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ia synthesis on HY-zeolite-
supported angstrom-size molybdenum cluster†

Satoshi Kamiguchi, *ab Kiyotaka Asakura, c Tamaki Shibayama, d

Tomoko Yokaichiya, e Tatsushi Ikeda, e Akira Nakayama, *e

Ken-ichi Shimizu c and Zhaomin Hou ab

The development of new catalysts with high N2 activation ability is an effective approach for low-

temperature ammonia synthesis. Herein, we report a novel angstrom-size molybdenum metal cluster

catalyst for efficient ammonia synthesis. This catalyst is prepared by the impregnation of a molybdenum

halide cluster complex with an octahedral Mo6 metal core on HY zeolite, followed by the removal of all

the halide ligands by activation with hydrogen. In this activation, the size of the Mo6 cluster (ca. 7 Å) is

almost retained. The resulting angstrom-size cluster shows catalytic activity for ammonia synthesis from

N2 and H2, and the reaction proceeds continuously even at 200 °C under 5.0 MPa. DFT calculations

suggest that N^N bond cleavage is promoted by the cooperation of the multiple molybdenum sites.
Introduction

Ammonia production from atmospherically abundant dini-
trogen (N2) is an essential chemical process for human beings,
because ammonia is a feedstock for globally used fertilizer and
a wide variety of nitrogen-containing chemicals.1 Recently,
ammonia has also been expected to be used in hydrogen (H2)
storage owing to its high hydrogen content ratio (17.6 wt%)2 and
as a fuel that does not emit carbon dioxide during combustion.3

The worldwide production of ammonia is increasing year by
year and reached 0.18 Gton in 2022.4 Industrially, ammonia is
produced from N2 and H2 via the Haber–Bosch process using
iron (Fe)-based catalysts under high pressure (10–30 MPa) and
high temperature (400–500 °C) conditions.5 The reaction
conditions of industrial ruthenium (Ru)-based catalysts devel-
oped later are still harsh (<10 MPa and 325–450 °C).6 Making
these reaction conditions milder (e.g. <5 MPa and <200 °C) is in
high demand to reduce the high energy consumption.7 In
ammonia synthesis on these industrial catalysts, the cleavage of
the chemically inert N^N triple bond has the highest energy
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barrier,8 and acceleration of this triple bond cleavage facilitates
efficient ammonia synthesis at lower temperatures.2c,9 Recently,
it has been reported that trinuclear titanium (Ti) and chromium
(Cr) hydride cluster complexes achieve N^N bond cleavage and
subsequent hydrogenation of N at ambient temperature and
pressure, based on cooperation by multiple metal sites.10 Bio-
logically, nitrogenase enzymes in certain microbial organisms
produce ammonia from N2 under ambient conditions,11 and the
cooperation by multiple metal sites is considered to be
responsible for the reaction.12 These results suggest the poten-
tial of clusters for efficient catalytic ammonia synthesis.

Previously, Kamiguchi, one of the authors of this paper, re-
ported that transition-metal cluster compounds with chloride
or bromide ligands had catalyzed various reactions since 2002,
although there had been no reports on these clusters as cata-
lysts for more than 140 years.13 A molecular molybdenum (Mo)
chloride cluster with an octahedral metal framework,
(H3O)2[(Mo6Cl8)Cl6]$6H2O (1), exhibits catalytic activity by
partial elimination of halide ligands.14 In this activation,
however, only some of the metallic sites of the Mo6 cluster can
participate in the catalytic reactions. When all the halide
ligands are removed by H2-activation in the anticipation of the
participation of more metallic sites, the Mo6 cluster aggregates
to form bulk molybdenum metal.15 Thus, we expect that the H2-
activation of 1 dispersed on a porous material would form an
isolated ultra-small molybdenum metal cluster without aggre-
gation of the Mo6 cluster core, leading to the cooperation by
more molybdenum sites for the N^N bond cleavage and
further efficient ammonia synthesis. Moreover, in comparison
with Fe and Ru, Mo is more active in N2 activation, as deduced
from the calculated N2 dissociative adsorption energy on the
metal surface.16 Several molecular Mo complexes afford
© 2024 The Author(s). Published by the Royal Society of Chemistry
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ammonia from N2 using proton sources and reducing agents at
ambient temperature and pressure in a homogeneous system.17

