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Organic electrosynthesis offers a sustainable path to decarbonize the chemical industry by integrating

renewable energy into chemical manufacturing. However, achieving the selectivity and energy efficiency

required for industrial applications is challenging due to the inherent mass transport limitations of most

electro-organic reactions. Convection can mitigate mass transport limitations, but its impact on organic

electrochemical processes remains poorly understood. Here we show that the Sherwood number—the

ratio of convective mass transport to diffusive mass transport—is a crucial metric to characterize mass

transport, determine reactor performance, and enable effective scale-up. We investigate the interplay

between mass transport and electrochemical reaction rates under convective flows in the context of the

electrosynthesis of adiponitrile, one of the largest organic electrochemical processes in the industry. We

use experiments and data-driven predictive models to demonstrate that forced liquid convection and

bubble-induced convection produce nearly equivalent mass transport conditions when the corresponding

Sherwood numbers are equal. This conclusion shows that the Sherwood number characterizes the mass

transport condition independent of the underlying convection mechanism. Moreover, we show that the

faradaic efficiency (i.e., the electrochemical selectivity) scales with the Sherwood number for a given

current density and reactant concentration. This scalability enables performance to be predicted

irrespective of the convection mode employed to enhance mass transport. Our results provide guidelines

for the design and selection of convection methods, from lab to industrial scale, and contribute to the

development of more sustainable chemical manufacturing processes.

Introduction

The chemical industry is one of the major sources of energy-
derived industrial CO2 emissions because fossil-fuel
combustion is widely used to power thermochemical
reactions and separation processes. A paradigm shift is
needed to transition towards emissions-free chemical
production. Electrochemical processes can use electricity
from renewable sources to drive reactions and reduce
emissions,1,2 but they face challenges with scalability,
production rates, and energy efficiency.3,4 Organic
electrochemical processes have the potential to decarbonize
over 75% of chemical products, but industrial
implementation has been limited due to low reactant
solubility in aqueous electrolytes and multiple reactant

pathways that makes selective production of a desired
chemical difficult.5–9 Low solubility leads to mass transport
limitations in organic electrosynthesis as slow reactant
diffusion rates across boundary layers to the electrode,
coupled with the high electrochemical reaction rates required
for industrial applications, lower the reactant concentration
near the electrode (Fig. 1(a)). This limits the maximum
attainable production rates and affects the product
distribution. Overcoming this obstacle requires an
understanding of the balance between mass transport and
electrochemical rates in organic electrochemical systems with
low reactant solubility and multiple reactant pathways.

Mass transport limitations in electrochemical systems
have been studied extensively, commonly using limiting
current techniques.10 In limiting-current measurements,
current density increases with applied potential when
diffusion rates supply reactants to keep up with reaction rates
at the electrodes. Eventually, the current density plateaus,
reaching the limiting-current, when diffusion of reactants to
the surface becomes the rate-limiting factor. These
techniques are effective for quantifying mass transport
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coefficients but only for model reactions with high solubility
reactants, well-characterized reaction kinetics, and well-
defined reactor geometries and hydrodynamics. However,
they have limited effectiveness in studying industrially
relevant organic electrochemical processes involving multiple
reaction pathways, multiphase electrolytes, and high current
densities. In such reactions, where limiting-current
measurements are ineffective, the electrochemical selectivity
(i.e., faradaic efficiency) can be used to describe the effect of
mass transport on the product distribution.

Our group recently investigated the influence of
electrochemical and transport processes in one of the largest
organic electrosynthesis processes in the industry: the
electrohydrodimerization of acrylonitrile (AN) to adiponitrile
(ADN).11 The electrochemical reactions of AN in an aqueous
electrolyte yield multiple products (as shown in Fig. 1(b)),
including hydrogen, propionitrile (PN), ADN, and AN-derived
oligomers. The study found that product selectivity (i.e.,

faradaic efficiency) and production rate are strongly
influenced by mass transport, and the results are
graphically summarized in Fig. 1(c). At very low current
density and high AN concentration, the formation of
oligomers and polymers is favored as the diffusion of
reactant to the electrode far outstrips the reaction rate. The
desired reaction, ADN formation, is favored when there is a
balance between diffusion and electrochemical rates at low
current densities and moderate AN concentration. As
current density increases further, the AN concentration near
the electrode decreases, as shown in Fig. 1(a), and the
formation of the main side-product, PN, and hydrogen
evolution are favored. Here, faradaic efficiency reflects the
mass transport conditions and the balance between
diffusion and reaction rates. However, ADN production rates
increased as a function of total current density, indicating
the tradeoff between faradaic efficiency and production rate
imposed by mass transport limitations. Herein, we extend

