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Unveiling brain disorders using liquid biopsy and
Raman spectroscopy

Jeewan C. Ranasinghe, Ziyang Wang and Shengxi Huang

Brain disorders, including neurodegenerative diseases (NDs) and traumatic brain injury (TBI), present sig-

nificant challenges in early diagnosis and intervention. Conventional imaging modalities, while valuable,

lack the molecular specificity necessary for precise disease characterization. Compared to the study of

conventional brain tissues, liquid biopsy, which focuses on blood, tear, saliva, and cerebrospinal fluid

(CSF), also unveils a myriad of underlying molecular processes, providing abundant predictive clinical

information. In addition, liquid biopsy is minimally- to non-invasive, and highly repeatable, offering the

potential for continuous monitoring. Raman spectroscopy (RS), with its ability to provide rich molecular

information and cost-effectiveness, holds great potential for transformative advancements in early detec-

tion and understanding the biochemical changes associated with NDs and TBI. Recent developments in

Raman enhancement technologies and advanced data analysis methods have enhanced the applicability

of RS in probing the intricate molecular signatures within biological fluids, offering new insights into

disease pathology. This review explores the growing role of RS as a promising and emerging tool for

disease diagnosis in brain disorders, particularly through the analysis of liquid biopsy. It discusses the

current landscape and future prospects of RS in the diagnosis of brain disorders, highlighting its potential

as a non-invasive and molecularly specific diagnostic tool.

Introduction

Brain disorders encompass a wide spectrum of conditions,
spanning from mild concussions to severe TBI and NDs such
as Alzheimer’s disease (AD) and Parkinson’s disease (PD).1–4

The diagnostic complexities of these disorders arise from their
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intricate and varied biochemical manifestations, presenting
critical challenges in accurate and timely diagnosis. Globally,
the impact of these disorders on public health is substantial.
They contribute significantly to the burden of diseases,
affecting millions of lives and necessitating extensive and
often lifelong care and management. Furthermore, NDs are a
growing concern, especially with an aging global population.
AD, for instance, affects millions worldwide, with projections
indicating a significant rise in cases in the coming decades.
According to the “Alzheimer’s disease facts and figures” report
by the Alzheimer’s association, over 6 million Americans cur-
rently have AD, projected to reach nearly 13 million by 2050.5

It’s the 6th leading cause of death among US adults and the
5th among those aged 65+.6,7 Treatment costs could surpass
$500 billion annually by 2040, up from $215 billion in 2010.5

One in three seniors dies with AD or another dementia,
exceeding breast and prostate cancer combined.5 By 2023, an
estimated 6.7 million Americans aged 65 and older will have
AD, projected to grow to 12.7 million by 2050.5 This highlights
the urgent need for research, support, and resources to
address this public health challenge. According to the World
Health Organization, AD and other dementia affect 24 million
of the one billion people worldwide affected by neurological
disorders.8 This staggering prevalence underscores the urgent
need for advanced and precise diagnostic approaches. AD is
not only a medical stigma but also imposes a significant econ-
omic burden due to the high costs associated with diagnosis,
medication, and caregiving. Early detection of AD can play a
crucial role in alleviating this financial strain on the economy
by reducing expenses related to medication and overall well-
being of AD patients. The socioeconomic burden observed in
AD is not unique; it extends to other brain disorders, including
PD. Like AD, PD imposes significant costs on healthcare
systems and society as a whole.9 The economic impact encom-

passes treatment expenses, lost productivity, and caregiving
costs. Addressing the socioeconomic challenges posed by PD,
alongside AD, requires comprehensive strategies and increased
support for research, patient care, and public awareness
initiatives. The multifaceted nature of brain disorders
demands innovative methodologies to enable accurate and
timely diagnoses, thus facilitating early intervention and
improved patient outcomes. As such, the ongoing pursuit of
sophisticated diagnostic tools and technologies remains
pivotal in addressing these complex and pervasive health
challenges.

In the pursuit of more accurate and timely diagnostic tools
for brain injuries, the integration of advanced spectroscopic
techniques into clinical practice has garnered considerable
attention. Traditional diagnostic methods such as computed
tomography (CT) scans, magnetic resonance imaging (MRI),
electroencephalogram (EEG) and neurological examination
while fundamental, often lack the precision and timeliness
required for effective clinical intervention.2 In addition, they
are costly, time-consuming, and lack of providing molecular
specific information. Liquid biopsy is an emerging field within
early detection and diagnosis of diseases. The integration of
liquid biopsy techniques and RS has emerged as a promising
avenue in the quest to unveil the intricacies of brain disorders.
The exploration of novel diagnostic modalities has spurred
interest in RS, a non-invasive analytical technique that holds
promise in unraveling the molecular intricacies present within
human biofluids like blood, urine, and CSF.10,11 In the realm
of medical diagnostics, liquid biopsy offers a minimally- to
non-invasive means to probe the inner workings of the body
by analyzing various biomarkers present in bodily fluids.
When applied to the study of brain disorders, this approach
allows for the detection and monitoring of specific molecules
or markers associated with neurological conditions, providing
valuable insights into disease pathology. RS, with its ability to
provide unique molecular fingerprints and discern subtle bio-
chemical alterations, holds immense potential in identifying
biomarkers associated with brain injuries and NDs. This spec-
troscopic technique offers a novel means to study the intricate
biochemical changes that occur within biofluids due to these
disorders.12–14 By analyzing the vibrational patterns of mole-
cules, RS enables researchers to detect and quantify specific
biomolecular signatures indicative of disease pathology.
Notably, its high sensitivity and specificity in detecting mole-
cular variations make it a promising tool for early and precise
diagnosis.

RS offers a valuable tool for the study of NDs related bio-
markers using various biofluids, including blood, urine,
saliva, tears, and CSF. Biomarkers are measurable indicators
that can provide information about normal or pathological
biological processes. For instance, RS provides molecular sig-
natures of various biomolecules present in biofluids, including
proteins, lipids, nucleic acids, and metabolites.15–18 In
addition, RS is non-invasive and label-free, allowing for direct
analysis of biofluids without the need for additional chemical
labels or dyes. This preserves the natural composition of bio-
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fluids and minimizes sample preparation requirements. More
importantly, RS is sensitive to changes in protein confor-
mations. It can be used to characterize different protein con-
formations, including misfolded or aggregated states, which
are relevant to NDs.19 Metabolic changes in biofluids, such as
alterations in lipid profiles and metabolite concentrations, are
associated with NDs. Moreover, those biofluids are easily
accessible and minimally invasive for patients. RS can monitor
these metabolic changes, offering insights into disease-related
variations.20 With the emergence of machine learning tech-
niques RS, combined with advanced statistical analysis
methods, can differentiate between healthy and diseased
states based on the spectral differences associated with
biomarkers.21–25 This differentiation is crucial for early diagno-
sis and monitoring disease progression. Detecting specific bio-
markers in biofluids can be crucial for early diagnosis, progno-
sis, and monitoring the progression of NDs. By analyzing
these molecular signatures, researchers can identify specific
biomarkers associated with NDs. The chemical composition of
human body fluids is intricate, with intricate associations
between different bands in the acquired spectra, as they orig-
inate from the same chemical bonds. Additionally, Raman
spectra may be affected by noise, autofluorescence back-
ground, Raman shift drift, and contributions from external
spectral noise sources.26,27 While improving detector sensi-
tivity and utilizing higher-quality optical elements can
enhance Raman signal quality and facilitate a more detailed
analysis of body fluid component composition, these improve-
ments come with added costs and experimental setup com-
plexity. An alternative method for enhancing pathology detec-
tion is surface-enhanced Raman spectroscopy (SERS).

The primary objective of this comprehensive review is to
thoroughly explore and highlight the expanding role of RS in
decoding intricate biochemical signatures present within
various biofluids, with a particular focus on its application in
the detection and diagnosis of brain diseases. Moreover, it
aims to meticulously survey the current landscape of its appli-
cations in neurological diagnostics, encompassing its use in
identifying specific biomarkers, elucidating molecular altera-
tions, and exploring the potential for clinical translation. This
review further endeavors to critically examine the challenges
encountered in the implementation of RS for neurological
diagnostics, including considerations of standardization,
reproducibility, and technological advancements necessary for
widespread clinical adoption. Additionally, it seeks to present
a comprehensive overview of the prospects and future direc-
tions, envisioning the transformative impact of RS as a pio-
neering tool in enhancing the diagnostic armamentarium for
neurological disorders. We commence our discussion by
exploring the theoretical foundations and working principles
of RS. Subsequently, we delve into the practical considerations
associated with conducting Raman spectroscopic investi-
gations on biological fluids. Moving forward, we provide a
concise overview of Raman spectra pertaining to biomolecules,
emphasizing the distinctive contributions of different bio-
molecules across various regions of the Raman spectrum.

Following this, we extensively examine the sensing of bio-
markers in biofluids using both spontaneous and enhanced
Raman spectroscopic techniques. Notably, our focus is on bio-
fluids such as blood, tears, saliva, and CSF. In the conclusion
part, we address the current challenges, opportunities, and
future prospects inherent in RS investigations of biofluids.
Through this thorough exploration of RS principles, appli-
cations, challenges, and future prospects, this review endea-
vors to underscore its pivotal and transformative role in revolu-
tionizing the landscape of neurological diagnostics, advocating
for its potential as an invaluable tool for clinicians and
researchers alike.

Working principles of Raman
spectroscopy

RS is a powerful analytical technique that provides detailed
information about the chemical structure and phase of a sub-
stance. The working principle of RS relies upon the inelastic
scattering of photons, a process known as Raman scattering.
In the Raman effect, the scattered photons experience a
change in energy due to interaction with molecular vibrations.
The resulting Raman scattered light contains information
about the vibrational modes within the sample. Raman
spectra are characterized by bands corresponding to molecular
vibrations, and the shifts in these bands provide insights into
molecular structure, composition, and bonding. Stokes scatter-
ing involves lower energy photons, while anti-Stokes scattering
involves higher energy photons. Schematic representation of
the energy level diagram of Raman scattering process is
depicted in Fig. 1(a). RS is non-destructive and can be applied
to a variety of materials, making it a versatile tool in fields
ranging from chemistry and physics to biology and materials
science.

The working principle of RS involves several key com-
ponents as depicted in Fig. 1(b). A laser source emits mono-
chromatic light, typically in the visible or near-infrared range,
onto the sample. The scattered light is collected and passes
through a monochromator to separate different wavelengths.
Filtering out the Rayleigh line in a Raman spectrometer is
essential to accurately measure Raman signals without inter-
ference from the excitation laser’s Rayleigh scattering. To filter
out the Rayleigh line in a Raman spectrometer, notch filters or
edge pass filters are commonly employed. These filters are
designed to block the Rayleigh scattered laser light while
transmitting the Raman scattered light. Long pass edge filters
are also used to transmit light from the sample that has been
Raman scattered at lower energies, effectively reducing
unwanted Rayleigh scattered signal laser light. The use of spec-
tral filtering is pivotal for the successful acquisition of Raman
spectra, as it ensures that only the Raman scattered light, con-
tributing to chemical analysis, is directed to the detector. The
dispersed light is then detected by a sensitive detector, typi-
cally a charge coupled device (CCD) detector, and the resulting
spectrum reveals the Raman shifts corresponding to

Nanoscale Review

This journal is © The Royal Society of Chemistry 2024 Nanoscale, 2024, 16, 11879–11913 | 11881

Pu
bl

is
he

d 
on

 2
9 

 2
02

4.
 D

ow
nl

oa
de

d 
on

 1
5/

09
/2

4 
07

:1
8:

12
. 

View Article Online

https://doi.org/10.1039/d4nr01413h


vibrational modes in the sample. The intensity and frequency
of these shifts provide detailed information about the mole-
cular structure and chemical composition. RS is employed in
various modes, including conventional point measurements,
confocal microscopy for spatial resolution, and even SERS for
increased sensitivity. This technique has proven invaluable in

identifying and characterizing materials at the molecular level,
making it an indispensable tool in scientific research and
industrial applications.

Spontaneous Raman signal is inherently weak. To overcome
this limitation enhancement mechanisms are desired. SERS is
a powerful analytical technique that enhances the Raman
signals of molecules adsorbed on or near noble metal
surfaces.28–31 The enhancement in signal intensity in SERS
arises from two main mechanisms: electromagnetic enhance-
ment and chemical enhancement. The electromagnetic
mechanism involves the excitation of localized surface
plasmon resonances (LSPRs) on the metal surface by incident
light.32–35 This creates intense electromagnetic fields near the
metal surface, enhancing the Raman scattering cross-section
of nearby molecules. The chemical mechanism involves
charge transfer between the molecule and the metal surface,
further amplifying the Raman signals.36,37 In the electromag-
netic mechanism, the enhancement is highly dependent on
the shape, size, and composition of the nanostructured metal
surfaces. Nanostructures such as silver and gold nanoparticles,
nanorods, or nanostars are commonly employed to generate
intense localized fields.33–35,38 The proximity of the analyte to
these nanostructures results in significant signal enhance-
ment. Chemical enhancement, on the other hand, involves the
formation of charge transfer complexes between the adsorbed
molecule and the metal surface. SERS has found wide applica-
bility in investigating biological fluids due to its exceptional
sensitivity. It enables the detection of low concentrations of
biomolecules, making it invaluable for studying complex bio-
logical systems. In the realm of biological fluid analysis, SERS
has been utilized for the identification and quantification of
biomarkers associated with various diseases.39 Its capability to
provide detailed molecular information makes SERS a promis-
ing tool for advancing our understanding of biochemical pro-
cesses in biological fluids, contributing to both basic research
and clinical diagnostics.

Experimental considerations

The analysis of biofluids using RS, both spontaneous and
SERS, demands meticulous attention to various experimental
parameters to ensure accurate and reliable results.21,24,25

Biofluid sample preparation is a critical initial step, involving
careful handling and, at times, dilution to achieve optimal
concentrations. Spectral acquisition involves exposing the
sample to a laser source, where spontaneous Raman scatter-
ing, or SERS enhancement occurs. An illustrative diagram
depicting the use of RS in analyzing liquid biopsy for the
detection and diagnosis of brain disorders is shown in
Fig. 1(c). Selection of an appropriate laser wavelength is crucial
to avoid sample damage and fluorescence interference. In bio-
fluid analysis, spectral correction becomes essential due to
inherent variations in the background signals, arising from
water and other biochemical constituents. Fluorescence back-
ground removal is particularly pertinent in spontaneous

Fig. 1 (a) Schematic representation of the energy level diagram of
Raman scattering process. (b) Generic setup for a Raman microspectro-
scopy system. (c) Illustrative diagram depicting the use of RS in analyzing
liquid biopsy for the detection and diagnosis of brain disorders. (d)
Raman spectra of human serum from a healthy donor highlighting the
peak assignment for various metabolic groups and biomolecules.
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Raman and SERS, where the fluorescence emitted by certain
biomolecules can overshadow Raman signals. Advanced signal
processing techniques are employed to subtract background
noise and enhance the specificity of the acquired spectra.