From these results, it is expected that the ultra-small Mo cluster
will show high catalytic activity for Haber–Bosch-like ammonia
synthesis from N2 and H2. Herein, we report the preparation of
an angstrom-size Mometal cluster fromHY-zeolite-supported 1.
The resulting cluster produced ammonia with high stability,
and the reaction proceeded continuously even at 200 °C under
5.0 MPa. The cooperation of the multiple Mo sites promotes the
N^N bond cleavage and efficient ammonia synthesis.
Results and discussion
Activation of cluster

As previously reported, when unsupported 1 is heated
progressively in owing hydrogen, 1 is converted to bulk
molybdenum metal up to 600 °C, with complete removal of the
chloride ligands as hydrogen chloride.15 When HY-supported 1
was analyzed by H2-temperature-programmed reduction (H2-
TPR), a large reduction peak was observed at 450–600 °C
(Fig. S1†), suggesting that 1 on HY also releases chloride ligands
as hydrogen chloride up to 600 °C. Thus, supported 1 was
heated in owing hydrogen at 600 °C for 3 h at atmospheric
pressure before ammonia synthesis. Elemental analyses
showed a decrease in Cl-content from 1.9 to 0 wt% without the
loss of Mo-content aer the H2-treatment (Table S1†), indi-
cating the complete removal of the chloride ligands of 1 on HY
by H2-activation. HZSM5- and MCM41-supported 1 also showed
complete removal of the chloride ligands, as conrmed by
elemental analyses (Table S1†).
Fig. 1 (A) XAFS spectra of (H3O)2[(Mo6Cl8)Cl6]$6H2O (1). The inset shows
after impregnation, (c) 1/HY after H2-activation, and (d) 1/HY after NH3

(https://doi.org/10.48505/nims.2249) (e) is also shown.

© 2024 The Author(s). Published by the Royal Society of Chemistry
The change in the local structures of HY-supported 1 by
impregnation and H2-activation was investigated using the X-
ray absorption ne structure (XAFS) technique. The results are
summarized in Fig. 1 and Table 1. Cluster 1 impregnated on HY
exhibited very similar XAFS (Fig. 1A(b)), X-ray absorption near
edge structure (XANES) (Fig. 1A(b), inset), and Fourier trans-
forms of k3-weighted extended XAFS (FT-EXAFS) spectra
(Fig. 1B(b)) to those of 1 before impregnation (Fig. 1A(a) and
B(a)). The tted parameters of 1 aer impregnation were almost
the same as those before impregnation (Table 1). Thus,
impregnation did not change the molecular structure of 1 or the
size of the Mo6 cluster (ca. 7 Å). However, the XAFS (Fig. 1A(c)),
XANES (Fig. 1A(c), inset), and FT-EXAFS spectra (Fig. 1B(c))
changed aer H2-activation. The FT-EXAFS spectrum had two
small peaks at 1.5 and 2.5 Å. As shown by curve tting analysis
(Table 1), while the former peak was attributed to Mo–O (oxygen
of a silanol of HY), the latter was assigned to the nearest Mo–Mo
with a bond length of 2.84 Å. No signicant peaks attributed to
the next nearest Mo–Mo shell were observed over the longer
range (Fig. 1B(c)), indicating that the Mo6 cluster on HY did not
aggregate to form a larger molybdenum particle with long Mo–
Mo distances. The coordination number (CN) of the nearest
Mo–Mo was 3.6 (Table 1), and this CN value was close to that of
1 before and aer impregnation (4.0 and 4.2, respectively),
indicating that the average nuclearity of the Mo cluster was
almost retained aer H2-activation. The XAFS (Fig. 1A(e)),
XANES (Fig. 1A(e), inset), and FT-EXAFS spectra (Fig. 1B(e)) of
Mo foil were quite different from those of 1/HY aer H2-acti-
vation, which also demonstrates that the impregnation of 1 on
HY prevented the aggregation of 1 aer activation.
the XANES region. (B) FT-EXAFS spectra of 1: (a) as prepared, (b) 1/HY
-synthesis. Spectrum of Mo foil from the Spring-8 BENTEN database

Chem. Sci., 2024, 15, 2914–2922 | 2915

https://doi.org/10.48505/nims.2249
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d3sc05447k


Table 1 Curve fitting results of Mo K-edge EXAFS data

Sample Conditions Shell CNa Ra (Å) sa/10−2 (Å) Rf
b (%)