Fig. 1 (a) Schematic of mass transport limitations in electrochemical reactors. Reactants at bulk concentration [AN]bulk are depleted at the
electrode surface by electrochemical reactions (molar flux N″ = j/nF where j is the current density, n is the number of electrons involved in the
reaction, and F is the Faraday constant). In mass transport limited reactions, the reaction rate is limited by the diffusion of reactants from the bulk
to the electrode surface (diffusive flux: N″ = −D∇[AN] where D is the diffusivity). (b) Cathodic desired and undesired reactions in the
electrohydrodimerization of acrylonitrile (AN) to adiponitrile (ADN). Competing reactions include the production of propionitrile (PN), AN-derived
oligomers, and the hydrogen evolution reaction (HER). (c) Effect of mass transport limitations on product selectivity in the
electrohydrodimerization of AN to ADN. Oligomers and polymers are favored at low current density and high AN concentration at the electrode.
The desired reaction, ADN production, occurs at low current density and moderate AN concentration. At high current density, the AN
concentration at the electrode is depleted, favoring PN production or hydrogen evolution.
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this work by investigating how convection can mitigate
mass transport limitations.

Forced liquid convection is widely used in industrial
processes, including ADN electrosynthesis, to enhance mass
transport, reaction selectivity, and production rates.12

However, the effectiveness of forced convection is
constrained due to the small interelectrode spacing required
for energy-efficient electrochemical reactions. This limitation
results in low Reynolds numbers (Re), often leading to
laminar flow even with high pumping rates. Turbulence can
be achieved at even higher flow rates, but this increases
energy demands, requires a reactor design that can handle
high-pressure operation, and decreases single-pass
conversion. As reported for ADN electrochemical production,
static mixing elements can promote turbulence but may lead
to drawbacks such as solids buildup and increased pressure
drop across the reactor.13,14

Bubble-induced convection provides another approach to
mitigating mass transport limitations. Many electrochemical
systems involve multiphase (gas/liquid) flows due to the use
of gas reactants (e.g., CO2 reduction, alkene oxidation) or
from the production of gaseous products (e.g., hydrogen,
oxygen, chlorine). Bubbles, either when electrogenerated on a
gas-evolving electrode or externally introduced, can enhance
mass transport by providing turbulent mixing.15–21 However,
bubbles can also negatively affect energy conversion
efficiency, blocking catalytic sites and ion-conduction
pathways. Understanding this tradeoff is critical to
implementing effective bubble-induced convection to
enhance the performance of complex electrochemical
reactions.22

In this study, we aim to understand the impacts of forced
liquid convection and bubble-induced convection on organic
electrochemical reactions and to elucidate fundamental
relationships between electrochemical rates, mass transport
rates, and reaction performance metrics (e.g., selectivity,
production rates, and energy efficiency). Our study uses ADN
electrosynthesis as a model for complex organic
electrochemical reactions, but the methodology and findings
can be extended to other reactions. Given that several
parameters control the reaction performance, we developed
an augmented experimental methodology that leverages
pseudorandom sampling techniques and probabilistic
regression methods to build high-fidelity surrogate models
across a wide range of reaction conditions. We then use these
surrogate models to infer general scaling relationships using
mass transport correlations that explain the connection
between convection conditions and reaction performance for
both forced-liquid and bubble-induced convection modes.

Results and discussion
Building data-driven reactor models to study convection
effects

The first step in our study was to build predictive surrogate
models of the reactor performance under varying mass

transport and electrochemical reaction conditions, which are
dictated by three parameters: the imposed current density
( j), the bulk concentration of reactants ([AN]), and the
convection rate—quantified by the superficial liquid velocity
(usl) in the case of liquid-forced convection, or the superficial
gas velocity (usg) in the case of bubble-induced convection. As
discussed above, faradaic efficiency is used as the key metric
to assess the mass transport conditions and their effect on
the product distribution. In our reactor, cell potential is
linked directly to current density, and linear sweep
voltammetry (LSV) measurements are shown in the ESI.†
Additionally, production rate and energy efficiency will be
analyzed and discussed in later sections.