Several experimental parameters impact the success of bio-
fluid analysis, such as laser power, integration time, and the
choice of substrate for SERS.40 Optimizing these parameters
ensures the sensitivity and specificity required for detecting
low-concentration biomarkers in complex biological matrices.
Careful consideration of experimental conditions is para-
mount, as variations can significantly influence the obtained
spectra. The selection of an appropriate laser wavelength is a
crucial factor in RS, influencing the quality and sensitivity of
the acquired spectra.41–43 The laser wavelength determines the
energy of the incident photons and, consequently, the energy of
the scattered photons. This choice impacts the efficiency of the
Raman scattering process and the ability to excite specific mole-
cular vibrations. For instance, resonant Raman scattering
occurs when the laser wavelength closely matches an electronic
transition of the molecule under investigation.44–47 Matching
the resonance condition enhances the Raman signals signifi-
cantly, making certain vibrations more pronounced and detect-
able. In biofluid analysis, avoiding fluorescence interference is
crucial. Some biomolecules exhibit fluorescence when excited
by certain wavelengths. Selecting a laser wavelength that mini-
mizes fluorescence ensures that Raman signals are not
obscured by background noise. Overall, successful biofluid ana-
lysis using RS, especially with the enhanced capabilities of
SERS, relies on a holistic approach encompassing sample prepa-
ration, spectral acquisition, correction techniques, and meticu-
lous control of experimental parameters.

Variants of Raman spectroscopy and
microscopy techniques

RS presents a number of variants and imaging modalities that
find application in protein-based analysis.48–50 These diverse
approaches offer unique advantages, such as providing
insights into protein structure, conformational changes, inter-
actions, and dynamics with high sensitivity and spatial resolu-
tion. By understanding the mechanisms and underlying
theory of Raman scattering, researchers can effectively harness
these techniques to tackle a myriad of questions in protein
science and biomedicine. Raman imaging techniques offer the
ability to visualize and map the distribution of biomolecules
within biological samples at the microscopic level.51,52 This
can provide valuable insights into the spatial heterogeneity
and localization of pathological features associated with brain
disorders.

Conventional (spontaneous) Raman spectroscopy

Conventional RS serves as a valuable tool for identifying and
characterizing biomolecules such as proteins, lipids, and
nucleic acids implicated in brain disorders.44,53,54 This is an
inelastic scattering process where a molecule in the ground

state interacts with an incident photon, and the resulting scat-
tered photon has a different energy (frequency) from the incident
photon. The energy difference corresponds to the vibrational
energy levels of the molecule. Through the analysis of Raman
spectra obtained from biofluids, researchers can discern spectral
markers indicative of pathological changes, such as protein
aggregation in NDs. This label-free approach offers a robust
means of scrutinizing the molecular composition and structure
of the brain, thereby unveiling crucial insights into neurological
disorders. In addition, this technique has been instrumental in
exploring changes in lipid and protein composition observed in
AD, PD, and other brain disorders.54,55 By probing the vibrational
modes of biomolecules, conventional RS provides molecular-
specific information, thereby elucidating alterations in molecular
composition, structure, and interactions associated with brain
disorders.

Resonance Raman spectroscopy (RRS), stimulated Raman
spectroscopy (SRS), and coherent anti-stokes Raman
spectroscopy (CARS)

In these techniques, the involvement of two or more photons
in the Raman scattering process leads to enhanced signals
and unique spectroscopic capabilities compared to spon-
taneous Raman scattering. While RRS relies on resonance with
electronic transitions, SRS and CARS involve the coherent
interaction of multiple laser beams with the molecule, leading
to stimulated or coherent Raman signals, respectively.

RRS enables the selective detection and characterization of
specific molecular species implicated in brain disorders. In
RRS, the incident photon energy is close to an electronic tran-
sition energy of the molecule. This leads to an enhancement
of the Raman signal, as the molecule is temporarily promoted
to a virtual excited electronic state, increasing the polarizability
and the Raman scattering cross-section (Fig. 2a). By tuning the
laser wavelength to align with the absorption bands of target
molecules, researchers can enhance Raman signals, achieving
higher sensitivity and specificity for detecting disease-related
biomolecules, such as amyloid-beta (Aβ) peptides in AD and
other brain disorders.44,56 RRS enhances Raman signals by
matching the excitation energy of incident photons to the elec-
tronic transition energy of target molecules, increasing the
efficiency of Raman scattering and enabling the selective
detection of disease-specific biomolecules. By selectively
enhancing Raman signals from specific molecular vibrations
through laser tuning, RRS provides detailed structural infor-
mation about proteins and other key biomolecules involved in
NDs and brain tumors, offering insights into changes in
protein conformation, aggregation, and interactions, hall-
marks of many brain disorders.1,57,58

SRS is a nonlinear RS technique used for imaging and ana-
lyzing biological samples, including biofluids relevant to diag-
nosing brain disorders. It offers several advantages, such as
high sensitivity, rapid acquisition times, and the ability to
perform label-free imaging and detect specific
biomolecules.59,60 SRS relies on the simultaneous interaction
of two laser beams with the sample: a pump beam and a
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Stokes beam (Fig. 2b). The frequency difference between these
beams matches the vibrational frequency of a specific mole-
cular bond in the sample, resulting in an amplification of the
Raman signal known as stimulated Raman gain or loss. SRS
can analyze biofluids like CSF, blood, or urine for specific bio-
markers associated with brain disorders.59,61 For instance, in
AD, SRS can detect and quantify Aβ peptides or tau proteins in
CSF samples, known disease biomarkers. SRS microscopy pro-
vides high-resolution, chemically selective images of biofluids,
revealing the spatial distribution of biomolecules of interest.
This offers insights into the presence and localization of
disease-related molecules or aggregates within the sample. As
a label-free technique, SRS preserves the native state of the bio-
fluid and its components, avoiding potential alterations or
artifacts introduced by labeling procedures. With its rapid
acquisition times and high sensitivity, SRS enables high-
throughput screening of biofluid samples, facilitating analysis
of large sample sets and potentially enabling early detection or
monitoring of brain disorders.

CARS, a nonlinear RS technique, is utilized for analyzing
biological samples to diagnose brain disorders. In this
process, three laser beams (pump, Stokes, and probe) interact
with the sample in a four-wave mixing process.1,62 Similar to
SRS, CARS relies on the frequency difference between the
pump and Stokes beams matching the vibrational frequency of
a specific molecular bond in the sample (Fig. 2b). However, in
CARS, the probe beam interacts with the vibrationally excited
molecules, generating a signal at a higher frequency than the
incident beams, termed the anti-Stokes frequency. The coherent

nature of the CARS signal allows for highly sensitive detection
of biomolecules in biofluids, even at low concentrations. CARS
microscopy, renowned for label-free, high-resolution imaging of
brain tissue, exploits coherent excitation of molecular vibrations
to generate anti-Stokes photons at specific vibrational frequen-
cies. By scanning laser beams across brain tissue, CARS
microscopy produces three-dimensional images with molecular
contrast, enabling visualization of disease-related changes in
tissue morphology and composition. Valuable insights into
brain tumor identification are provided by CARS through
detailed examination of lipid and biomolecule distribution
within the brain. Its high sensitivity, speed, and three-dimen-
sional vibrational imaging capabilities make it ideal for analyz-
ing brain structures and monitoring changes associated with
neurological conditions. By providing contrast for visualizing
the distribution and dynamics of key biomolecules, CARS
reveals pathological alterations in brain structure and function.
Furthermore, CARS has been crucial in imaging lipid alterations
in TBI models and protein aggregation in ND models.

Tip-enhanced Raman spectroscopy (TERS) and surface-
enhanced Raman spectroscopy (SERS)

SERS and TERS are techniques that enhance the Raman scat-
tering signal from molecules by exploiting the interaction
between the molecules and metallic nanostructures or sharp
metallic tips, respectively. Both SERS and TERS rely on the EM
enhancement due to localized surface plasmons, but TERS
benefits from the additional lightning rod effect and spatial
confinement provided by the sharp metallic tip.

Fig. 2 Energy level diagram showing (a) Raman scattering, SERS, and RRS and (b) SRS and CARS. Illustration of (c) TERS and (d) SERS. Illustration of
working principle of (e) point scanning and (f ) line scanning of Raman spectral imaging.
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TERS, a variant of RS, merges scanning probe microscopy
(SPM) principles with SERS to achieve enhanced spatial resolu-
tion and Raman signal sensitivity. Although predominantly
used for surface analysis and imaging of solid samples, TERS
finds application in biofluid analysis for diagnosing brain dis-
orders. In TERS, a metallic tip, often silver or gold, is posi-
tioned in close proximity (a few nanometers) to the sample
surface, acting as a nanoscale antenna. This enhances the elec-
tromagnetic field via LSPR, amplifying Raman signals from
nearby molecules and detecting weak signals with
precision.63,64 The electromagnetic mechanism enhancement
in TERS stems from the LSPR at the sharp metallic tip, which
functions as a nanoantenna concentrating the electromagnetic
field at its apex, thus creating a highly localized “hot spot”
with a significantly enhanced field (Fig. 2c). Acting as a light-
ning rod, the sharp metallic tip in TERS further boosts the
electric field at the tip apex. The field enhancement increases
with the sharpness of the tip, with sharper tips yielding higher
enhancements due to the inverse relationship with the tip’s
radius of curvature. In TERS, the Raman signal emanates from
a highly confined region, typically within a few nanometers
from the tip apex, facilitating high-resolution imaging and
spectroscopy of nanoscale structures and individual mole-
cules. TERS delves into biofilm formation on surfaces relevant
to certain brain disorders like AD, where Aβ peptides’ aggrega-
tion leads to biofilm creation. It furnishes high-resolution
chemical insights into biofilm composition and structure,
aiding disease mechanism comprehension. While TERS is
surface-focused, it extends to dried biofluid sample analysis,
such as dried blood spots or CSF droplets.65–68 Here, the
metallic tip approaches the dried sample closely, facilitating
disease biomarker detection with high spatial resolution and
sensitivity. TERS synergizes with other techniques like mass
spectrometry or fluorescence microscopy to provide compre-
hensive biomarker composition and distribution information
in biofluids. For instance, TERS identifies and locates specific
molecular species, while mass spectrometry supplements with
molecular masses and identities of detected compounds.

SERS is a technique that combines principles of RS with
metallic nanostructure-induced signal enhancement. It holds
promise for diagnosing brain disorders through biofluid ana-
lysis. Renowned for its high sensitivity, molecular specificity,
and ability to detect minute biomarker concentrations, SERS
capitalizes on the LSPR phenomenon. Herein, the collective
oscillation of conduction electrons in metallic nanostructures,
predominantly gold or silver, resonates with incident electro-
magnetic radiation, inducing a robust enhancement of the
local electromagnetic field near the nanostructures.25,33–35

Consequently, Raman signals from molecules in proximity to
or adsorbed on the metallic surface are amplified. SERS is
adept at scrutinizing biofluids like CSF, blood, or urine for
brain disorder-associated biomarkers.69–72 In AD, for instance,
SERS discerns and quantifies Aβ peptides, tau proteins, and
other pertinent molecules in CSF samples with remarkable
sensitivity and specificity.73,74 A pivotal advantage of SERS lies
in its capability to detect and analyze biomarkers at low con-

centrations, challenging to discern via conventional methods.
Multiplexed detection of multiple biomarkers concurrently is
feasible with SERS, accomplished by employing distinct SERS-
active nanoparticles or substrates tailored with specific reco-
gnition elements (e.g., antibodies or aptamers) for diverse bio-
markers.75 The distinct Raman signatures of these nano-
particles or substrates facilitate the identification and quantifi-
cation of multiple biomarkers in a single analysis. SERS delves
into protein structure, folding, and interactions, furnishing
insights into the molecular mechanisms underpinning brain
disorders. With potential for in situ biofluid analysis sans
extensive sample preparation or labeling, SERS holds promise
for real-time biomarker monitoring. Integration with comp-
lementary analytical techniques like mass spectrometry or
fluorescence spectroscopy enriches our understanding of bio-
marker composition and structure in biofluids.

Various substrates commonly
employed for SERS

The choice of the substrate material and its surface mor-
phology plays a crucial role in achieving strong SERS enhance-
ment. It’s worth noting that the choice of substrate depends
on factors such as the desired SERS enhancement, reproduci-
bility, cost, and compatibility with the analyte and experi-
mental conditions. Additionally, various substrate modifi-
cations, such as the addition of hot spots or incorporation of
additional materials, can further enhance the SERS signals.

Metallic nanoparticles

Gold and silver nanoparticles are the most widely used SERS
substrates due to their strong plasmonic properties. They can
be synthesized as colloidal solutions or deposited on solid
supports. These nanoparticles can significantly enhance the
Raman signal through electromagnetic and chemical enhance-
ment mechanisms. Noble metal SERS substrates have limit-
ations in practical applications due to disadvantages such as
high cost, complex synthesis, and the need for large-scale
production.

Anisotropic plasmonic nanostructures

Gold or silver nanowires, nanoprisms, nanorods, and nano-
stars exhibit strong plasmonic properties, leading to highly
enhanced SERS signals. Their anisotropic shapes allow for
tuning of the plasmon resonance wavelength. Anisotropic plas-
monic nanostructures may exhibit SERS blinking, which can
affect the stability and reproducibility of the signal.76 In
addition, the optical response of anisotropic nanostructures
may vary, impacting the uniformity of Raman enhancement.

Bimetallic nanoparticles

Bimetallic nanoparticles composed of two types of metal
atoms, such as alloyed and core–shell configurations, have
also been explored as SERS substrates. They offer tunable pro-
perties and enhanced SERS performance compared to mono-
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metallic nanoparticles.77,78 There are challenges associated
with bimetallic nanoparticles, such as high cost, stability
issues, and limitations in practicality based on comparison
with other substrates.