(H3O)2[(Mo6Cl8)Cl6]$6H2O (1) As preparedc Mo–Mo 4.0 (xed) 2.65 (0.01) 2.2 (0.7) 0.14
Mo–Cl 5.0 (xed) 2.54 (0.01) 1.3 (1.3)

(H3O)2[(Mo6Cl8)Cl6]$6H2O (1)/HY Aer impregnation Mo–Mo 4.2 (0.3) 2.65 (0.01) 2.2 (0.7) 0.12
Mo–Cl 5.3 (0.2) 2.54 (0.01) 1.3 (1.3)

Aer H2-activation Mo–Mo 3.6 (0.8) 2.84 (0.01) 7.0 (0.8) 3.2
Mo–O 1.3 (0.5) 2.04 (0.02) 5.8 (3.2)

Aer NH3-synthesis Mo–Mo 3.6 (0.7) 2.83 (0.01) 7.7 (0.6) 2.4
Mo–O 1.0 (0.3) 2.04 (0.02) 3.5 (3.3)

a Numbers in parentheses are errors estimated using the Hamilton ratio test with a signicance level of 0.317.38 b The good t of the observed and
calculated data was also demonstrated by the EXAFS-tting curves shown in Fig. S13(a)–(d). c Sample diluted with boron nitride was analyzed.
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The morphologies of the HY-supported 1 aer impregnation
and H2-activation were observed using high-magnication Cs-
corrected scanning transmission electron microscopy (Cs-
STEM). The results are shown in Fig. S2, S3, and S11(a), (b).†
In the STEM images aer impregnation (Fig. S2†), each of the
white particles corresponds to intact 1, as the XAFS conrmed
the retention of the structure of 1 (see above). The average
particle size of 9.7 Å (Fig. S11a†) was smaller than the molecular
size of 1 including the chloride ligands (ca. 11 Å), which is
attributed to the lower intensity of Cl than that of Mo, since the
clarity of the STEM image is proportional to the square of the
atomic weight (36.5 for Cl vs. 96.0 for Mo).18 Although we tried to
obtain a clear atomic image of the Mo clusters, it was impos-
sible because of the uctuations of the clusters under high
energy electron irradiations. The size of the zeolite micropore
(7.5 Å) was smaller than that of 1, and the particles on the edge
of the sample projected into the black area (Fig. S2b†). These
results show that 1 was not embedded in the micropore aer
impregnation. Aer H2-activation, the STEM average particle
size decreased from 9.7 to 7.9 Å (Fig. S11b†), which was close to
the size of the Mo6 cluster (ca. 7 Å), and this decrease is
attributed to the removal of chloride ligands by activation. The
STEM image shows that, except for some large particles over-
lapping a stripe, the particles were observed between pore
stripes or on the edge of a stripe (Fig. S3a†). The pore volume
measurements also conrmed the embedding of Mo particles
in the micropores aer activation (Table S2† and description
therein). These results indicate that the encapsulation of the
metal cluster in the zeolite pore aer activation prevented the
aggregation of the cluster and retained its average particle size
by the interaction of the cluster with silanols in the pore.19 In
spite of some reports on supported molybdenum nitride and
carbide clusters,20,21 there have been no reports on supported
molybdenum metal clusters.

We also analyzed the HZSM5- and MCM41-supported clus-
ters. The XAFS and STEM of 1/HZSM5 aer H2-activation
showed the formation of body-centered cubic (bcc) structured
large Mo particles (Fig. S12Bc†) with an average particle size of
37 Å (Fig. S11e†). All the particle sizes (>10 Å) were larger than
the zeolite pore size (ca. 5.5 Å). These results indicate that the
Mo6 metal cluster formed by activation was not encapsulated in
the small pore but was aggregated to form large bcc-Mo metal
2916 | Chem. Sci., 2024, 15, 2914–2922
particles outside the pore. Conversely, the MCM41-supported
cluster aer activation exhibited a smaller CN of Mo–Mo (3.0)
in the XAFS (Table S3†) and a smaller STEM average particle size
(5.5 Å) (Fig. S11h†) than the HY-supported cluster. All the
particles were smaller (<20 Å) (Fig. S11h†) than the MCM41 pore
size (ca. 24 Å) and were observed on the edge of a stripe
(Fig. S9†). These results suggest that the Mo6 metal cluster was
converted to a smaller cluster inside the large mesopore. It is
reported that H2-activation of a silica-supported dinuclear Mo
complex and its ligand elimination causes coordination of
silanol-oxygen atoms to the Mo atoms and cleavage of the Mo–
Mo bond.22 The reduction in nuclearity of the Mo6 metal cluster
in the MCM41 mesopore can be explained in the same way. In
contrast, the micropore of HY just ts the Mo6 metal cluster,
and therefore, the cluster is embedded without decomposition
even when silanol-oxygen atoms coordinate to the Mo atoms.
Thus, the size of the Mo metal cluster aer H2-activation
depends on the pore size of the support, and HY with a pore size
of ca. 7.5 Å is suitable for the retention of the size of the Mo6
cluster of 1.23
Catalytic performance