Common grid-sampling approaches typically require
combinatorically selecting sets of reaction parameters and
performing experiments at those conditions. However,
achieving complete spatial sampling becomes experimentally
unfeasible as the number of parameters increases. In the
case of this study, exploring at least 10 different conditions
in each of the 3 parameters would have resulted in 1000
experiments required for each of the convection modes and
up to 3000 with triplicate measurements to ensure
reproducibility—a prohibitively high number of experiments
inaccessible by our experimental technique. To overcome this
limitation, we designed an experimental methodology that
leverages pseudorandom sampling techniques to survey the
parameter space and select experimental conditions
effectively. Subsequently, we applied probabilistic regression
techniques to build surrogate models from the experimental
data. With this strategy, we could reduce the number of

Fig. 2 Schematic of the two-electrode reactor configuration used for
electrochemical flow reactions. The working electrode (cadmium) and
counter electrode (stainless steel) were inserted on either side of a
rectangular channel. For forced convection, a solid gasket was used at
the bottom of the reactor, and the electrolyte was pumped through
the reactor with a peristaltic pump. A stainless steel frit replaced the
gasket for the experiments with bubble-induced convection, and
argon gas was introduced into the reactor using a mass flow controller
(MFC). Additional reactor details are included in the ESI.†
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experiments by an order of magnitude, creating high-fidelity
surrogate models with fewer than 100 experiments.

To collect the experimental data and study the interplay
between j, [AN], and convective rates (usl or usg), we developed
a custom electrochemical flow reactor with well-defined
geometry and hydrodynamics, shown in Fig. 2. The reactor
consists of a vertical rectangular channel with the working
electrode (cadmium) and counter electrode (stainless steel)
affixed to opposing sides. The reactor operated in forced
convection mode with flow generated by a peristaltic pump
at usl from 0.07–5.3 cm s−1 corresponding to Re = 8–600. For
bubble-induced convection, a porous frit replaced the solid
gasket, and a mass flow controller flowed argon gas into the
reactor at usg from 0.013–0.3 cm s−1. The liquid electrolyte
flow was kept at 0.13 cm s−1 during the bubble-induced
convection experiments to maintain reactant flow into the
reactor. Additional reactor details are included in the ESI.†
Aqueous electrolytes with 0.1–1.0 M AN flowed through the
reactor, and experiments were conducted under constant
charge conditions by changing the experiment duration while
applying constant DC current. Experiment durations ranged
from 4–60 minutes for current densities from 20–300 mA
cm−2, yielding theoretical AN conversions under 15%. At
these low conversions our experiments approximate pseudo-
steady-state conditions. After each experiment, the organic
phase was extracted with toluene using liquid–liquid
separation and analyzed using gas chromatography-mass
spectrometry (GC-MS) to quantify the reaction products and
determine the faradaic efficiency (FE) towards each product.
Further experimental details and FE calculations are included
in the ESI.†

Fig. 3 shows the process for building data-driven surrogate
models. To sample the parameter space effectively, we
implemented a Latin hypercube sampling (LHS) method, a
pseudorandom sampling technique that creates near-random
parameter samples to provide variability and even
distribution, which has been used in reaction engineering
studies.23–27 Fig. 3(a) illustrates using LHS to select 50
experimental conditions distributed across each variable's
range. In addition to the 50 experimental conditions, we also
collected experimental data at boundary conditions on the
edges and faces of the hypercube. After we selected the

experimental conditions and performed experiments where
we characterized the FE towards major products (Fig. 3(b)),
we interpolated the experimental data points into a surrogate
model that spanned the parameter space using Gaussian
process regression (GPR) (Fig. 3(c)), a nonparametric,
probabilistic method effective for small datasets.28,29 GPR
provides uncertainty on the predicted values (Fig. 3(d)), so we
could perform single-run experiments but still obtain
information about uncertainty.