Metal nanoparticle aggregates

Aggregates of gold or silver nanoparticles can provide highly
enhanced SERS signals compared to individual nanoparticles
due to electromagnetic hot spots created between closely
spaced nanoparticles.79,80 Aggregates may have limited repro-
ducibility and stability, and the aggregation process can be
challenging to control.

Nanostructured metal films

Thin metal films (gold, silver, copper) deposited on nano-
structured surfaces like silicon nanowires or nanoparticles
provide high SERS enhancement due to the high density of
hot spots.81,82 Metal films may suffer from surface roughness
and non-uniformity, affecting SERS reproducibility. Film thick-
ness and morphology need to be carefully controlled.

Self-assembled metal nanoparticle arrays

Colloidal metal nanoparticles can be assembled into ordered
arrays using techniques like Langmuir–Blodgett deposition,
self-assembly, or lithographic patterning.83,84 Ordered arrays
of gold or silver nanoparticles on solid substrates, such as
silicon or glass, can provide reproducible and tunable SERS
enhancement by controlling the nanoparticle size, shape, and
spacing. These nanoparticle arrays exhibit strong plasmonic
coupling and SERS activity. However, these substrates have
limited control over nanoparticle organization and interparti-
cle spacing. In addition, substrates have potential for defects
and non-uniformities in the assembly.

Metal–organic frameworks (MOFs)

MOFs loaded with metal nanoparticles or grown on metal sur-
faces can serve as highly sensitive SERS substrates due to their
high porosity and large surface area.85,86 They provide chemi-
cal stability and tunable properties. On the other hand, MOF
synthesis and modification can be complex, and achieving
uniform nanoparticle dispersion within the MOF matrix may
be challenging.

Two-dimensional (2D) materials

2D materials like graphene, MoS2, WS2 combined with metal
nanostructures have shown promising SERS performance due
to their unique electronic and optical properties.24,87 For these
types of substrates, control over morphology and defects may
be challenging, and optimization of functionalization
methods is required for maximum enhancement.

Different scanning and imaging techniques

Raman hyperspectral imaging, an advanced analytical tech-
nique, merges Raman spectroscopy with optical microscopy,
offering detailed chemical and structural data by capturing
spatial and spectral information from samples.88–90 Also

known as Raman chemical imaging or Raman mapping, it
diverges from conventional RS by gathering spectra from
various points across a sample’s surface. This facilitates visual-
ization and analysis of the sample’s chemical components or
molecular species distribution. The process entails scanning a
focused laser beam over the sample while simultaneously col-
lecting Raman spectra at each scan point. The resulting
dataset comprises spectra corresponding to specific sample
locations, enabling the generation of hyperspectral images dis-
playing spatial distribution patterns. This technique holds
promise for chemical analysis and materials characterization,
providing comprehensive insights into sample composition
and distribution. Its applications extend to biomedical
research, offering valuable information for various analytical
purposes. Point-scanning Raman imaging has been employed
to study the distribution of lipids, proteins, and other bio-
molecules in brain tissue sections from patients with AD, PD,
and other neurological conditions.91–93 In this approach, a
tightly focused laser beam is raster-scanned across the sample,
and the Raman spectrum is collected at each pixel position
(Fig. 2e). The collected data are then processed to generate
chemical maps and images based on the specific Raman sig-
natures of the molecules present in the sample. This can
reveal the formation of plaques, protein aggregates, or chemi-
cal changes in specific brain regions.94

The line scanning technique in Raman microscopy is a
method used to acquire Raman spectral data from a sample in
a line-by-line fashion, rather than collecting data from a single
point at a time (Fig. 2f).95,96 This technique offers several
advantages, including faster data acquisition times, reduced
photobleaching or photodamage to the sample, and the ability
to generate high-resolution Raman images.97 In the line scan-
ning technique, the laser beam is focused into a line shape
instead of a diffraction-limited spot. This line-shaped illumi-
nation is achieved by using a cylindrical lens in the excitation
path of the microscope. The sample is then raster-scanned in a
direction perpendicular to the illumination line, and the
Raman scattered light from the entire line is collected simul-
taneously by a detector, typically a CCD or an electron-multi-
plying CCD (EMCCD). Super-resolution Raman microscopy
(SRRM) is an advanced imaging technique that surpasses the
diffraction limit of conventional Raman microscopy, enabling
the visualization of nanoscale features with enhanced spatial
resolution.98 Unlike traditional Raman microscopy, which is
limited by diffraction to a spatial resolution of approximately
half the wavelength of the incident light, SRRM employs
various strategies to achieve resolutions beyond this limit,
often down to tens of nanometers or even single-digit nano-
meter scales.99,100 One common approach in SRRM is to
utilize near-field Raman techniques, such as tip-enhanced
Raman spectroscopy (TERS), which involves scanning a sharp
metallic tip in close proximity to the sample surface.101

Another approach involves the use of super-resolution optical
techniques, such as stimulated emission depletion (STED)
microscopy or structured illumination microscopy (SIM), in
combination with RS.102–105 These techniques exploit the prin-
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ciples of fluorescence microscopy to achieve super-resolution
imaging, which can then be coupled with Raman scattering to
provide chemically specific information about the sample.

Overall, the various RS techniques, each with their unique
mechanisms and capabilities, have significantly contributed to
unveiling the underlying mechanisms and characteristics of
brain disorders. From the label-free visualization of pathologi-
cal structures to the detailed biochemical characterization of
relevant biomolecules, these Raman-based approaches have
provided invaluable insights that can aid in the diagnosis,
monitoring, and understanding of neurological conditions.
Leveraging the molecular specificity and non-destructive
nature of Raman techniques, researchers can gain unpre-
cedented insights into the biochemical changes underlying
brain disorders. This enables earlier diagnosis, monitoring of
disease progression, and evaluation of therapeutic interven-
tions. These techniques have the potential to aid in the early
detection, diagnosis, and monitoring of neurological con-
ditions, as well as contribute to the development of new thera-
peutic strategies by enhancing our understanding of the
underlying molecular mechanisms.

Raman spectra of biomolecules

RS of biomolecules relies on the polarizability of chemical
bonds, where distinct properties of chemical bonds result in
varying light scattering. Complex biological samples consist of
diverse chemical bonds, each inducing unique Raman shifts.
The combination of Raman shift intensities forms the Raman
spectrum of a sample. Biomolecules, integral to life processes,
contribute to Raman spectra due to their specific chemical sig-
natures. The Raman spectrum of biomolecules exhibits dis-
tinct characteristics, with unique peaks corresponding to
different molecular components. These molecular signatures
represent distinctive spectral patterns obtained through RS
analysis of biofluids collected via liquid biopsy techniques.
The Stokes Raman spectrum is categorized into four
vibrational frequency regions.106,107 (i) The “low frequency (LF)
region” below 300 cm−1 provides crucial information about
biomolecular structural conformation and environmental con-
ditions. For instance, chemical processes like ligand binding,
enzymatic activity, electron transfer, or intermolecular inter-
actions, induce fluctuations in these modes providing valuable
information about the conformational state of the biomolecule
in LF region.106,107 (ii) The “fingerprint region”
(300–1800 cm−1) is essential for chemical identification, con-
taining signals from proteins, nucleic acids, lipids, and carbo-
hydrates. Specific vibrational bands, such as amide I and III,
aid in determining protein secondary structure. In proteins,
the Raman spectrum prominently features peaks associated
with the side chain of aromatic amino acids and the peptide
bond. Notably, amide I (1645–1680 cm−1, CvO stretching) and
amide III (1225–1280 cm−1, C–N stretching coupled to N–H
bending) vibrational bands are preferentially utilized for deter-
mining protein secondary structure.108–110 Nucleic acids con-

tribute to the spectrum with signals from individual bases
(600–800 cm−1, ring breathing) and the sugar-phosphate back-
bone. Strong Raman peaks in the region of 600 to 800 cm−1,
attributed to ring breathing modes of various bases, facilitate
the differentiation of nucleic acid bases.111–113 Nucleic acids
exhibit distinctive bands providing information about their
conformation and base pairing. Lipids contribute to the fin-
gerprint region with details about hydrocarbon chains and C–
C stretching. Lipids, crucial biomolecules with roles in energy
storage and cellular functions, showcase distinctive Raman
peaks. The long hydrocarbon chains contribute signals related
to scissoring and twisting of CH2 and CH3 groups (1300 and
1400–1500 cm−1) and C–C stretching (1050–1200 cm−1).114

Additionally, lipid headgroups exhibit various structures, creat-
ing bands in the 710–890 cm−1 region. Carbohydrates create
bands in this region, crucial for cellular recognition. Some
common features are C–O–C stretching at 850 and 1125 cm−1

and CH3 rocking at 925 cm−1.115 Carbohydrates, essential com-
pounds in living organisms, introduce characteristic bands in
the fingerprint region. Raman spectra of human serum from a
healthy donor highlighting the peak assignment for various
metabolic groups and endogenous biomolecules are shown in
Fig. 1(d) in the fingerprint region. (iii) The “silent region”
(1800–2800 cm−1) excludes biomolecular contributions, suit-
able for specific tags in RS. This region is particularly valuable
for incorporating specific molecular fingerprints or tags that
are suitable for RS, without interference from the inherent
signals of biological constituents.116,117 In this silent region,
researchers often introduce tags or markers that have distinc-
tive Raman signals, allowing for precise identification and
tracking of specific molecules or functional groups. The
absence of interference from the biomolecular background
enhances the sensitivity and specificity of RS for detecting and
characterizing these specific tags. (iv) The “high wavenumber
region” (>2800 cm−1) is dominated by stretching vibrations of
hydrogen bonds, ideal for studying lipids and long-chain
hydrocarbons. The stretching vibrations of carbon–hydrogen
(C–H) bonds are prominent in this region. Different types of
C–H bonds, such as aliphatic and aromatic, exhibit character-
istic peaks.114 These vibrations provide information about the
types of chemical bonds and the environments in which they
are present. The stretching vibrations of nitrogen–hydrogen
(N–H) and oxygen–hydrogen (O–H) bonds also contribute to
this region. These vibrations are significant in studying bio-
molecules like proteins and nucleic acids. The high wavenum-
ber region is particularly informative for studying lipids.
Stretching vibrations of C–H groups in the long hydrocarbon
chains of lipids are observed, providing insights into lipid
structure. Additionally, vibrations related to the CvO bonds in
lipids are distinct from those in proteins. Researchers leverage
the high wavenumber region for detailed molecular analysis,
especially in the study of biomolecules like lipids, where the
distinctive features of this region offer valuable information
about their structure and interactions. Raman liquid biopsy
molecular signatures hold significant promise for non-invasive
diagnosis, prognosis, and personalized management of dis-
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eases, including neurological disorders. Overall, the Raman
spectrum serves as a powerful tool for identifying and charac-
terizing the molecular composition of proteins, lipids, nucleic
acids, and carbohydrates in biomolecules.

Advanced chemometric methods
applicable in Raman spectroscopy and
microscopy

RS is a powerful analytical technique that can provide detailed
chemical information about samples. However, the large
amount of data generated can be challenging to analyze. This is
where advanced chemometric methods step in, playing a
pivotal role in Raman spectroscopic investigations. These
methods are instrumental in gathering valuable information
from complex spectral data, tackling issues like overlapping
bands, spectral interferences, and data interpretation. To
choose the appropriate method, the first step is to determine if
each Raman spectrum responds to a known class of chemical
property. If the Raman spectra are unlabeled, one can perform
unsupervised methods to visualize and find clusters. If the label
or response variable is known, one can choose supervised
classification or regression methods. Linear models should first
be tried since they are more accessible for interpretation and
reveal essential Raman regions used in classification.

Principal component analysis (PCA)

PCA stands out as a robust, unsupervised machine learning
tool extensively employed in RS and microscopy for data ana-
lysis and interpretation. Its utility is important when grappling
with extensive and intricate datasets, as it aids in pattern reco-
gnition, dimensionality reduction, and distilling key insights
from the data. Within RS, PCA proves invaluable for delving
into data, spotting outliers, and discerning spectral differences
tied to distinct sample attributes or compositions.118 At its
core, PCA transforms a set of potentially correlated variables
into a fresh array of uncorrelated variables known as principal
components (PCs).

Before applying PCA, Raman spectral data typically undergo
preprocessing steps like baseline correction, normalization,
and noise filtering to ensure data quality and comparability.
Following preprocessing, the Raman spectral data undergoes
PCA calculations involving computing the covariance or corre-
lation matrix and performing eigenvalue decomposition to
derive principal components. These components are then
ordered by associated eigenvalues, reflecting the variance
explained by each. By selecting the initial few principal com-
ponents that account for a substantial portion of the total var-
iance (e.g., 90% or 95%), data dimensionality can be reduced
while retaining pertinent information. The PCA scores, projec-
tions of the original data onto the new principal component
space, are often visualized using scatter plots or other graphi-
cal representations, unveiling patterns or clusters challenging
to discern in the original high-dimensional space. Analyzing

PCA loadings, representing contributions of original variables
(wavenumbers) to each principal component, allows the identi-
fication of spectral features or molecular signatures underlying
observed data patterns or variations.

In Raman microscopy, PCA can be particularly useful for
analyzing hyperspectral Raman images, where each pixel con-
tains a full Raman spectrum. PCA can help to identify and sep-
arate different chemical components or molecular species
present in the sample based on their unique Raman spectral
signatures.119 Consequently, it facilitates the creation of
chemical maps or component distribution images, offering
valuable insights into the sample’s spatial distribution and
heterogeneity. Fig. 3(a) shows an example of PCA analysis of
SERS spectra measured in AD mice serum with different
disease stages. By applying PCA, the SERS spectra are projected
into lower dimensions. The PCA scores visualize the spectra
and reveal the separation of different disease stages. The PCA
loadings further produce more information on the SERS peaks
that distinguish the AD disease stages in the mice serum.