The H2-activated clusters on the three supports were applied to
ammonia synthesis. Aer the preparation of the H2-activated
clusters, they were subsequently subjected to the reaction of
a mixture of N2 and H2 with a ow ratio of 1 : 3 at 400 °C and
1.0 MPa (absolute pressure) without exposure to air. Ammonia
was continuously formed for 8 h aer the start of the reaction
for the three supports (Fig. 2). On all these three supports, the
clusters aer ammonia synthesis showed very similar elemental
analysis data (Table S1†), XAFS results (Fig. 1, Table 1, Fig. S12,
and Table S3†), and STEM data (Fig. S4, S7, S10, S11c, S11f, and
S11i†) to those aer H2-activation. Thus, the structures of the
cluster catalysts were stable during the ammonia synthesis.

Table 2 lists ammonia synthesis rates of various supported
Mo catalysts at 400 °C. In comparison with the ammonia
synthesis rates of H2-activated 1/MCM41 (10.2 mmol gMo

−1 h−1,
entry 1) and 1/HZSM5 (14.7 mmol gMo

−1 h−1, entry 2), that of
activated 1/HY (20.5 mmol gMo

−1 h−1, entry 3) was higher at an
absolute pressure of 1.0 MPa. This indicates that the Mo cluster
with an averaged structure of Mo6 was most effective for
ammonia synthesis. As Table S4† shows, the cluster on HY aer
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 Catalytic performance of ammonia synthesis at 400 °C and
1.0 MPa (absolute pressure) using (H3O)2[(Mo6Cl8)Cl6]$6H2O (1)/HY,
(H3O)2[(Mo6Cl8)Cl6]$6H2O (1)/HZSM5, and (H3O)2[(Mo6Cl8)Cl6]$6H2O
(1)/MCM41 as precursors. Catalyst amount, 0.2 g; N2/H2 (1/3-mixture)
flow rate, 60 mL min−1.

Edge Article Chemical Science

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

2 
 2

02
4.

 D
ow

nl
oa

de
d 

on
 0

6/
11

/2
5 

01
:1

2:
35

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
H2-activation adsorbed more ammonia (0.58 cm3 gcat
−1) than

those on HZSM5 or MCM41 (0.39 and 0.42 cm3 gcat
−1, respec-

tively), and hence had the largest number of catalytically-active
Mo atoms, which could be a cause of the higher ammonia
synthesis rate. The smaller number of active sites of the larger-
sized Mo cluster on HZSM5 is attributable to the embedding of
some Mo atoms inside the large cluster, while that of the
smaller-sized cluster on MCM41 is ascribed to the larger ratio of
silica-coordinated Mo atoms, as conrmed by the higher CN of
Mo–O (2.0) than that for the cluster on HY (1.3) in the XAFS
analysis (Tables 1 and S3†).24 It is reported in the case of carbon-
supported Ru catalysts that a suitable subnanometer-sized
metal cluster shows higher activity than larger- and smaller-
sized metal particles.25 Table 2 also shows that, when the
pressure was increased to 2.0MPa, the rate of the activated 1/HY
increased by about twofold (37.1 mmol gMo

−1 h−1, entry 4). This
rate was signicantly higher than those of previously-reported
supported Mo catalysts at the same reaction pressure even
when different weight hourly space velocity (WHSV) values are
considered: a silica-supported single-metal catalyst prepared
from Mo(^CBut)(Np)3 (6.8 mmol gMo

−1 h−1, entry 5)26 and
HZSM5-supported MoNx (4.3 mmol gMo

−1 h−1, entry 6) as well
Table 2 Catalytic activities of various supported Mo catalysts for NH3 sy