Model uncertainty and prediction errors are presented as
absolute errors on the FE [%] value. A standard deviation of
5% refers to a variation of 5% faradaic efficiency, not 5% of
the measured value. For clarity, changes in FE and errors in
FE presented in this way will be followed by “(absolute)”. For
our models, the average standard deviation of the FE
predictions across the entire parameter space was 9.8%
(absolute) for forced convection and 9.3% (absolute) for
bubble-induced convection. The root mean squared error
(RMSE) of the predictions compared to the experimental data
points was ∼5% (absolute) for both convection modes, which
matches our experimental uncertainty, which ranged from
∼5–10% (absolute). The data presented in the remainder of
this study consists of predicted values based on the GPR
regression models built on experimental data at conditions
selected by LHS, as detailed above.

Forced and bubble-induced convection effects on
electrochemical reactor performance

The effects of forced (Fig. 4(a and c)) and bubble-induced
(Fig. 4(b and d)) convection on electrochemical production in
ADN electrosynthesis are presented together in Fig. 4, though
it was not initially obvious that the different convection
methods would lead to nearly equivalent trends.

At [AN]low = 0.4 M (Fig. 4(a and b)), the reaction is mass
transport limited for both convection methods, indicated by
low (<60%) FE towards ADN (FEADN) and high (>30%) FE
towards PN (FEPN), even at low current density ( j < 50 mA
cm−2). As j increases and mass transport limitations increase,
FEADN decreases while FEPN increases. As j continues to
increase, the overall FE towards the measured AN-derived
products (FEADN+PN) decreases as the hydrogen evolution

Fig. 3 Illustration of the process for building data-driven surrogate models. (a) Pseudorandom experimental conditions are selected using Latin
hypercube sampling (LHS), (b) experimental data is collected by performing electrochemical reactions at the selected conditions, (c) surrogate
models are built using Gaussian process regression (GPR), and (d) standard deviations of the predictions are assessed.
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reaction (HER) is expected to increase when the interfacial
[AN] is low and j is high. While the HER competes with AN
reactions and affects FEADN+PN, it may also help to mitigate
transport limitations as hydrogen (H2) gas bubbles evolve
and induce convection near the electrode. Our results show
that FEADN and FEPN plateau when j >150 mA cm−2, possibly
due to bubble-induced convection from the increased
hydrogen generation rate.

Similar trends are observed but with slight shifts as the
respective convection rates are increased by imposing higher
electrolyte flow rates (usl) in the case of forced convection
and higher gas flow rates (usg) in the case of bubble-induced
convection. For forced convection, FEADN increases with usl
by 15–25% (absolute) while FEPN decreases by 5–15%
(absolute), and FEADN+PN increases in the usl range shown
(0.3–5.3 cm s−1). For bubble-induced convection, when usg
increases, FEADN increases by 5–10% (absolute) as FEPN

decreases slightly, and FEADN+PN increases in the usl range
shown (0.03–0.3 cm s−1). At [AN]low, we observe that both
convection methods do not completely overcome the mass

transport limitations, particularly at high j, but convection
does increase the selectivity of ADN with respect to PN by
increasing the AN concentration at the electrode-electrolyte
interface.

Convection has a more pronounced effect on ADN
production at [AN]high (Fig. 4(c and d)), where the mass
transport limitation is weaker. When convection rates are
low, FEADN decreases with increasing current density as PN
formation becomes favorable at high j for both convection
methods. As the convection rates increase, FEADN and
FEADN+PN increase while FEPN decreases. For forced
convection (Fig. 4(c)), PN formation is completely suppressed
at high usl, and FEADN increases by 20–30% (absolute) at high
j (200–300 mA cm−2). At the highest usl shown, FEADN remains
close to 80% for all j, suggesting that the increased forced
convection has overcome the mass transport limitations. It is
worth noting that AN-derived oligomers and side products
not quantified in this study can be formed at high [AN], and
their formation may partly be responsible for the decrease in
FEADN+PN when usl is increased. Similarly, for bubble-induced