K-means clustering

K-means clustering represents an unsupervised machine learn-
ing method extensively employed in RS and microscopy for data
analysis and pattern recognition. This partitioning clustering
algorithm seeks to divide the data into K distinct clusters predi-
cated on their likeness or divergence. In RS and microscopy,
K-means clustering finds application in grouping or segmenting
Raman spectra or sample points according to their spectral
resemblances. This enables the delineation of discrete chemical
constituents, materials, or regions within a given sample.120

The application of K-means clustering in RS and
microscopy typically involves several steps. First, an essential
aspect of K-means clustering is determining the appropriate
number of clusters (K) to partition the data into. This can be
achieved through various techniques, including the elbow
method, silhouette analysis, or leveraging domain knowledge.
The K-means algorithm necessitates initial centroids or cluster
centers to commence the iterative process. Each data point
(Raman spectrum or sample) is then assigned to the nearest
cluster centroid based on a chosen distance measure, typically
Euclidean distance. Following the assignment of all data
points to clusters, the algorithm iteratively recalculates the
centroids of each cluster by computing the mean of all data
points within that cluster. Upon convergence, the final clusters
are obtained and can be analyzed and interpreted based on
the spectral characteristics of the Raman spectra within each
cluster. This analysis offers valuable insights into the chemical
composition, molecular structures, or spatial distributions of
different components or regions within the sample. Fig. 3(b)
shows an example of using K-means to determine the bio-
chemical composition of lymphocyte cells. By coloring the
clusters on Raman mapping, K-means reveals different com-
ponents of the lymphocyte cell.121 Leveraging domain knowl-
edge, Schie et al. select the number of clusters equal to 5, plot
the means (centroids) of each cluster, and assign components
to the clusters. In the means of clusters, the highlighting areas
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show significant Raman peaks to determine the biochemical
composition.

Partial least squares (PLS) regression

PLS regression stands as a powerful supervised chemometric
technique extensively utilized in RS and microscopy for

quantitative analysis and calibration model development. Its
efficacy shines notably in situations involving collinear and
high-dimensional data, a common occurrence in RS where
the number of variables (wavenumbers or Raman shifts) can
be extensive. The underlying principle of PLS regression
revolves around establishing a linear relationship between

Fig. 3 (a) Using PCA to analyze SERS spectra measured from AD mice serum at different stages. PCA score plot for SERS measured spectra of AD
mice serum at different stages. PCA loading plot of first three principal components. Adapted with permission from ref. 119. Copyright 2023 Elsevier.
(b) K-means cluster-based Raman mapping of lymphocyte cells with different numbers of clusters. Mean spectra of clusters with the number of
clusters equal to 5. Adapted with permission from ref. 121. Copyright 2013 SAGE Publications. (c) Using SVM to classify Raman spectra measured
from mice brain samples with and without AD. Linear SVM trained, which classifies the brain samples with and without AD using a hyperplane
decision boundary. The spectral feature importance obtained from SVM and Raman spectra of potential biomarkers of AD. Adapted with permission
from ref. 23. Copyright 2022 American Chemical Society.
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the Raman spectral data (predictor variables, X) and a col-
lection of reference measurements or properties (response
variables, y).122 This is achieved by projecting both the pre-
dictor and response variables onto a new set of latent vari-
ables or components, adept at capturing the maximum
covariance between X and y.

X ¼ ZV T þ E

y ¼ Zbþ e

The initial step involves organizing the Raman spectral data
(X) and the corresponding reference measurements or pro-
perties (y) into matrices. The n × p matrix X comprises n
Raman spectra as rows, with each spectrum having p wave-
numbers or Raman shifts, X = [x1,…,xp]. Meanwhile, the n ×
1 matrix y contains the reference measurements or property
values for each spectrum. Prior to constructing the PLS model,
it is advisable to partition the data into calibration and vali-
dation sets, which ensures proper model validation and miti-
gates the risk of overfitting. The PLS algorithm decomposes
the X matrix into n × k scores matrix Z (projections onto the k
latent variables) and k × p loading matrix V (transformation of
the original variables to the latent variables). Then, it decom-
poses the y matrix into Z and k × 1 PLS coefficient b (coefficient
for predicting response). The scores capture the systematic
variation in the data, while the loadings unveil the significance
of each variable (wavenumber or Raman shift) in the model.
The E and e are residuals, which change depending on the
selection of k. Determining the optimal number of latent vari-
ables (components) k to incorporate in the PLS model involves
evaluating the model’s performance through cross-validation
or other validation techniques. Insufficient components may
lead to underfitting, whereas excessive components can result
in overfitting and diminished predictive capability. Once devel-
oped, the PLS model undergoes validation using the indepen-
dent validation set to gauge its predictive efficacy. Various
metrics like root mean squared error (RMSE), coefficient of
determination (R2), or bias are employed to assess the model’s
performance and robustness. If the PLS model demonstrates
satisfactory performance, it can be utilized for the quantitative
analysis of new Raman spectral data. Additionally, insights
into relevant spectral features or molecular signatures contri-
buting to the prediction of the response variable can be
gleaned from the model loadings.

Linear discriminant analysis (LDA)

LDA, a supervised chemometric technique, is employed for
classification and pattern recognition in RS and microscopy.
Its objective is to identify the optimal linear combination of
variables (Raman shifts or wavenumbers) that maximizes the
distinction between predefined classes or groups while mini-
mizing within-class variance. In the realm of RS and
microscopy, LDA serves various purposes, including sample
classification, identification of spectral markers or discrimi-
nating features linked to different classes, and the develop-
ment of diagnostic models based on Raman spectral data.122

The Raman spectral data is structured into a matrix, with
each row representing a spectrum. Alongside, class labels or
group assignments for each sample or spectrum are required.
To streamline computational efficiency while retaining essen-
tial information, LDA can be preceded by dimensionality
reduction techniques like PCA. The LDA algorithm then ident-
ifies the linear combination of variables (Raman shifts or wave-
numbers) maximizing the ratio of between-class variance to
within-class variance. This combination, termed the discrimi-
nant function, ensures optimal separation between predefined
classes or groups. To evaluate the model, cross-validation or
an independent test set is employed to gauge its classification
accuracy and robustness using metrics like the confusion
matrix, sensitivity, specificity, and overall classification rate.
Following satisfactory performance, the LDA model is utilized
to classify new Raman spectral data into predefined classes or
groups. Furthermore, analysis of discriminant function coeffi-
cients or loadings aids in identifying the most discriminating
Raman shifts or spectral features associated with each class,
offering insights into molecular or chemical differences
between groups.

In Raman microscopy, LDA proves especially valuable for
scrutinizing hyperspectral Raman images, where every pixel
includes a complete Raman spectrum. By incorporating spatial
information with spectral data, LDA models are crafted to cat-
egorize diverse regions or constituents within the sample,
leveraging their unique Raman spectral signatures.
Consequently, this facilitates the creation of classification
maps or discernment of spatial patterns linked to distinct
chemical or molecular species.

Support vector machines (SVMs)

SVMs stand out as robust supervised machine learning
algorithms widely employed in RS and microscopy for both
classification and regression tasks. SVMs excel when con-
fronted with high-dimensional datasets, such as Raman
spectra, and proficiently manage non-linear relationships
between the input data and target variables. Within the
realm of RS and microscopy, SVMs find application in
various tasks, including sample classification, identification
of spectral markers or discriminating features linked to dis-
tinct classes, and the formulation of quantitative models for
predicting properties or concentrations based on Raman
spectral data.10,23

The application of SVMs in RS and microscopy typically
involves several steps. Firstly, the Raman spectral data is struc-
tured into a matrix X, with each row representing a sample or
spectrum x. Additionally, class labels or target variables (for
classification or regression tasks) y must be assigned to each
sample or spectrum. To optimize computational efficiency and
interpretability, feature selection techniques (e.g., variable
importance in projection, recursive feature elimination) or
dimensionality reduction methods (e.g., principal component
analysis) can be employed on the Raman spectral data. The
SVM algorithm then constructs a hyperplane or decision
boundary in a high-dimensional space ω·x + b = 0, maximizing
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the margin between different classes or groups. The prediction
is defined as the following, where +1 and −1 are two classes.

y ¼ þ1 if ω � x þ b � 0
�1 if ω � x þ b � 0

�

By transforming the input data into a higher-dimensional
feature space using kernel functions (e.g., polynomial, radial
basis function), SVM is able to handle non-linear relation-
ships. To optimize the SVM model’s performance, hyperpara-
meters such as the kernel function, the regularization para-
meter (C), and the kernel parameters (e.g., gamma for the RBF
kernel) are tuned using cross-validation or grid search tech-
niques. The developed SVM model is evaluated using an inde-
pendent test set or cross-validation to assess its performance.
For classification tasks, metrics such as accuracy, precision,
recall, and F1-score are employed, while for regression tasks,
metrics like mean squared error (MSE), coefficient of determi-
nation (R2), and root mean squared error (RMSE) are utilized.
If the SVM model achieves satisfactory performance, it can be
deployed to classify new Raman spectral data into predefined
classes or predict target variables based on the Raman spectral
input. Furthermore, techniques like permutation importance
or weight vector (ω) analysis for linear SVM can be utilized to
identify the most discriminative or relevant Raman shifts or
spectral features contributing to the model’s predictions.

In Raman microscopy, SVMs are particularly valuable for
analyzing hyperspectral Raman images, where every pixel
encompasses a complete Raman spectrum. By integrating
spatial information with spectral data, SVM models can be
crafted to classify various regions or components within the
sample, relying on their distinctive Raman spectral signatures.
This capability facilitates the creation of classification maps or
the anticipation of spatial distributions of chemical com-
ponents or properties within the sample. Fig. 3(c) shows an
example of using linear SVM to diagnose AD mice brain slices
and identify potential AD biomarkers. The Raman spectra
measured with and without AD are fed into the linear SVM
model. After training, the linear SVM constructs a hyperplane
decision boundary. By extracting the coefficient, Wang et al.
plot spectra feature importance maps, identify essential
Raman peaks that are correlated to AD, and reveal new poten-
tial biomarkers.23

Liquid biopsy investigation for brain
disorders through spontaneous and
enhanced Raman spectroscopic
techniques
Blood-based investigations

Liquid biopsy of AD biomarkers, such as Aβ and tau proteins,
in blood samples holds great promise for cost-effective, widely
accessible, easily-administered, and minimally-invasive detec-
tion and follow-up of AD. Blood is a valuable reservoir of
potential biomarkers essential for disease screening, risk

assessment, detection, and prognosis. It contains free-floating
erythrocytes, leukocytes, platelets, and a nutrient-rich plasma
fluid, making it easier to collect samples compared to solid
tissue biopsies.123 This enables the regular monitoring of a
patient’s health status over time. Blood-based biomarkers are
of particular interest due to their minimally-invasive nature
and ease of sample collection.124,125 Research has focused on
identifying proteins such as tau, Aβ, microRNA, and other
molecules associated with NDs in blood. The spectra obtained
through Raman analysis of blood exhibit multicollinearity,
coupled with the presence of autofluorescence background
and various types of noise.26,126 Selecting an appropriate
method for processing experimental data from blood spectra
is imperative to derive statistically reliable insights into a
pathological process within the body. Previous studies have
investigated multivariate analysis methods of blood Raman
spectra classification which is useful in detecting AD.26

Typically, diagnosis of AD through RS involves utilizing spec-
trochemical analysis of blood. This analytical approach aims
to identify distinct chemical patterns or biomarkers in the
blood that may distinguish AD from other conditions. By
examining the unique spectrochemical profiles, researchers
and clinicians seek to improve the accuracy and specificity of
AD diagnosis, paving the way for more effective and targeted
interventions. Spectrochemical analysis in blood holds
promise as a minimally-invasive and potentially reliable
method for discriminating AD from other disorders.

Early studies used platelets from animal models of NDs to
distinguish healthy and diseased cases. For instance, Chen
et al. achieved over 90% accuracy of distinguishing AD, PD,
and vascular dementia.127 In a subsequent work by the same
research group extended this work to detect AD by Raman
spectra of rat’s platelets. Recent developments in machine
learning enabled new opportunities for accurate diagnosis of
AD. For instance, in a recent work by Lin et al. reported laser
tweezers RS combined with machine learning for diagnosis of
AD.128 By utilizing AD platelets from transgenic rats at
different ages, the researchers were able to differentiate
between normal and diseases platelets of 3-, 6-, and 12-month
AD samples (Fig. 4a and b). Raman spectra of diseased
samples and healthy controls showed unique features. Firstly,
the intensity ratio of 1127 cm−1 peak to 1001 cm−1 peak
increases significantly with the AD severity. This was attributed
to changes of amyloid precursor protein metabolism of AD
and normal platelets. Another feature is the intensity ratio of
1654 cm−1 peak to 1600 cm−1 peak decreases with the AD
severity. This was explained based on the α helix structure and
amyloid precursor protein changes of AD platelets. With the
help of machine learning techniques, the researchers achieved
accuracy of 91%, 68% and 97% for distinguishing normal and
diseased samples of 3-, 6- and 12-month. Wang et al. devel-
oped classification models for early and advanced AD as well
as the control group using fewer features.129 They applied
mechanisms for noise reduction to enhance the accuracy of
the models. Raman spectra of platelets were acquired from
animal models, encompassing early and advanced stages of
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AD transgenic mice, non-transgenic controls, and PD mice
(Fig. 4c–f ). Here they adopted an adaptive classification
method based on the Gaussian process for classification.
The study conducted by Ralbovsky et al. introduced a stat-
istical algorithm design to differentiate between two groups
of rats: those subjected to a standard diet and those
exposed to a high-fat diet leading to the pre-AD state.130

The algorithm was constructed and trained using a cali-
bration dataset, and its diagnostic capabilities were assessed

through external validation with new, unseen data. The
application of partial least squares discriminant analysis
achieved an 89% sensitivity and specificity at the donor
level during cross-validation. External validation further con-
firmed the accuracy of the algorithm, achieving a 100% rate
of correctly predicting the class of a donor. Notably, genetic
algorithm analysis tentatively identified proteins and lipids
as influential factors in discriminating between the two
classes of blood serum donors.