Entry Catalyst (precursor)
Mo ratio
(wt%)

N
(m

1 (H3O)2[(Mo6Cl8)Cl6]$6H2O (1)/MCM41 2.36 1
2 (H3O)2[(Mo6Cl8)Cl6]$6H2O (1)/HZSM5 2.36 1
3 (H3O)2[(Mo6Cl8)Cl6]$6H2O (1)/HY 2.36 2
4 (H3O)2[(Mo6Cl8)Cl6]$6H2O (1)/HY 2.36 3
5 Mo(^CBut)(Np)3/SiO2 2.0 6
6 MoNx/HZSM5c 2.17 4
7 MoCx/HZSM5c 2.17 4

a The experiments were performed at least three times, and the values in
molar ratio = 70 (Si/Al molar ratio = 35).

© 2024 The Author(s). Published by the Royal Society of Chemistry
as MoCx (4.5 mmol gMo
−1 h−1, entry 7) prepared by nitridation

and carbonization of MoO3, respectively.21 The lower rate of
supported MoNx can be attributed to the weaker N2 dissociation
ability of the nitrided Mo surface than that of the metallic Mo
surface.27 Furthermore, our supported Mo metal clusters
prepared from 1 have advantages in terms of the stability of the
precursor in air and capability of ammonia synthesis aer
simple H2-activation using the same reaction tube, in contrast
to the use of highly air-sensitive Mo(^CBut)(Np)3 as a precursor
or the need to transfer the sample from a quartz tube for air-
calcination and succeeding nitridation or carbonization to
a metal tube for ammonia synthesis under pressurized
conditions.

The turnover frequency (TOF) of activated 1/HY (0.006, Table
S4†) was 30% of that of a commercially-used Ru catalyst, Ba–Ru/
C (0.02), based on the number of active metal sites.28 As Table
S5† shows, whereas the rate of the activated 1/HY per metal
weight (20.5 mmol gMo

−1 h−1, entry 3) was higher than or
comparable to that of an Fe catalyst (<16 mmol gFe

−1 h−1, entry
8) and about a quarter of that of an Ru catalyst (91 mmol
gRu

−1 h,1 entry 9). The rate per catalyst weight (0.483 mmol
gcat

−1 h−1, entry 3) was much lower than those of the Fe
(14 mmol gcat

−1 h−1, entry 8) and Ru catalysts (8.2 mmol gcat
−1

h−1, entry 9), under similar reaction conditions. The rate of 1/
HY per catalyst weight allows a lot of room for increase by
improvements such as the addition of promoters for
industrialization.

The catalytic behavior of activated 1/HY with the highest
synthesis rate among the supported Mo catalysts (Table 2, entry
3) was further investigated. As shown in Fig. S14,† the synthesis
rate (20.5 mmol gMo

−1 h−1) remained constant for 258 h at
1.0 MPa, indicating that the activated supported cluster is
highly durable for long-term ammonia synthesis. As shown in
the Arrhenius plots (Fig. S15†), the apparent activation energy of
activated 1/HY (89 kJ mol−1) was lower than those of activated 1/
HZSM5 (92 kJ mol−1) and 1/MCM41 (110 kJ mol−1), indicating
that activated 1/HY is most effective for ammonia synthesis at
lower temperatures. At a higher reaction pressure (5.0 MPa), 1/
HY afforded ammonia catalytically even at 200 °C with a turn-
over number of more than 4 per Mo-atom (Fig. 3). Various
catalysts with ammonia synthesis activity at 200 °C have been
reported, with TOF values at around 1.0 MPa ranging in the
nthesis at 400 °C

H3 yield
a

mol gMo
−1 h−1)

Reaction
pressure

WHSV
(mL gcat

−1 h−1) Ref.