Fig. 4 Effect of current density ( j) on FEADN, FEPN, and FEADN+PN for forced convection (a and c) and bubble-induced convection (b and d) at low
reactant concentration, [AN]low = 0.4 M (a and b) and high reactant concentration, [AN]high = 0.9 M (c and d). Forced convection rates shown are
0.3 cm s−1, 2.7 cm s−1, and 5.3 cm s−1 and bubble-induced convection rates shown are 0.03 cm s−1, 0.1 cm s−1, and 0.3 cm s−1. All plots present
predicted values from the GPR model built on experimental data. Reactions were performed at ambient temperature and pressure. In addition to
AN, the electrolyte contained 0.5 M Na3PO4, 0.03 M EDTA, and 0.02 M TBA hydroxide.
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convection (Fig. 4(d)), the increased convection (usg >0.3 cm
s−1) suppresses PN formation and enhances ADN formation,
keeping FEPN near zero and increasing FEADN by 17–24%
(absolute) at high j (>200 mA cm−2). Above usl = 0.3 cm s−1,
FEADN remains close to 80% for all j.

Using scaling relationships to understand the effects of
convection on electrochemical performance

Our findings demonstrate that forced and bubble-induced
convection have similar effects on ADN electrosynthesis
performance, suggesting that equivalent AN transport rates
and local microenvironments at the electrode/electrolyte
interface are achieved with both convection modes. This
happens even though the superficial gas velocities used to
produce bubble-induced turbulence are significantly lower
than the superficial liquid velocities used to produce laminar
flows with forced convection. To directly compare forced
convection and bubble-induced convection, we estimated the
Sherwood number (Sh) for each convection condition and
developed scaling relationships between convection rates and
electrochemical performance. Sh is a dimensionless number
that characterizes the ratio between mass transport due to
convection and diffusion, defined as,

Sh ¼ kh
D

(1)

where k is the convective mass transport coefficient, h is a
characteristic length, and D is the mass diffusivity.

For forced convection, Shforced was calculated using a
correlation developed for flows in rectangular channels
formed by electrodes on opposing walls,10,30

Shforced ¼ 2:54Re
1
3Sc0:29

de
L

� �1
3

; (2)

where de is the equivalent diameter, L is the electrode height,
and the Reynolds (Re) and Schmidt (Sc) numbers are defined as,

Re ¼ uslde
ν

(3)

and

Sc ¼ ν

D
; (4)

where usl is the superficial liquid velocity, and ν is the kinematic
viscosity of the liquid.

For bubble-induced convection, Shbubble can be calculated
from an empirical mass transfer correlation under turbulent
multiphase gas/liquid flows,19

Shbubble ¼ 0:12 GrScð Þ13; (5)

where Sc is defined in eqn (4), and the Grashof (Gr) number is

Gr ¼ gL3ε
ν2 1 − εð Þ; (6)

where g is the gravitational acceleration and ε is the gas void
fraction defined by the volume of gas (Vg) and liquid (Vl) as

ε ¼ Vg

V l þ Vg
: (7)

Using these correlations, we calculate Shforced and Shbubble,
and build surrogate models using the Sherwood number
instead of superficial liquid and gas velocities as the
variables that quantify the strength of convection.
Fig. 5(a and b) shows the FEADN prediction model for forced
and bubble-induced convection as a function of j, [AN], and
Sh. The associated superficial velocity (usl or usg) is also
shown, highlighting the large difference between the gas and
liquid superficial velocities required to achieve the same Sh
for the different convection modes. The models demonstrate
the expected trends in transport-limited electrochemical
reactions. First, there is an increase in FEADN with increasing
[AN] for all j and Sh, as higher [AN] mitigates mass transport
limitations by increasing the diffusive flux to the electrode
surface. Second, FEADN decreases with increasing j as the
electrochemical consumption dominates, and the reaction
becomes increasingly mass transport limited. In this
reaction, the side reactions (particularly PN and HER)
increase as j increases, contributing to the decrease in FEADN.
Finally, FEADN increases with increasing Sh as mass transport
is improved through convection.

Both models demonstrate excellent accuracy when
comparing the predicted and experimentally measured FEADN
values, shown in Fig. 5(c and d). The RMSE between
predicted and measured FEADN is 4.9% (absolute) for forced
convection and 5.4% (absolute) for bubble-induced
convection. Further, when FEADN is plotted using the Sh, the
two models are quantitatively equivalent with an RMSE
between the models of 4.75% (absolute), commensurate with
experimental errors.