Fig. 4 (a) Raman spectra of platelets at different stages of AD from different 3xTg-AD transgenic rats. (b) The discriminant scores plot result of
partial least square discriminant analysis (PLS-DA) algorithm related to 3xTg-AD transgenic rats. Adapted with permission from ref. 128. Copyright
2022 Elsevier. (c and e) The visual display of first step and (d and f) second step of Gaussian process (GP) classification of spectral data from 4 month
AD and 12 month AD platelets, and the control data based on two features. Adapted with permission from ref. 129. Copyright 2014 IOP Science.
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Carmona et al. investigated diagnostic potential of RS for
prion disease.131,132 This was done through Raman analysis of
prion protein in blood cell membranes from naturally affected
scrapie sheep. Membrane fractions obtained from the blood of
150 healthy sheep and 31 sheep infected with scrapie were
examined to detect the presence of β-sheet structure in the
amide I region (1670 cm−1), indicating the conversion of cellu-
lar prion protein (PrPC) to proteinase-resistant prion protein
(PrPSC). The diagnosis of scrapie-infected sheep achieved a
100% accuracy rate, as confirmed by postmortem analysis.
Moreover, this research showcased the potential of RS in moni-
toring disease progression, as evidenced by continuous
increases in β-sheet intensity observed one month after the
onset of sickness. Alvarez-Puebla et al. conducted a study on
the rapid direct detection of prions in serum and blood utiliz-
ing the SERS effect of gold nanorods.133 They developed a
SERS substrate based on supercrystals of gold nanorods and
performed scrambled prion detection. The primary chemical
structure of both PrPC and PrPSC prions is very similar, and
their respective vibrational patterns were detected. Bands
located at 762 cm−1, assigned to the interaction of Au–S–C,
and a triplet in PrPC (1390, 1416, and 1446 cm−1) which
becomes a singlet (1448 cm−1) in the scrambled version, were
observed. The SERS spectrum of PrPSC:PrPC in serum showed
dominant bands corresponding to the C–N stretching
(1118 cm−1), phenylalanine (1003 and 1033 cm−1), tryptophan
(1011 and 1560 cm−1), tyrosine (845 cm−1), and cystine
(720 cm−1). Even upon sequential dilution of the prion
mixture (1% of PrPSC in 99% of PrPC) in serum, the character-
istic prion bands remained clearly recognizable down to con-
centrations as low as 10−10 M.

Rickard et al. presented a novel sensing strategy by integrat-
ing SERS with an optofluidic device for the rapid and label-
free detection of biomarkers associated with TBI in biofluids,
achieving a picomolar limit of detection (LOD).134 The authors
fabricated a SERS-active substrate using electrohydrodynami-
cally produced submicrometer pillars, which were then incor-
porated into an optofluidic chip. A plasmon-active nanometric
gold layer was applied to coat the pillars, creating the SERS-
active platform. Utilizing this device, the researchers success-
fully detected N-acetylaspartate, a potential biomarker released
from the central nervous system post-TBI, directly from finger-
prick blood samples (Fig. 5a–d). This study demonstrates the
suitability of the proposed strategy for constructing SERS
devices, offering the potential for on-site and real-time target
detection. Notably, the authors engineered a miniaturized
Raman system for multiplexed and high-throughput analysis
of biomarkers. Harris and colleagues employed RS-based
detection to characterize a panel of 18 TBI-indicative bio-
markers, encompassing both raw (human, animal, and syn-
thetically derived) samples and their aqueous solutions.135

Colorimetric paper lateral flow strips (PLFS) could have draw-
backs their low sensitivity and susceptibility to interference
from complex sample matrices like blood. To address these
issues, a new PLFS has been developed, incorporating SERS
for signal transduction.136 Here gold nano-pyramid array chip

was integrated into the detection zone of the PLFS for SERS
enhancement. The design includes a hierarchical three-dimen-
sional nanostructure creating “hot spots” to amplify SERS
signals, resulting in high sensitivity. This PLFS demonstrates a
low LOD of 5.0 pg mL−1 for the TBI biomarker S-100β in blood
plasma (Fig. 5e and f). It has been successfully applied for
rapid S-100β measurement in clinical samples from TBI
patients in emergency departments. The availability of this
PLFS for blood testing is transformative in TBI patient man-
agement, and its adaptability suggests potential for rapid
detection of various human diseases by measuring low levels
of protein blood biomarkers in complex human fluids.

Serum and plasma from clinical samples have been
employed in distinguishing NDs from healthy controls.
Carmona et al. utilized plasma Raman spectral data to categor-
ize cases of mild, moderate, and severe AD.137,138 Their find-
ings indicate an elevated ratio between spectral bands at 758
and 744 cm−1 in the blood plasma of patients with both mild
and severe AD. Specifically, the 758 cm−1 band corresponds to
the tryptophan side chain indole-ring breathing mode, while
the 744 cm−1 band likely corresponds to mitochondrial cyto-
chrome c from platelets, demonstrating a potential biomarker
for disease severity. More recent research has revealed that the
blood concentration levels of p-tau at threonine 181 (p-tau181)
could aid in the diagnosis and differentiation of AD from
other NDs.139 Habartová et al. reported a protocol focus on
blood-based analyses for AD using chiroptical spectroscopy,
including Raman optical activity (ROA) and electronic circular
dichroism.140 This approach was supplemented with conven-
tional vibrational spectroscopy (infrared, Raman) and metabo-
lomics (high-performance liquid chromatography with high-
resolution mass detection). The combination of these tech-
niques allows for the identification of spectral patterns associ-
ated with AD and variations in metabolite levels (Fig. 6a and
b). Through linear discriminant analysis, the spectral data can
differentiate between AD patients and control subjects. For
instance, average Raman spectra of the blood plasma of
patients with AD showed notably lower intensities of the caro-
tenoid spectral band. This was attributed to their utilization
for protection against oxidative stress and disruptions in lipid
metabolism. No differences were observed for the amide I
band but intensity decrease was detected for amide III region
which is due to AD-induced structural change in proteins/pep-
tides. The less invasive nature of this approach highlighted its
strong potential for identifying disease-related changes in
essential plasmatic biomolecules and metabolites. Recently, it
has been revealed that hollow gold nanospheres in conjunc-
tion with the redox molecules 4-mercaptobenzoic acid and
Nile blue A, exhibit the potential to enhance the speed and
accuracy of visually detecting neuron-specific enolase (NSE)
and S100-β protein, both associated with brain damage, using
the SERS technique.141 This study determined the lowest con-
centration for NSE and S100-β protein, with a linear range
spanning from 0.2 to 22 ng mL−1, to be 0.1 and 0.06 ng mL−1,
respectively. In a different report, Davies and coworkers pre-
sented utility of RS as a neuromonitoring tool in TBI.142 In
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Fig. 5 (a) Histogram of the measured electromagnetic enhancement factors of the SERS substrate. Inset: principal component score plots of PC1
and PC2 show the relationship between the multiplex spectra of the three single biomarkers. The blue cluster is N-acetylasparate (NAA) spectra (n =
23), the purple cluster represents S100B (n = 18) and the red is glial-fibrillary acidic protein (n = 13). (b) Calibration curves of SERS spectra acquired
with an excitation laser of 785 nm. Inset: representative NAA levels as a function of SERS intensity for the dilution series and the calculated LOD
values for each biomarker (inset table). (c) Classification matrices of the feature selection of subset of relevant features, used to establish the impor-
tant peaks and their correlations reveals decision boundaries of multilayer perception with distribution of the selected peaks with clear separation at
each subset between the STBI and the healthy volunteer patients. Inset: the NAA molecular structure and the major assignments of major SERS
peaks of NAA on RED substrate. σ, stretching vibration; δ, bending vibration; δs, symmetric bending vibration; ρ, rocking, in-plane bending; γ,
wagging; ν, breathing; τ, twisting. Raman intensity: s, strong; m, medium; w, weak. (d) Average SERS spectrum (n = 5) of healthy volunteers (i;
bottom panel) excited at 785 nm are compared to the SERS spectrum of STBI only (ii), STBI + EC (iii) and to the fingerprint spectrum of NAA (iv; top
panel) with the representative significant peaks highlighted with vertical grey (i), blue (ii), red (iii) and dotted (iv) lines, accordingly, highlighting the
correspondence or the absence of the NAA peaks with some vibrational frequencies of the bands being unchanged in SERS spectra whereas several
are red-shifted or not evident in the healthy volunteer spectrum. Inset: barcode derived from SERS spectra shown in e for severe traumatic brain
injury (STBI) diagnostics. Adapted with permission from ref. 134. Copyright 2020 Nature Publishing Group. (e) SERS spectra of PLFS acquired from
the buffer solution containing various concentrations of S-100β. (f ) SERS spectra of PLFS taken at various concentrations of S-100β. Adapted with
permission from ref. 136. Copyright 2021 Elsevier.
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this work, the researchers presented clinical potential of RS in
diagnosis of brain disorders (Fig. 6c).

Hao et al. proposed a diagnostic system that incorporates
acoustofluidic principles and employed a multimodal
approach for rapid detection of AD biomarkers from human
plasma.143 In this work, a surface acoustic wave-based separ-
ation device has been designed to enhance signal-to-noise
ratio (SNR) by isolating and purifying AD biomarkers. By utiliz-
ing ZnO nanorods and Ag nanoparticles, the developed system
enabled label-free detections through SERS and electro-

chemical immunosensors (Fig. 6d). Raman spectral analysis
identified key biochemical differences in human blood plasma
for healthy individuals and AD group (Fig. 6e and f). AD
patients were characterized by higher concentration of
xanthine, uric acid, and ascorbic acid based on difference
Raman spectrum. Xanthine and uric acid primarily serve as
purine metabolites within the salvage pathway in the brain.
The system demonstrates high sensitivity and specificity in
label-free detections of clinical plasma samples from both AD
patients and healthy controls. The efficient integration of

Fig. 6 (a) Average Raman spectra of the blood plasma of patients with AD (red; n = 35) and without AD (black; n = 29). (b) Average Raman optical
activity spectra of the blood plasma of patients with AD (red; n = 35) and control group (black; n = 29). Adapted with permission from ref. 140.
Copyright 2019 Elsevier. (c) Illustration of a simplified RS system and its potential application in clinical environments. Adapted with permission from
ref. 142. Copyright 2022 MDPI. (d) FDTD simulations at different settings showing the electromagnetic field distributions of the energized nanoarray
on glass (i) and Au substrate (ii–iv). The distance between the two nanorod cylinders was 150 nm (i–iii) and 50 nm (iv). (e) SERS spectra of AD plasma
samples before and after isolation treatment. (f ) Difference spectra obtained from subtracting the AD sample spectra from the healthy control
sample spectra. Adapted with permission from ref. 143. Copyright 2021 Elsevier.
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these techniques presents promising solutions for the early
diagnosis of AD.

In another work, a device utilizing Au nanostar@Raman
reporter@silica sandwich nanoparticles as SERS probes, was
developed ensuring high sensitivity for the detection of NSE, a
TBI protein biomarker.144 The device achieved a LOD of 0.86
ng mL−1 in diluted blood plasma samples. Due to the merits
of SERS this device exhibits superior sensitivity and a lower
LOD in blood plasma-containing samples. Furthermore, the
SERS-PLFS demonstrated successful NSE level measurement in
clinical blood plasma samples from deidentified TBI patients.
This study highlights the potential of SERS-PLFS for point-of-
care screening of TBI patients. Yang et al. reported sandwich
immunoassay using silver nanogap shells (AgNGSs) functiona-
lized with Aβ antibody as SERS nanoprobes.145 These nano-
probes demonstrated sensitive, selective, and multiplexed
detection of Aβ1–40 and Aβ1–42 peptides in blood. Through
precise control of AgNGSs formation as plasmonic hot spots
on silica nanoparticles at a one-nanometer resolution, the
assay achieved a remarkable LOD of 0.25 pg mL−1 for Aβ1–40
and 0.33 pg mL−1 for Aβ1–42. Notably, these LODs were one
order of magnitude lower than those of the ELISA test. Phung
et al. presented SERS detection of dopamine levels in human
blood plasms.146 By Ag-plated AuNPs deposited on ITO glass
SERS substrate was developed and achieved lowest detection
limit of ∼10−11 M for dopamine. NSE in blood plasma was
detected using lateral flow glass-hemostix (FGH) in conjunc-
tion with Au nanocage as SERS substrates, achieving a LOD of
0.74 ng mL−1.147

In a work by Bedoni and coworkers, the analysis of serum
using RS was enhanced by introducing nanostructures to
induce a SERS signal, resulting in more detailed and intense
Raman spectra.71 Standardization of all analyzed parameters
was conducted to ensure the best repeatability and minimize
variables. Following the methodological optimization, the
established parameters were applied to analyze serum samples
from 10 AD and 11 healthy control subjects. The obtained
results, utilizing an innovative nanotechnology-based bio-
sensor, were correlated with MRI findings in evaluating AD
patients. This correlation provides a robust foundation for
further exploration of the biosensor’s applicability in monitor-
ing AD progression and rehabilitation treatments. Overall,
SERS technology contributes to the development of sensitive
and noninvasive methods for detecting biomarkers with low
concentrations. This advancement is conducive to early diag-
nosis and can potentially delay the progression of AD and
other NDs.

Ryzhikova et al. employed an artificial neural network for
classifying spectroscopic data, conducting learning and sub-
sequent validation on subsets of the measured data.148 The
neural network demonstrated a capability to distinguish
between AD, other forms of dementia, and healthy controls
with specificity and sensitivity exceeding 95%. However, the
algorithm couldn’t pinpoint the specific regions in the Raman
spectra crucial for this differentiation. To address this, a
genetic algorithm was employed, facilitating the identification

of specific spectral regions deemed most significant for discri-
minating the measured spectra. Carotenoids, renowned for
their antioxidant properties, are present in various biofluids
and could potentially serve as a diagnostic tool for RS-based
biopsies. Studies have shown that the levels of these caroten-
oids in biofluids, such as blood serum and plasma, may serve
as biomarkers for NDs like AD and PD. Resonant Raman
serves as the primary mechanism for amplification in the case
of carotenoids, leading to the augmentation of three specific
Raman bands positioned approximately at 1005, 1155, and
1520 cm−1. Kralova et al. conducted a comparative analysis of
data derived from blood plasma samples collected from indi-
viduals with AD and healthy elderly controls.44 Four distinct
techniques/experimental setups—RS with excitations at 532
and 785 nm, ROA, and SERS were employed for this purpose.
The study revealed the impact of experimental design on the
Raman spectra of blood plasma. Each of the four experimental
setups resulted in distinctive spectral signatures. Conventional
RS (excitations at 785 and 532 nm) and ROA primarily exhibi-
ted sensitivity to the protein fraction of blood plasma.
However, due to resonance enhancement, Raman and ROA
spectra obtained with 532 nm excitation also featured intense
bands associated with carotenoids. ROA, utilizing circularly
polarized light, produced spectral bands, especially in amide I
and extended amide III, providing valuable information about
the spatial structure of biomolecules. This suggests the poten-
tial of ROA to offer insights into disease-induced changes in
the structure of blood plasma components. SERS spectroscopy,
with its signal enhancement near plasmonic nanoparticles,
particularly influenced low-molecular-weight metabolites. The
SERS spectra of the low-molecular-weight blood plasma frac-
tion and the whole blood plasma primarily exhibited bands
related to uric acid, hypoxanthine, and ergothioneine. Overall,
the study demonstrated that each RS technique provides dis-
tinct information about biomolecules in blood plasma or their
conformation, offering diverse perspectives on the underlying
biochemical processes associated with the disease.

