-
static repulsion (inset in panel e), the average functionalities
have a systematically smaller value if compared to the case
where the electrostatic repulsion is absent, namely 2.2 r fG/E r
3.4 for IPPro systems and 2.2 r fG/E r 2.6 for IPPro systems;
moreover, the gap between fG and fE remains constant as the
patch size increases. This is easily understood considering that
identical configurations can have much larger energy when uEE

and/or uPP are non-zero: two repulsive equatorial regions of two
IPPs surely interact as soon as the two particles are within their
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interaction distance, hence giving a positive contribution to the
pair energy, regardless of g. That the reduced growth of the
functionality with g is a consequence of mostly the EE repulsion
is an obvious consequence of the fact that configurations
dominated by patch–patch repulsion are avoided, as already
discussed.

It is worth noting that the average (geometric and energetic)
functionality can be related to the compactness of the aggre-
gates. Smaller functionalities imply more branched structures,
as discussed in ref. 47. In particular, IPPro systems with small
patches have on average a small number of bonds, most of
which are energetic, which give rise to branched structures, as
observed in ref. 47. These branched structures allow the system
to condense into the liquid phase even at relatively low den-
sities. In contrast, IPPro systems with large patches have, on
average, a larger number of bonds, but a fraction of these are
only geometric, which is due to the compact structures formed
in the absence of directional repulsion. These compact struc-
tures require a large density for the liquid phase to condense,
which explains the behaviour of rc with g in IPPro systems.
In summary, low fG/E values imply branched structures, which
in turn lead to low rc values. The same paradigm is observed for
IPPref systems: as their fG/E values are systematically lower than

those observed in IPPro systems and do not increase signifi-
cantly with g, their rc is also significantly lower over the whole
g-range, confirming that the electrostatic repulsion is a key
factor in reducing the particle’s connectivity.

5 Conclusions

In this work, we numerically study the effect of electrostatic
anisotropy on the LLPS of heterogeneously charged particles,
referred to as IPPs, which represent charged patchy colloids or
protein systems. By taking advantage of a relatively simple
coarse-grained model, we are able to investigate the critical
behaviour of a large selection of IPP systems via robust MC
simulations. Our model reproduces the features of a directional
screened Coulomb interaction for spherical particles with
simple charge heterogeneity and allows the control of the
competition between surface patchiness and charge imbalance
by means of a few parameters. We stress that, despite our
model being more suitable for colloids and globular rather
than disordered proteins, estimates of the reduced second
virial coefficient of our systems at the critical point are in the
range reported not only for globular proteins but also for

Fig. 8 Statistics of geometric and energetic bonds from samples collected at the critical point. (a) Probability that n[Gb] geometric bonds are formed
for systems with uEE = uPP = 0.0 and different values of g. (b) Probability that n[Eb] energetic bonds are formed for the same systems as in panel (a).
Inset: Average functionality, i.e., the average number of bonds (geometric and energetic, fG and fE respectively) as a function of g, for the same systems as
in panels (a) and (b), data reported from ref. 47. (c) Difference between the probability of forming n[Gb] geometric bonds and the probability of forming
n[Eb] energetic bonds for the same systems as in panels (a) and (b). (d), (e) and (f) Same as in (a), (b) and (c) respectively, but for systems with uEE = 0.5 and
uPP = 2.0.
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disordered proteins and antibodies. This supports the specula-
tion that our modeling approach has predictive power beyond
the spherical approximation.

We show that anisotropic electrostatics results in a limited
bonding valence, a feature that is usually associated only with
site-specific interactions. In particular, we show that the direc-
tional attraction stemming from the interactions between
oppositely charged regions is not the only responsible for such
limited functionality: the directional repulsion stemming from
like-charged regions is in fact crucial in controlling the bonding
valence, thus implying that both charge patchiness and charge
imbalance control the ability of a particle to form bonds. As an
effect of the limited bonding functionality, the LLPS critical
point shifts towards extremely low temperatures and densities.
In particular, consistent with the LLPS behaviour of systems
with site-specific interactions, the directional nature of the
attractive interactions shifts the critical point towards lower
temperatures and densities, where smaller patches disfavour
the condensation of the dense liquid phase with respect to
larger patches. Electrostatic directional repulsion further
reduces the critical parameters, where the impact of the elec-
trostatic repulsion on the critical point varies with the size of
the patches, highlighting the complex interplay between charge
imbalance and charge patchiness.

We rationalize the behaviour of the critical parameters in
terms of thermodynamic-independent pair properties such as
the particle bonding volume and the probabilities for a particle
to form a given number of bonds or have a given energy. The
collection of these quantities provides additional insight into
the morphological features of the aggregates. In particular,
while in systems with only directional attraction, the number
of possibly bonded pair configurations is controlled only by the
patch size, when the directional repulsion is also present, the
number of possibly bonded pair configurations is controlled by
the complex interplay between patch size and charge imbal-
ance. As a consequence, we observe the emergence of branched
rather than compact structures not only in small patches – as it
is for IPPs with only directional attraction – but also at large
patches. This outcome highlights the potential of anisotropic
electrostatics to control LLPS by tuning the charge patchiness
of the systems by means of, e.g., pH changes or, specifically for
protein systems, mutagenesis.

We note that a broader understanding of the phase separa-
tion of IPP systems would also require the determination of the
binodal lines to estimate the width and shape of the phase
coexistence region. Nonetheless, the Grand Canonical Monte
Carlo simulations presented here are difficult to equilibrate at
temperatures significantly lower than the critical one, while the
behavior of the binodal line in such a regime is of particular
interest. We are thus currently calculating the binodal lines of a
selection of IPP systems via Successive Umbrella Sampling
(SUS) simulations, which can reach equilibrium in a reasonable
amount of time even at very low temperatures.51 In a future
work, we plan to in fact address the interplay between phase
separation and networking in a broad region of the phase
diagram around the critical points. To this aim, we are also

combining SUS with NVT simulations to determine the proper-
ties of IPP aggregates in large systems.69 A comprehensive
picture of how charge patchiness affects the whole LLPS region
and the properties of the IPP fluid/liquid will allow the control
of such a phenomenon leveraging only on heterogeneous
electrostatics.

Data availability

Numerical simulations of the Inverse Patchy Particle (IPP) model
have been performed by adapting the publicly available code
published with [L. Rovigatti, J. Russo, F. Romano, How to simulate
patchy particles, Eur. Phys. J. E, 41, 2018, 137]. The resulting code,
together with data analytics tools to reproduce the results pre-
sented in this paper is available at https://github.com/DaniMuzi/
IPPs-critical-point. All data are available under request.
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