Finally, Fig. 6 shows 2D slices of the 3D maps at three
values of Sh and further demonstrates the similar effect that
the different convection modes have on reactor performance
at the same Sh. Notably, FEADN at high j and high [AN]
increases from ∼50% to ∼70% when Sh is increased from 60
to 100, and both convection modes exhibit a maximum
FEADN at low j (20–30 mA cm−2), moderate [AN] (0.6–0.8 M),
and large Sh (>100).

Discovering that the Sherwood number is a convection
figure of merit that consolidated the experimental results of
both forced and bubble-induced convection experiments
suggested that a unified surrogate model can be constructed
in which Sh, j, and [AN] are the independent variables. We
built such a unified model for ADN electrosynthesis by
combining data from forced and bubble-induced convection
experiments, and the predictions of this model are shown in
Fig. 7(a). FEADN scales with Sh for a given [AN] and j,
independent of the convection mode. Fig. 7(b) shows the
standard deviation of the predictions across the parameter
space for the unified model. The standard deviation is nearly
uniform, with an average standard deviation of 9.3%
(absolute), indicating a robust model. There is an increase in
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the standard deviation at low j, [AN], and Sh, where FEADN is
expected to be below 20%. However, this is likely due to
measurement uncertainty at low FEADN (<20%), where the
ADN concentration is near the detection limit of the GC-MS.
Notably, the model performs particularly well in the high j
and [AN] conditions relevant to industrial applications. We
also evaluated the unified model by comparing
experimentally measured and predicted FEADN, shown in
Fig. 7(c). The predictions agree well with the experimental
values, with an RMSE of 5.2% (absolute).

Implications for electrochemical performance

The industrial viability of organic electrochemical processes
depends on a balance between FE and production rates or
partial ADN current densities, jADN. Practical electrochemical
devices must operate under conditions that achieve optimal
tradeoffs between these competing metrics. To understand

the optimal tradeoffs for flow ADN electrosynthesis devices,
we implemented a Pareto analysis, where we identified
optimal achievable combinations of FE and ADN production
rate at several values of Sh. The Pareto fronts shown in Fig. 8
represent the maximum FE that can be obtained at a given
production rate. These fronts can be used to guide the
operation of the device and demonstrate that increasing Sh
numbers can lead to higher device performance,
underscoring the need to mitigate mass transport limitations.
The effect of Sh is smaller at low jADN (<100 mA cm−2) where
mass transport is not limiting. As jADN increases (>100 mA
cm−2) and mass transport becomes limiting, increasing Sh
dramatically improves the maximum FEADN at high
production rates. For example, when Sh = 60, FEADN >80% at
jADN <50 mA cm−2. However, when the convection conditions
are increased to Sh = 100, FEADN >80% can be achieved at
jADN up to 200 mA cm−2, increasing production rates by more
than four times.

Fig. 5 (a and b) 3D GPR surrogate models showing the effect of current density (j), AN concentration ([AN]), and Sherwood number (Sh) on FEADN
for (a) forced convection and (b) bubble-induced convection. The superficial liquid or gas velocities (usl or usg) corresponding to Sh are shown on
the right axes in red. (c and d) Surrogate model predicted FEADN vs. measured FEADN from the forced (c) and bubble-induced (d) convection
experiments. The forced convection predictions have an RMSE of 4.9% (absolute) compared to measured values and bubble-induced convection
predictions have an RMSE of 5.4% (absolute) compared to measured values. All plots present predicted values from the surrogate models built on
experimental data. The experiments were conducted at ambient temperature and pressure. In addition to AN, the electrolyte contained 0.5 M Na3-
PO4, 0.03 M EDTA, and 0.02 M TBA hydroxide.
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In addition to high production rates and FE,
industrial manufacturing requires high energy efficiency.
Our analysis demonstrates multiple ways to achieve the
same Sh and, consequently, the same production rates
and FEs. Convection modes and reactor designs that
achieve the highest Sh with the least energy should be
favored. For instance, in our reactor geometry, reaching
Sh = 100 through forced convection requires more than
five times the energy than through bubble-induced
convection (energy estimations are detailed in the ESI†).
Achieving a particular Sh number ultimately depends on
the technical complexity and energy demands inherent
in the reactor design and reaction characteristics.