Paraskevaidi and colleagues employed RS on blood plasma
along with machine learning techniques to effectively dis-
tinguish AD from both healthy individuals and patients with
dementia with Lewy bodies.149 Given the shared symptoms
and clinical characteristics between these two diseases, the
potential for misdiagnosis exists. The study involved the ana-
lysis of 56 samples categorized into four groups, including
early and severe stages of AD, dementia with Lewy bodies, and
healthy controls. Spectral data were processed using cross-vali-
dated PCA-LDA and a support vector machine algorithm. Six
distinct statistical models were developed to compare all
groups. Multiple binary algorithms were developed using
support vector machines (SVM) to discern between healthy
controls, early-stage AD donors, late-stage AD donors, and
donors with dementia with Lewy bodies. The classification
algorithms demonstrated an average sensitivity of 81.3% and
specificity of 85.7%, underscoring the importance of pairing
an optimal biological sample with an appropriate statistical
analysis method for accurate analysis. Significant spectral
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bands crucial for discrimination were identified, such as
amide I (∼1650 cm−1) and amide II (∼1530 cm−1). The latter
exhibited an up-shift in the spectra of both early and severe
stages of AD, attributed to an increase in tau protein or NFL in
plasma. Additionally, a lower intensity band at ∼1432 cm−1

was observed, suggested to be due to decreased lipid levels
resulting from oxidative stress-induced damage to phospholi-
pid membranes. Moreover, the level of phenylalanine
increased in dementia with Lewy bodies compared to healthy
controls. In another study, Sharma et al. utilized RS to identify
internal variances in erythrocytes of PD patients.150

α-Synuclein is closely associated with PD and other related
conditions known as synucleinopathies. However, no discern-
ible erythrocytic behavioral changes (eryptosis) or variations in
hemoglobin were observed due to presence of α-synuclein. An

increased level of plasmin–antiplasmin complexes was noted
in the plasma of PD patients, suggesting activation of the fibri-
nolytic system. Huefner et al. employed RS to distinguish
Huntington’s disease (HD) patients from healthy controls
using serum samples.151 Their study revealed notable altera-
tions in the spectra associated with the progression of the
disease. Additionally, the researchers identified differences
corresponding to genotype and gender when analyzing serum
samples from individuals with HD and those without the con-
dition (Fig. 7a–f ). The use of RS in this context showcases its
potential as a valuable tool for probing molecular changes
associated with HD and offers insights into potential bio-
markers for diagnostic purposes. Schipper and colleagues
employed a combination of RS and near-infrared spectroscopy
(NIRS) to differentiate between blood samples of PD patients

Fig. 7 (a) Average Raman spectrum and (b) SERS spectra of serum from healthy control subjects (blue lines) and HD patients (red line) and standard
deviations (c) and (d), respectively. (e) The different spectra of the averages for Raman spectrum (black line). (f ) The different spectra of the averages
for SERS (black line). LD loadings are shown by colored lines and yellow marked regions indicate important peaks. Adapted with permission from ref.
151. Copyright 2020 The Royal Society of Chemistry. (g) Concentration dependent SERS spectra from tau protein conjugated nanoplatform after
magnetic separation of the nanocomposite. (h) SERS enhancement of Raman signal from 50 ng tau protein in the presence of CSNPs and from 500
ng tau protein in the presence of CSNPs attached graphene oxide hybrid. Adapted with permission from ref. 153. Copyright 2015 American
Chemical Society.
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and a control group by analyzing various spectroscopic pro-
perties linked to oxidative stress.152 Patients with PD exhibited
a reduction in bands associated with hydrocarbons
(2990 cm−1), coupled with an increase in bands related to
amines (3200 cm−1) and alcohols (3300 cm−1). These changes
are likely indicative of oxidative stress. By utilizing these identi-
fied bands as biomarkers, the researchers established a dis-
crimination model with 75% sensitivity and specificity.

Two-dimensional (2D) materials have garnered significant
attention for their unique properties and diverse applications,
including their potential role in the field of biomarker sensing
for NDs. These materials, such as graphene and transition
metal dichalcogenides, offer high surface area, excellent con-
ductivity, and biocompatibility. Their unique electronic and
optical properties make them promising candidates for devel-
oping highly sensitive biosensors. Demeritte et al. discovered
that the modification of graphene oxide with magnetic nano-
particles enables the early detection of AD by identifying Aβ42
peptide and total-tau (t-tau) proteins.153,154 In this study,
researchers employed magnetic core and plasmonic shell
nanoparticles, which were conjugated with graphene oxide
(GO) and further modified with anti-Aβ42 antibodies and anti-
tau antibodies. This innovative design serves as a robust 3D
SERS platform specifically tailored for the detection of Aβ and
tau in whole blood samples. The platform demonstrated the
capability to detect target AD biomarkers at remarkably low
concentrations, detecting Aβ42 peptide as low as 500 fg mL−1

and t-tau protein as low as 100 fg mL−1 showcasing its high
sensitivity in detecting minute concentrations of the target
biomarker in complex biological samples. This multifunc-
tional nanoplatform was utilized to selectively collect more
than 98% of AD biomarkers from whole blood samples. In
their continued research, researchers expanded their approach
by developing iron–gold core–shell nanoparticles (CSNPs)
affixed to shell hybrid graphene oxide.153 This advancement
aimed at identifying Aβ and tau from whole blood samples,
resulting in remarkable detection limits of 100 fg mL−1 for Aβ
and 0.15 ng mL−1 for tau (Fig. 7g and h). Notably, the nano-
platform exhibited the capability to differentiate between Aβ
and tau biomarkers and human serum albumin, a highly
abundant protein in the CSF. This underscores the specificity
and versatility of the developed nanoplatform for effective bio-
marker discrimination in complex biological samples.

Furthermore, Yu and colleagues devised a SERS-based
immunoassay employing specific antibodies tethered to
Fe3O4@GOs and silver probes labeled with 4-mercaptobenzoic
acid (4-MBA).74 The resulting SERS spectrum of 4-MBA sig-
nifies the capture of the target protein, showcasing a detection
limit in clinical serum samples that can reach the femtomolar
level. The established SERS-based immunoassay proficiently
probed Aβ1–42 and phosphorylated-tau (p-tau)-181 in human
serum samples, positioning it as a promising approach for the
early detection of AD. This innovation opens up novel avenues
for detecting clinical biomarkers with increased sensitivity. In
the context of NDs, the use of 2D materials in biomarker
sensing could revolutionize diagnostic approaches by provid-

ing rapid and accurate detection of specific biomolecules
associated with conditions like AD or PD. The enhanced sensi-
tivity and specificity offered by these materials hold great
potential for advancing early disease diagnosis and monitor-
ing. Collectively, these findings suggest that blood-based
liquid biopsy investigations are a promising avenue for early
diagnosis, disease prevention, and biomarker detection for a
range of brain disorders.

Saliva-based investigations

Saliva is readily accessible and has been investigated for poten-
tial biomarkers associated with NDs. Due to its non-invasive
collection method, minimal or no pre-processing requirements
before analysis, and possessing a molecular composition
similar to blood, this intricate biofluid has garnered growing
scientific interest.155,156 Saliva has shown its success as a bio-
fluid for disease diagnosis and biomarker sensing of different
diseases.157,158 Saliva reflects the systemic changes occurring
in the body. Saliva-based RS liquid biopsy investigations for
brain disorders represent a burgeoning field with transforma-
tive potential in non-invasive diagnostics. By probing mole-
cular signatures present in saliva samples, this approach offers
a convenient and accessible means of detecting biomarkers
associated with various brain disorders, including AD and PD.
With advancements in RS techniques and data analysis algor-
ithms, researchers can uncover subtle molecular changes
indicative of disease pathology, enabling early detection and
intervention. Saliva-based liquid biopsy holds promise for
facilitating population-wide screening initiatives, enabling
scalable and cost-effective disease monitoring strategies.
Moreover, the non-invasive nature of saliva sampling enhances
patient compliance and reduces procedural barriers, making it
an attractive option for routine diagnostic assessments and
longitudinal monitoring of brain disorders. As NDs often
involve systemic alterations, analyzing saliva provides a holistic
view of the overall health status and specific molecular
changes associated with these conditions. Saliva can be col-
lected repeatedly over time, allowing for longitudinal studies
and real-time monitoring of disease progression. This is
especially beneficial for assessing the dynamic nature of NDs.
Moreover, saliva contains a diverse range of molecules, includ-
ing proteins, nucleic acids, and metabolites. Changes in the
composition of these molecules can serve as potential bio-
markers for NDs, and RS can effectively analyze these
alterations.

Saliva contains detectable levels of t-tau, p-tau, Aβ, and
α-synuclein proteins. Initial investigations indicate promising
potential for the use of saliva in diagnostic applications.159

Several pilot studies have demonstrated that the presence of
salivary Aβ42 is detectable and elevated in AD, while Aβ40 levels
remain unchanged.160–163 RS also demonstrated its utility in
the field.156,164 For instance, Carlomagno et al. investigated
the efficacy of RS in distinguishing various NDs and gaining
insights into their pathogenesis by analyzing saliva samples
from 10 healthy controls, 19 patients with amyotrophic lateral
sclerosis (ALS), 10 with PD, and 10 with AD.165 SERS combined
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with PCA-LDA proved successful in revealing significant differ-
ences between groups, particularly distinguishing ALS from
healthy controls, where RS peaks corresponding to phospha-
tidylinositol, phospholipids, nucleic acids, glycogen, and
glucose played a differentiating role (Fig. 8b and c). Their find-
ings suggested the involvement of carbohydrate metabolism,
protein aggregation and misfolding, damage to membrane
lipids, and alterations in DNA/RNA in ALS. The authors also
highlighted the significant role of membrane phospholipids in
distinguishing between ALS, AD, and PD, where peaks associ-
ated with phosphatidylinositol (500 and 576 cm−1) exhibited
higher intensity in ALS samples, indicating increased activity
of the phosphatidylinositol 3-kinase enzyme (Fig. 8d and e).

The Lednev group employed RS in conjunction with machine
learning to diagnose early AD by identifying potential bio-
markers.166 This project utilized Raman hyper-spectroscopy
and focused on saliva samples obtained from both a normal
individual and someone with AD and mild cognitive impair-
ment. The results indicated that Raman hyper-spectroscopic
analysis of saliva holds promise as an effective diagnostic
method for early-stage AD.

Raman analysis was employed to capture the comprehen-
sive signal from the saliva of 23 PD patients, along with rele-
vant pathological and healthy control subjects. Utilizing both
machine and deep learning approaches, the acquired spectra
were processed. Leveraging a Raman database, a classification

Fig. 8 (a) Schematic representation of saliva preparation RS measurements, and machine learning data analysis. Adapted with permission from ref.
158. Copyright 2021 Frontiers. (b) PD average signal, (c) AD average signal and (d) CTRL average signal. (e) Overlapped average spectra of the experi-
mental groups. Adapted with permission from ref. 165. Copyright 2020 Springer Nature.
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model was developed, demonstrating the capability to accu-
rately distinguish each spectrum into the correct group with
accuracy, specificity, and sensitivity exceeding 97% for individ-
ual spectrum attribution. Additionally, each patient was cor-
rectly assigned with a discriminatory power exceeding 90%
representing innovative non-invasive procedures for early
detection of the diseases, with potential use in the future clini-
cal applications. Furthermore, the extracted data exhibited sig-
nificant correlations with clinical data currently employed for
PD diagnosis and monitoring. Altuntas and Buyukserin exam-
ined artificial saliva containing various candidate biomarkers
for AD.167 They integrated a SERS substrate for the detection of
Aβ in artificial saliva, successfully achieving a LOD of 0.5 pg
mL−1 for Aβ. Initially, polymeric films featuring surfaces with
multibranched nanopillars (MNS) were crafted through the
drop-casting of polycarbonate solutions onto anodized alumi-
num oxide molds, characterized by hierarchically branched
pores. Following the extraction from the nanoporous molds, a
20 nm gold coating was applied to enable these MNS sub-
strates to detect sub-picomolar concentrations of thioflavin-T,
a SERS-active dye commonly employed in clinical settings for
diagnosing the presence of amyloid plaques. Incorporating RS
into the analysis of saliva adds a layer of specificity and sensi-
tivity, enabling the identification of molecular changes associ-
ated with NDs. This non-invasive and patient-friendly
approach holds great promise for advancing early diagnosis,
understanding disease mechanisms, and monitoring treat-
ment responses. Collectively, these findings suggest that
saliva-based liquid biopsy investigations are a promising
avenue for early diagnosis, disease prevention, and biomarker
detection for a range of brain disorders.