0.2 (0.7) 1.0b MPa 18 000 This work
4.7 (1.1) 1.0b MPa 18 000 This work
0.5 (0.7) 1.0b MPa 18 000 This work
7.1 (1.2) 2.0b MPa 18 000 This work
.8 2.0 MPa 12 000 26
.3 2.0 MPa 9000 21
.5 2.0 MPa 9000 21

parentheses are standard deviations. b Absolute pressure. c SiO2/Al2O3

Chem. Sci., 2024, 15, 2914–2922 | 2917
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Fig. 3 Ammonia synthesis using (H3O)2[(Mo6Cl8)Cl6]$6H2O (1)/HY at
200 °C and 5.0 MPa (absolute pressure). Catalyst amount, 0.2 g; N2/H2

(1/3-mixture) flow rate, 60 mL min−1. [a] Per Mo included in the
catalysts. [b] Per NH3-adsorbing Mo (see Table S4†).
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orders of 10−3 to 10−4 s−1.29,30 In comparison with these values,
the TOF of 1/HY at 5.0 MPa (2.4 × 10−5 s−1) (Fig. 3) was lower by
one or two orders of magnitude. However, the ammonia
synthesis rate of 1/HY was stable for at least as long as 520 h,
while the stability of the rate at 200 °C (for up to 26–480 h) has
been reported for only a few catalysts.7d,31 In the case of 1/HY, no
pretreatment with a mixture of N2 and H2 at a higher temper-
ature was necessary before the stable formation of ammonia at
200 °C, which is indicative of the high and sustainable N2

dissociation ability of the supported Mo metal cluster at low
temperatures.

Kinetic studies

To investigate the reaction mechanism for ammonia synthesis
over the supported Mo metal clusters, kinetic and density
functional theory (DFT) studies were carried out. In the kinetic
studies, reaction orders with respect to N2, H2, and NH3 for the
clusters were measured (Fig. 4). The Mo metal cluster on HY as
well as HZSM5 and MCM41 showed N2 and H2 reaction orders
of around 0.5–0.6 and 1.0, respectively. This suggests that the
reaction of dissociated N with H2 forming N–H bonds is the
rate-determining step (RDS), while the N2 dissociation step is no
Fig. 4 Dependence of ammonia synthesis rate on the partial pressure
supports at 400 °C and 1 MPa.

2918 | Chem. Sci., 2024, 15, 2914–2922
longer the RDS.32 In contrast, the RDS of the supported Mo
catalysts reported previously (listed in entries 5 and 6 in Table 2)
is ascribed to N2 dissociation,21,26 as for most conventional
catalysts.33 Low N2 reaction orders of around 0.5 have been re-
ported for catalysts with electrides,28,31a,34 oxyhydrides,35

a nitride-hydride,31c and alkali- or alkaline earth-hydrides,29a,36

and the favorable N2 dissociation has been attributed to strong
electron donation by these catalyst components to the N^N
bond. Our supported Mo metal clusters achieved low N2 reac-
tion orders without using such strongly electron-donating
components.

The RDS of ammonia synthesis over the HY-supported
cluster was investigated by comparing the experimental reac-
tion rates with calculated ones. When the synthesis reaction is
assumed to obey the Langmuir–Hinshelwood (dissociative)
mechanism, in which cleavage of the N–N bond takes place
before the formation of N–H bonds,33a the eight elementary
reaction steps are established (eqn (S6)–(S13)†). Among these
eight steps, the dissociation of N2 or the formation of NH, NH2,
or NH3 (eqn (S9)–(S12)†) can be attributed to the RDS because of
its high activation energy, and the four corresponding calcu-
lated reaction rates can be deduced (eqn (S14)–(S17)†).29c,34b

These equations were tted to a set of experimental rates ob-
tained under various reaction gas ratios, using a least-squares
method. Fig. S17† shows the best-t of the calculated rates to
the experimental ones. When the dissociation of N2 was
assumed to be the RDS, the tting was poor with a negative
value of determination coefficient. In contrast, when the
formation of NH, NH2, and NH3 was assumed to be the RDS,
larger determination coefficient values (0.71–0.99) were ob-
tained. These observations suggest that the RDS of ammonia
synthesis over the HY-supported cluster is the formation step of
NH, NH2, or NH3 rather than the dissociation step of N2. This
conclusion is also supported by the DFT results shown below.
DFT calculations

The reaction mechanism for the HY-supported cluster was
studied in more detail using DFT calculations. As suggested by
the XAFS and STEM analysis, aer H2-activation and ammonia
synthesis, the molybdenum cluster sizes were almost the same
as that of hexanuclear precursor 1. Thus, we assumed that the
s of (a) N2, (b) H2, and (c) NH3 over H2-activated clusters on various

© 2024 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d3sc05447k


Fig. 5 Potential energy profiles and structural change along the dominant reaction pathway determined by microkinetic analysis. The HY zeolite
and gaseous N2, H2, and NH3 are omitted for clarity.
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cluster during the ammonia synthesis also has a hexanuclear
structure. We examined various local structures of HY zeolite to
accommodate the Mo6 metal cluster. When the cluster was
located on the two adjacent four-membered oxygen rings with
three Mo–oxygen interactions, the most stable structure was
obtained (see Fig. S18 and Table S6† for details). Then, this
model was used for further investigation of the reaction inter-
mediates (Fig. S19†) and mechanism.