Various reactor geometries and operating conditions will
follow distinct Sh number dependencies, resulting in
different energy requirements. Notably, bubble-induced
convection can introduce complexities in practical
systems, particularly when dealing with reactions
involving gaseous products. In such cases, separation of
products and recompression of gases would be necessary.
Additionally, the choice of alternative flow geometries,
such as horizontal or serpentine designs, may favor
forced convection over bubble-induced convection, as the
flow direction may be orthogonal or opposite to the
natural trajectory of the bubbles, resulting in different
mass transport effects.

Fig. 6 2D slices of the 3D surrogate models at different mass transport conditions: Sh = 60, 80, and 100 for forced convection (left column) and
bubble-induced convection (right column). All plots present predicted values from the surrogate models built on experimental data. The
experiments were conducted at ambient temperature and pressure. In addition to AN, the electrolyte contained 0.5 M Na3PO4, 0.03 M EDTA, and
0.02 M TBA hydroxide.
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Conclusions

In this study, we investigated the impact of forced and bubble-
induced convection on mass transport limitations in organic
electrochemical reactions and explored extensively the effects
of reaction conditions (i.e., j, [AN], and convective conditions),
enabled by developing predictive surrogate models that
unveiled quantitative relationships between these conditions
and the reaction performance. The results demonstrate that
both forced liquid convection and bubble-induced convection
can produce quantifiably similar mass transport conditions,
with equivalent Sh, and consequently control the
microenvironment composition at the electrode/electrolyte
interface that ultimately dictates performance metrics.
Furthermore, we demonstrated that FEADN scales with Sh, j,
and [AN], regardless of convection mode. This fundamental
insight can be broadly implemented in electrochemical ADN
process design, scale-up, and operation. While our study used
ADN electrosynthesis as a model reaction, the results are
relevant for other mass transport-limited electrochemical
reactions. We highlight the important role that convective
transport plays in controlling performance in electrochemistry,
which underscores the importance of characterizing Sh
numbers to understand the interplay between transport,
electrolyte, and catalytic properties affecting the reaction.
Developing organic electrochemical reactions for industrial
applications involves optimizing the faradaic efficiency,
production rate, and energy efficiency, and these performance
metrics can all be improved by increasing Sh numbers.
Therefore, optimal energy efficiency and performance can be
achieved by minimizing the energy required to attain a

Fig. 7 Unified surrogate model performance. (a) 3D GPR unified
surrogate model showing the effect of current density ( j), AN
concentration ([AN]), and Sherwood number (Sh) on FEADN. The unified
model is built on the combined forced and bubble-induced convection
experimental data. (b) Standard deviation (SD) of the surrogate model
predictions. The average SD is 9.3% (absolute), and the largest standard
deviations are at low j, low [AN], and low Sh, where FEADN is expected
to be near zero. (c) The unified model predicted FEADN vs. measured
FEADN from the forced and bubble-induced convection experiments.
The predictions have an RMSE of 5.2% (absolute) compared to
measured values. Reactions were performed at ambient temperature
and pressure. In addition to AN, the electrolyte contained 0.5 M Na3-
PO4, 0.03 M EDTA, and 0.02 M TBA hydroxide.

Fig. 8 Unified model GPR predicted Pareto fronts showing the
performance tradeoffs between ADN faradaic efficiency (FEADN) and
ADN partial current density (jADN) for several convection conditions.
The ADN production rate (top axis – red) is directly proportional to
jADN. Pareto fronts for three Sherwood numbers (Sh = 60, 80, 100) are
shown.

Reaction Chemistry & EngineeringPaper

Pu
bl

is
he

d 
on

 0
8 

 2
02

4.
 D

ow
nl

oa
de

d 
on

 0
4/

11
/2

5 
15

:2
9:

35
. 

View Article Online

https://doi.org/10.1039/d3re00579h


React. Chem. Eng., 2024, 9, 930–939 | 939This journal is © The Royal Society of Chemistry 2024

particular Sh number. Due to the unique characteristics of
different organic electrochemical reactions and reactor
geometries, different convection modes may provide energy
and operational advantages. However, the findings presented
in this study provide guidelines to allow for a nuanced
selection of convection mode based on the specific demands of
a given process, contributing to the development of scalable
organic electrochemical processes that can help decarbonize
chemical production.
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