Tear-based investigations

Human tears are a valuable reservoir of information reflecting
the health status of the eyes and overall bodily functions. The
richness of tear composition arises from the diverse array of
salts and organic components present, encompassing pro-
teins, lipids, metabolites, nucleic acids, and electrolytes.168–172

Changes in the concentrations of these constituents can serve
as indicators of various pathologies, eye-related disorders, and
inflammatory processes. Tear-based RS liquid biopsy investi-
gations for brain disorders represent a novel and non-invasive
approach to detecting biomarkers associated with neurological
conditions. By analyzing molecular signatures present in tears,
this method offers a convenient and accessible means of early
detection and monitoring of brain disorders such as AD and
PD. Tear-based sampling is relatively simple and can be per-
formed without specialized equipment, making it suitable for
widespread screening and remote monitoring. Tears have
gained attention for their potential role in reflecting changes
related to NDs. For instance, AD patients exhibit a noteworthy
increase in tear production and tear protein concentrations
compared to healthy individuals.173 Alterations in tear compo-
sition are also evident in AD patients, characterized by an elev-
ated concentration of dermcidin and reduced levels of lyso-
zyme-C, lactotransferrin, prolactin, lipocalin-1, extracellular

glycoprotein lacritin, among others.174 Moreover, there is a sig-
nificant rise in t-tau and Aβ42 levels in the tears of AD patients
compared to controls.175 Another study highlights elevated
levels of microRNA-200b-5p in the tear fluids of AD patients
relative to controls.174 A noticeable reduction in tear volume is
well-correlated with the progression and severity of PD. This
decline in tear secretion in PD individuals is likely attributed
to autonomic dysfunction.176,177 Additionally, elevated levels
of soluble α-synuclein are observed in tear fluids of PD
patients when compared to age-matched healthier
individuals.178–180 Furthermore, PD subjects exhibit higher
levels of TNF-α in tears than healthy subjects, suggesting TNF-
α as a potential diagnostic biomarker for PD.181

Some studies have explored proteins and other molecules
in tears as potential biomarkers for conditions like AD with
the assistance of RS. In a study by Ami et al., the researchers
employed a combination of FTIR and RS to analyze tear
samples, which contain proteins associated with ALS, from
both healthy individuals and ALS patients.182 Utilizing a
variety of machine learning methods, including multivariate
analysis, PLS-DA, neural networks, and extreme gradient boost-
ing, the authors successfully characterized the Raman spectra
of tears from ALS patients with a specificity and sensitivity of
100% (Fig. 9a–d). The investigation revealed that phenyl-
alanine bands exhibited significantly lower intensity in ALS
patient samples compared to the healthy cohort, suggesting a
rewiring of amino acid metabolism in ALS (Fig. 9c). Peaks
associated with protein β-sheet structures at ∼1670 cm−1 and
CvO stretching of lipids at 1770 cm−1 had higher intensity in
ALS patients, indicating potential alterations in protein confor-
mation linked to the evidence of the role of protein misfolding
and aggregation in NDs.

Cennamo et al. introduced a diagnostic approach utilizing
SERS of tears for the detection of NDs, encompassing various
forms of dementia and AD.72 The study enlisted 18 AD
patients, 8 individuals with mild cognitive impairment, and 6
control volunteers. SERS measurements of tear fluids from
individuals with AD and healthy subjects revealed changes in
the acquired spectra, indicating conformational alterations in
tear proteins. Spectral variations were observed in classes
associated with lactoferrin and lysozyme protein components
(Fig. 9e–h). Additionally, the quantitative assessment of
changes related to pathological conditions was achieved by
identifying the I1342/I1243 ratio, attributed to the C–H defor-
mation and amide III β-sheet. Overall, these findings suggest
that delving into tear-based liquid biopsy techniques shows
potential for early diagnosis, disease prevention, and bio-
marker detection related to a variety of brain disorders.

Cerebrospinal fluid (CSF)-based investigations

CSF-based RS liquid biopsy investigations for brain disorders
represent a promising avenue for minimally-invasive diagnosis
and monitoring of neurological conditions. By analyzing mole-
cular signatures present in the CSF, this approach offers
insights into the biochemical changes associated with brain
disorders such as AD and PD. CSF is in direct contact with the
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central nervous system and is considered a rich source of bio-
markers for NDs. CSF sampling allows for direct access to the
central nervous system and provides a rich source of bio-
markers reflective of brain health and pathology. RS enables
the identification and quantification of specific molecules in
the CSF, facilitating early detection, disease monitoring, and
personalized treatment strategies. Commonly studied CSF bio-
markers include tau, Aβ, and p-tau.183 Yu and colleagues devel-
oped a SERS biosensing platform for the simultaneous detec-
tion of Aβ1–42 oligomers and tau protein.184 This platform uti-
lized different Raman dye-coded polyA aptamer-AuNPs (PAapt-

AuNPs) conjugates. The conjugation of PAapt-AuNPs occurs
through the self-assembly of polyA block nucleotides and non-
fluorescent Raman dyes on the surface of AuNPs. Facilitating
attachment to the AuNPs surface, the polyA block plays a
crucial role, while protein recognition is executed by polyA
block nucleotides that consist of oligonucleotides. Upon intro-
ducing a protein biomarker into the reaction system, the polyA
block nucleotide separates from the AuNP surface. This separ-
ation is facilitated by the hybridization of the target protein
with its specific aptamer. Consequently, aggregates of AuNPs
form, creating enhanced electromagnetic hotspots within the

Fig. 9 (a) Schematic representation of tear sample collection from ALS patients for Raman data acquisition and analysis. (b) Overall performances
of PLS-DA and xgbTree methods in the 900–1800 cm−1 spectral range. (c) Comparison of the mean Raman spectra obtained by considering all the
measured tears from ALS patients and healthy controls. The shadowed area refers to the standard deviation of the data. (d) Spectrally resolved differ-
ential average Raman spectra of the two investigated groups. Adapted with permission from ref. 182. Copyright 2021 American Chemical Society. (e)
SERS spectrum of tears from a healthy subject. (f ) Spectrum of tear obtained by conventional RS in similar acquisition conditions. (g) Averaged SERS
spectra of tear samples from healthy subjects (Ctr-green line), mild cognitive disease-affected subjects (MCI-blue line), and AD-affected subjects
(AD-red line). The gray areas represent the standard deviation of the signal intensities within the considered data. (h) Signal differences concerning
the control data of AD (red area) and MCI (blue area) spectrum. The green lines indicate the signal dispersion range (0.68 of the standard deviation).
The statistically significant signal differences (p-value <0.05 in the one-way ANOVA statistics) are indicated by blue (MCI) and red (AD) marks,
respectively. Adapted with permission from ref. 72. Copyright 2020 SPIE.
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gaps between nanoparticles and yielding a significantly stron-
ger SERS signal. The researchers achieved LOD of 4.2 × 10−4

pM for tau protein and LOD of 3.7 × 10−2 nM Aβ1–42 oligomer
(Fig. 10c and d). The effectiveness of this strategy was demon-
strated by successfully detecting tau protein and Aβ1–42 oligo-
mers in artificial CSF samples, yielding satisfactory results.
Lhiyani et al. introduced a RS method employing machine
learning for the in vivo detection of Aβ and tau in human
CSF.185 Their findings highlight the significance of the pro-
teins’ concentration in the CSF as indicative of AD condition.

Chou and colleagues introduced a nanofluidic biosensor
utilizing SERS for the detection of conformational states of the
Aβ peptide.186 The biosensor comprises a fluidic channel with
a specific design, featuring a shallow region in the middle that
induces capillary flow within the microchannel. This capillary
flow is instrumental in creating SERS active sites by trapping
large gold nanoparticles (AuNPs) at the entrance to the nano-
channel. Simultaneously, the capillary flow enhances the con-
centration of target molecules, including Aβ, by transporting
them through the interstices of the nanoparticle clusters. The
device demonstrated effectiveness in distinguishing Aβ from
confounding proteins commonly present in CSF. Ryzhikova
and team achieved AD diagnoses by analyzing CSF using RS,
attaining 84% sensitivity and specificity.187 In this study, the
researchers presented a novel diagnostic approach for AD uti-
lizing CSF through near-infrared (NIR) RS combined with
machine learning analysis (Fig. 10e and f). NIR Raman spectra
were obtained from CSF samples collected from 21 patients
diagnosed with AD and 16 healthy control (HC) subjects.
Artificial neural networks and support vector machine discri-
minant analysis (SVM-DA) were employed for differentiation,
resulting in classification models demonstrating a high discri-
minative power. This suggests the method holds significant
potential for effective AD diagnostics. Taken together, these
results indicate that exploring CSF-based liquid biopsy tech-
niques holds promise for early diagnosis, preventing diseases,
and detecting biomarkers associated with various brain
disorders.

In addition, extracellular vesicles also emerged as a liquid
biopsy for neurological disorders expanding the utility of
liquid biopsies.188 We would like to note that researchers have
utilized diseased cells or tissues in order to diagnose different
NDs.23,189 For instance, in HD, RS has previously been used to
study fibroblast from patients.190–192 Wang et al. introduced
graphene-assisted RS for rapid biomarker sensing of AD.23

Applying a single layer of graphene to brain slices significantly
enhanced the SNR in Raman measurements taken from brain
tissue. This improvement led to an increase in the accuracy of
classification from 77% to 98%. In-depth discussion of these
methods is beyond the scope of this article.

León-Bejarano and colleagues utilized SERS to analyze
α-synuclein levels in skin biopsies from PD patients.189 Their
study revealed distinct alterations in the Raman bands of the
protein, with shifts observed from 1655, 1664, and 1680 cm−1

to 1650, 1670, and 1687 cm−1 when comparing control sub-
jects to those with PD. These spectral changes were attributed

to protein aggregation, suggesting the potential of SERS in
detecting aggregated α-synuclein in skin samples. This non-
invasive approach offers a promising avenue for disease detec-
tion, minimizing the need for invasive diagnostic procedures.
This expansion of the types of biopsies for Raman investi-
gation in the context of brain disorders represents a significant
advancement in diagnostic techniques. This expansion opens
up new possibilities for early diagnosis, disease monitoring,
and understanding the underlying molecular mechanisms of
brain disorders. Additionally, it offers the potential for person-
alized medicine approaches tailored to individual patients
based on their specific biomarker profiles. Overall, the diversi-
fication of biopsy sources for Raman investigation holds great
promise for improving the management and treatment of
brain disorders.

Table 1 summarizes the most important Raman signatures
and biomarkers to identify different brain disorders using
liquid biopsy. The primary constraints associated with all the
mentioned molecules and biomarkers stem from their overlap
with biomarkers found in other comparable conditions (such
as PD and AD) and the methodologies utilized for their charac-
terization. One of the key challenges in the field of biomarkers
is the issue of specificity. Many biomolecules and biomarkers
can be present in more than one condition, making it difficult
to differentiate between them. This overlap can lead to difficul-
ties in accurately identifying and characterizing biomarkers for
specific conditions, such as PD and AD. The intricate simi-
larities in molecular signatures across these NDs necessitate
precise characterization techniques to distinguish specific bio-
markers unique to each condition. In addressing these con-
straints, ongoing research and technological advancements
aim to enhance the specificity of biomarkers, develop more
refined characterization methodologies, and explore innovative
approaches such as multi-modal biomarker strategies to
improve accuracy and reliability in disease diagnosis and
monitoring. Overall, the challenges associated with bio-
molecules and biomarkers underscore the need for continued
innovation and collaboration within the scientific community
to overcome these constraints and advance the field of bio-
marker research for improved disease detection, treatment,
and management.

Selectivity and sensitivity of Raman
spectroscopy with other analytical
techniques routinely employed in
biomedical applications

RS offers distinct advantages in terms of selectivity and sensi-
tivity compared to other analytical techniques commonly used
in biomedical applications. One notable advantage is its high
molecular specificity, allowing for the identification and
characterization of individual chemical bonds and functional
groups within complex biological samples.201–203 This mole-
cular specificity arises from the unique fingerprint-like Raman
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Fig. 10 (a) Raman signature for samples of pure CSF and CSF with different volumes of Aβ scheme. (b) Raman signature for samples of pure CSF
and CSF with different volumes of tau scheme. Adapted with permission from ref. 185. Copyright 2023 Optica Publishing Group. (c) SERS signals in
responses to tau protein of varying concentrations. (d) SERS signals in response to Aβ1–42 oligomers of varying concentrations. Adapted with per-
mission from ref. 184. Copyright 2019 American Chemical Society. (e) Mean Raman spectra of CSF from AD (red line) and healthy control (blue line)
cohorts. (f ) Difference spectrum (black line) and spectral variations around the mean (±2 standard deviations). Adapted with permission from ref.
187. Copyright 2020 Elsevier.
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Table 1 Most important Raman signatures and biomarkers to identify different brain disorders using liquid biopsy

Brain
disorder

Most important Raman signatures, biomolecules, and biomarkers

Blood Tear Saliva CSF

AD Aβ143,145,184 Urea182 Aβ166,167 Aβ140,187

Tau143,184 Phenylalanine182 Tau166 Tau140,187

Exosomes143 Amide I182 Lactoferrin159 Phenylalanine186

Carotenoids140 α-Helices182 AChE159 Tyrosine186

Tryptophan140 β-Sheet182 α-Synuclein159 Histidine186,187

Alanine140 Lipids182 Acetylcholinesterase159 Amide III (β-sheet)186

Tyrosine140 Dermcidin172 Amide III (α-helix)186

Phenylalanine140 Lysozyme-C lactotransferrin172 Glycine187

β-Components140 Prolactin172 Proline187

Intensity ratio of indole and tryptophan137 Lipocalin-1 172 Arginine187

Histidine153 Extracellular glycoprotein
lacritin172

Valine187

Proteinic side chain structure127 Tau172

Amide I127 Aβ172

Intensity ratio of 1127 to 1001 cm−1

(protein, lipids to phenylalanine)128
microRNA-200b-5p172

Intensity ratio of 1654 to 1600 cm−1

(ref. 128) (α-helix structure to amyloid
precursor protein)

Tryptophan72

Ascorbic acid71 Tyrosine72

Hypoxantine71 Lactoferrin72

Uric acid71 Lysozyme72

Lipocalin72

Albumin72

PD α-Synuclein150 CCL-2 172 α-Synuclein150 α-Synuclein150

Plasmin-antiplasmin150 DJ-1 172 Phosphatidylinositol158 Autosomal enzymes158

Extracellular vesicles193 Proteins from S100 superfamily172 Ester of cholesterol158 Amyloid species158

Autosomal enzymes158 Peroxiredoxin-6 172 Tryptophan158 Micro-RNA158

Amide I193 Annexin-X5 172 Cytosine158 Cytokines expression patterns158

Lipids193 Glutathione-stransferase-A1 172 Guanine158

Carbohydrates193 Apolipoprotein superfamily-
ApoD172

Phenylalanine158

Porphyrin193 ApoA4 and ApoA1 172 Phospholipids158

Pyrimidine193 TNF-α172 Glucose/glycogen158

Carotenoids193 α-Synuclein172 Lipids158

Saccharide and disaccharide193 Amide I158

Dopamine146 Tyrosine158

Nucleic acids158

Amide III158

Mucins158

HD Cholesterol190 Mutant huntingtin protein194 Huntingtin protein195 Neurogranin and TREM2 196

β-Sheet190 Amylase195 T-tau197

Phospholipids190 Cortisol195 mHTT197

Phenylalanine190 C-reactive protein195 Neurofilament light chain
(NfL)198

Proteins190 Uric acid195

DNA190

Mutant huntingtin protein151

Neurofilament light chain151

Proline151

β-Sheet protein151

Uric acid151

Adenine151

Amide III151

Amide I151

TBI S-100β134,136,141,147 GFAP199 Micro-RNA200 S-100β136,141,147

NSE136,141,144,147 Tau199 Salivary extracellular
vesicles200

NSE136,141,144,147

Myelin basic protein (MBP)136 NfL199 NAA134

Glial fibrillary acidic protein
(GFAP)134,136,147

MBP134

NAA134

Cleaved tau134

T-tau134

P-tau134

Ubiquitin C-terminal hydrolase134

Aβ1–42 134

αII-Spectrin breakdown products134

Gamma-enolase134
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spectra produced by different biomolecules, enabling the
differentiation of closely related species and the detection of
subtle structural variations. In contrast, techniques such as
infrared spectroscopy may struggle with spectral overlap and
lack the ability to distinguish between similar molecular
species. Furthermore, RS is inherently non-destructive and
non-invasive, making it particularly well-suited for analyzing
delicate biological samples without the need for extensive
sample preparation or labeling.28,204 This preserves the integ-
rity of the sample and allows for repeated measurements over
time, facilitating longitudinal studies and minimizing experi-
mental artifacts. In contrast, techniques such as mass spec-
trometry often require sample ionization or derivatization,
which can alter the native state of biomolecules and introduce
artifacts into the analysis.