We determined several reaction pathways for ammonia
synthesis through dissociative and associative mechanisms37

(Fig. S20† and description therein), followed by microkinetic
analysis using the potential energies of intermediates and
transition states of these pathways (see Fig. S21† and descrip-
tion therein). Fig. 5 shows the dominant reaction pathway
determined by microkinetic analysis. According to this, an N2

molecule is rst adsorbed on an Mo atom in a terminal end-on
mode (A1), followed by a congurational change of the Mo-
bonded N into the m2-bridging adsorption mode (A2). Then, the
N–N bond cleavage by participation of three Mo atoms takes
place to afford two m2-bridging N atoms (A3), followed by
a congurational change of one N atom from m2- to m3-bridging
(B1). Here, we use A and B notations to distinguish the pathway
depending on the coordination mode of the N atom (m2- or m3-
bridging) that is not involved in the rst hydrogenation step (see
Fig. S20† for details). The rst H2 molecule is subsequently
introduced by dissociative adsorption (B2), followed by the
transfer of one H to the m2-bridging N to form a m2-bridging NH
(B3). Aer the migration of the remaining H atom (B3 / B3′),
the second H transfers to NH to yield NH2 (B4). Aer a minor
congurational change of NH2 from m2-bridging to the terminal
site (B4 / B5), the second H2 molecule is introduced by
© 2024 The Author(s). Published by the Royal Society of Chemistry
dissociative adsorption (B6). Then, the third H transfer to the
NH2 group affords a terminal NH3 (B7), followed by release of
the rst NH3 molecule (B8). Aer that, congurational change
of the m3-bridging N to a m2-bridging mode takes place (A9).
Further, aer the migration of the H atom (A9 / A9′), the N
atom accepts the fourth H atom to form a m2-bridging NH (A10).
Aer the third introduction of the H2 molecule (A11), the h H
transfer gives a m2-bridging NH2 (A12). Then, aer the cong-
urational change of the m2-bridging NH2 to terminal NH2 (A12
/ A13), the sixth H transfer occurs to afford a terminal NH3

(A14). Finally, the second NH3 molecule is released. In
comparison with the energy barrier of N2 dissociation
(119 kJ mol−1 for TSA2A3), the barriers of the rst and second NH
formation (115 kJmol−1 for TSB2B3 and 119 kJ mol−1 for TSA9′A10,
respectively) are comparable, and those for the rst and second
NH2 formation (156 kJ mol−1 for TSB3′B4 and 163 kJ mol−1 for
TSA11A12, respectively) and the rst and second NH3 formation
(177 kJ mol−1 for TSB6B7 and 173 kJ mol−1 for TSA13A14,
respectively) are higher. Thus, the RDS is not N–N bond cleavage
but N–H bond formation, which is consistent with the experi-
mental results. These results demonstrate that the angstrom-
size Mo cluster prefers the dissociative pathway, in which the
N–N bond cleavage promoted by the Mo6 multinuclear structure
is not the RDS.
Conclusions

In summary, supported angstrom-scale Mo metal clusters were
prepared by the impregnation of a hexanuclear molecular
halide cluster on various porous supports and subsequent
activation with H2 and were characterized by XAFS and STEM
Chem. Sci., 2024, 15, 2914–2922 | 2919
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analysis. When HY zeolite was used as the support, the Mo
cluster size of precursor 1 was retained even aer activation.
The resulting angstrom-size metal cluster catalyzed ammonia
synthesis from N2 and H2. The catalytic activity was highly
durable even at 200 °C. The N^N bond was effectively cleaved
by the cooperation of multiple Mo sites, and the RDS shied
from N2 dissociation to N–H formation, as conrmed by kinetic
and computational studies. This work has expanded the scope
of the application of a halide cluster for catalysis and developed
a novel ultra-small Mo metal cluster catalyst for efficient
ammonia synthesis, based on the multinuclearity of a metal
cluster of suitable size.
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