In terms of sensitivity, RS offers advantages over traditional
fluorescence spectroscopy, especially in complex biological
matrices with high autofluorescence background.201,205

Combining RS with techniques like SERS, SRS, and CARS can
significantly enhance the sensitivity and provide advantages
over traditional techniques like fluorescence spectroscopy.206

The extraordinary signal enhancement allows the detection of
extremely low concentrations of analytes, down to single-mole-
cule levels. Raman signals arise from inelastic scattering pro-
cesses and are therefore independent of excitation wavelength,
allowing for excitation at longer wavelengths where autofluor-
escence is minimized. This enables the detection of low con-
centrations of analytes within highly autofluorescent samples,
enhancing sensitivity and enabling the analysis of a wide
range of biomolecules. Overall, Raman spectroscopy’s combi-
nation of molecular specificity, non-destructiveness, and sensi-
tivity makes it a valuable tool for a wide range of biomedical
applications, including disease diagnosis, drug discovery, and
tissue engineering. While other analytical techniques may
offer complementary advantages in certain scenarios, RS
remains a powerful and versatile tool for understanding the
molecular basis of health and disease.

CARS, TERS, and SRRM spectroscopy have been explored in
various biomedical applications, including the detection and
diagnosis of NDs. CARS has shown promise in distinguishing
Aβ, a key biomarker for AD, through label-free vibrational
imaging.207,208 Cunha et al. applied a multimodal imaging
approach, including spontaneous Raman, CARS, SRS, and
Second harmonic generation, to examine the core and halo of
Aβ plaques in the hippocampus and cortex of brain tissues
from an AD mouse model.207 Additionally, Tabatabaei et al.
conducted TERS on neuronal spines exposed to Aβ treatment,
revealing insights into Aβ accumulations at the surface of
spines.65 Super-resolution vibrational imaging using expan-
sion SRS microscopy has been utilized to track nanoscale fea-
tures of protein synthesis in protein aggregates using meta-
bolic labeling of small metabolites.209 Aβ proteins forming the
plaques show distinctive Raman spectral features. While these
techniques have shown promise in imaging biological samples
such as tissues with high spatial resolution and chemical
specificity, their application to liquid biopsy for the diagnosis

of brain disorders has been limited due to several factors.
These include the low concentration of biomarkers in blood,
the complexity of blood composition, and the need for highly
sensitive detection methods.

Practical challenges associated with
Raman techniques and transitioning
into a quantitative technique

Raman spectroscopic techniques offer great potential for bio-
medical applications due to their ability to provide detailed
molecular information and chemical fingerprints of biological
samples. However, there are several practical challenges associ-
ated with these techniques that need to be addressed to
enable their widespread adoption and transition into quanti-
tative techniques in biomedical applications.

Reproducibility challenges

Variations in sample preparation protocols, such as handling,
drying, and substrate or nanoparticle immobilization, can
introduce inconsistencies in acquired Raman or SERS spectra,
impacting reproducibility. Furthermore, differences in instru-
mentation, including laser sources, optics, detectors, and cali-
bration procedures, can contribute to spectral measurement
variability. Environmental factors such as temperature, humid-
ity, and ambient light conditions may also influence Raman or
SERS signals, adding to the variability. To address reproduci-
bility challenges, standardized sample preparation protocols,
instrument calibration procedures, and stringent environ-
mental controls are essential.107,210 Additionally, employing
internal standards, spectral normalization techniques, and
robust data analysis methods can help mitigate variations.

Quantification challenges

The intensity of Raman or SERS signals can vary significantly
due to factors like sample concentration, substrate or nano-
particle properties, and molecular orientations, posing chal-
lenges for quantitative analysis. Biological samples, such as
biofluids or tissues, present complex matrices that can inter-
fere with these signals, further complicating quantitative ana-
lysis. Moreover, biological samples are inherently complex,
with numerous molecular species having overlapping Raman
spectra, making it difficult to interpret signals and identify
specific biomarkers or molecular signatures associated with
disease states. Unlike other analytical techniques, there is a
lack of well-established and widely accepted calibration stan-
dards for Raman or SERS techniques in biomedical appli-
cations. To address these quantification challenges, several
approaches can be adopted. Firstly, robust calibration models
can be developed using multivariate data analysis techniques
such as PLS regression or artificial neural networks (ANNs) to
accommodate signal variations and matrix effects.
Additionally, employing internal standards or spiked samples
with known concentrations can establish quantitative relation-
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ships between signal intensity and analyte concentration.
Exploring advanced SERS substrates or nanoparticles with con-
trolled and reproducible enhancement factors can improve
signal reproducibility and eliminate quantification
challenges.28,201 Lastly, combining Raman or SERS techniques
with other analytical methods such as chromatography or
mass spectrometry can provide complementary quantitative
information, enhancing the overall analytical capabilities.

Sample complexity and interference

Biological samples often exhibit intrinsic fluorescence, which
can interfere with Raman signals, complicating data acqui-
sition and interpretation. Moreover, biological samples are fre-
quently heterogeneous, with varying chemical compositions
and distributions, further complicating the interpretation of
Raman spectra. Background signals from substrates, solvents,
or other sample components can also affect Raman spectra,
necessitating careful background subtraction and data proces-
sing. To overcome these challenges, various strategies can be
employed. Advanced data processing techniques such as base-
line correction, background subtraction, and multivariate
curve resolution can be implemented to isolate the desired
Raman signals from interfering signals.205,211 Exploring
alternative excitation wavelengths or resonance Raman tech-
niques to minimize autofluorescence interference is also
crucial. Additionally, developing sample pretreatment proto-
cols such as extraction, purification, or separation techniques
can simplify complex biological matrices, reducing inter-
ference and improving the quality of Raman measurements.

Time and spatial resolution

RS faces numerous challenges in clinical applications, particu-
larly concerning time and spatial resolution. Time resolution
limitations are notably evident in achieving acceptable SNR for
practical use. Longer exposure times and optimized data acqui-
sition strategies are necessary to maximize Raman signal and
minimize noise for improved SNR. Spatial resolution chal-
lenges significantly affect the technique’s ability to capture
Raman spectra from deeper tissue layers accurately. Ensuring
high spatial resolution requires precise sample focus and
alignment of optics to optimize the Raman signal, critical for
reliable clinical diagnostics and guidance. However, maintain-
ing a balance between high spatial resolution and SNR is
essential for obtaining dependable results. Conventional
Raman microscopy techniques often suffer from limited
spatial resolution, hampering the accurate characterization of
cellular or subcellular features. To address this, advanced
microscopy techniques such as confocal Raman microscopy,
TERS, or SRS microscopy can be employed to achieve sub-
micron spatial resolution.28,67,98,101,103 These methods utilize
confocal optics, plasmonic enhancement, or nonlinear optical
processes to enhance spatial resolution and enable detailed
imaging of biological samples at the cellular or subcellular
level.

Technological advancements have been developed to tackle
challenges related to time and spatial resolution in RS for

clinical applications. These include enhanced spectral resolu-
tion, confocality, and the use of shorter wavelength lasers and
high numerical aperture (NA) immersion objectives.
Optimizing exposure time and utilizing multiple exposures are
fundamental practices to improve Raman spectra quality.
Additionally, advancements aim to enhance the anti-inter-
ference capacity of RS for faster data acquisition and analysis,
facilitating timely medical treatment. Spatial resolution
enhancements are achieved through high NA immersion
objectives and confocal RS implementation. Furthermore,
advancements in super-resolution imaging restoration tech-
niques and structured illumination methods have contributed
to improving spatial resolution, particularly for clinical
applications.98–100,105 These advancements enable detailed
spectral information retrieval related to specific molecular
structures and substances, aiding in precise disease diagnosis
such as cancer, infections, and neurodegenerative conditions.
Integration of RS with other imaging modalities, like optical
coherence tomography (OCT) or fluorescence microscopy, can
provide complementary information and enhance spatial
resolution in clinical settings.212–214 Combining RS with high-
resolution imaging techniques enables clinicians to obtain
comprehensive molecular and structural information from bio-
logical samples, facilitating accurate disease diagnosis and
monitoring.

Data interpretation and classification

RS holds significant promise for clinical applications, yet it
encounters challenges in accurately interpreting and classify-
ing acquired data. A primary hurdle is the inherently weak
Raman scattering signal, necessitating extended acquisition
times to achieve an acceptable SNR for practical use. This
limitation in signal strength hampers rapid spectral imaging,
limiting the technique’s applicability in real-time clinical diag-
nostics and monitoring. Additionally, the complexity of Raman
spectra from biological samples presents a substantial chal-
lenge. The broad peaks in these spectra represent a mix of
molecules and neighboring molecular structures, complicating
the identification of specific molecular fingerprints. This com-
plexity impedes the accurate interpretation of data for clinical
applications.

To address the challenges in interpreting and classifying RS
data for clinical use, various strategies and technological
advancements have been explored. These include the use of
genetic algorithms to optimize preprocessing strategies and
classification models, such as support SVM. These approaches
aim to enhance the accuracy and reliability of Raman spectral
analysis for clinical diagnostics. Furthermore, advancements
in machine learning techniques have been investigated to
facilitate precise classification methods for clinical diagnoses
using RS. For instance, there is recognition of Raman spectro-
scopy’s potential to aid clinical decision-making, such as in
classifying oncological samples, prompting the application of
machine learning approaches to address the complexities of
Raman spectra interpretation.215,216 Additionally, efforts have
been directed towards developing effective data processing
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techniques, including advanced spectral preprocessing and
statistical analysis methods, to extract pure Raman signals
from in vivo or ex vivo tissue samples.

Instrumentation and cost

Raman/SERS techniques often require specialized and expen-
sive instrumentation, such as high-quality lasers, spec-
trometers, and detectors, which can limit their widespread
adoption in biomedical settings. Moreover, Raman/SERS
instrumentation demands regular maintenance, calibration,
and expertise to operate and interpret the data, posing chal-
lenges in resource-limited settings. To address these instru-
mentation and cost challenges, several approaches can be
explored. Firstly, it is crucial to develop cost-effective and por-
table Raman/SERS instrumentation tailored for specific bio-
medical applications, leveraging advances in miniaturization
and integrated photonics. Additionally, exploring the use of
handheld or fiber-optic Raman/SERS probes for in vivo or
point-of-care applications can broaden accessibility.46,217–219

Establishing dedicated Raman/SERS facilities or core facilities
in research institutions or hospitals can centralize expertise
and resources, facilitating broader access to these techniques.
Moreover, collaborating with instrument manufacturers to
develop user-friendly and cost-effective solutions for bio-
medical applications can help overcome barriers related to
instrumentation and expertise.

By addressing these practical challenges through a combi-
nation of technological advancements, robust data analysis
methods, standardized protocols, and interdisciplinary collab-
orations among physicists, chemists, biologists, and clinicians,
Raman and SERS techniques can be transformed into quanti-
tative and reliable analytical tools for various biomedical appli-
cations, such as disease diagnosis, therapeutic monitoring,
and biomarker discovery. Ongoing advancements in instru-
mentation, data analysis algorithms, and sample preparation
methodologies will continue to drive the progress of Raman-
based biomedical research and facilitate its translation into
clinical practice.

Conclusion and future prospects

Researchers continue to explore and validate potential bio-
markers with the goal of improving early detection and under-
standing the underlying mechanisms of diseases such as AD,
PD, and others. The future of Raman-based liquid biopsy
detection systems for NDs and brain disorders holds signifi-
cant promise in revolutionizing diagnostic and monitoring
approaches.220,221 Early detection is crucial for initiating inter-
ventions before significant neurological damage occurs.
Continued efforts to identify novel biomarkers associated with
NDs in biofluids may lead to the discovery of early and predic-
tive markers. Research is focused on integrating multiple bio-
markers from various biofluids to create comprehensive
panels.107 Leveraging the sensitivity and specificity of RS,
liquid biopsy techniques offer a minimally- to non-invasive

and highly accurate means of detecting molecular biomarkers
associated with various NDs, including AD and PD. With
advancements in technology and methodologies, Raman-
based liquid biopsy platforms are poised to provide real-time,
point-of-care diagnostics, enabling early disease detection and
intervention. Multimodal approaches combining genomics,
proteomics, metabolomics, and imaging techniques may offer
a more holistic understanding of NDs.46 The concept of
“liquid biopsy” for NDs may gain traction, allowing for mini-
mally invasive diagnostic procedures. Biofluids, such as blood
and CSF, could serve as liquid biopsy sources, providing valu-
able information about disease status. The synergy between
liquid biopsy and RS holds great promise for advancing our
understanding of brain disorders. This integrated approach
not only provides a less-invasive means to access crucial diag-
nostic information but also offers molecular insights into the
intricate biochemical processes underlying neurological con-
ditions. As ongoing research endeavors seek to refine and vali-
date these techniques, the potential impact on early detection,
disease monitoring, and treatment assessment for brain dis-
orders becomes increasingly apparent, paving the way for
more effective and personalized healthcare strategies. Ongoing
advancements in analytical techniques, including RS, mass
spectrometry, and next-generation sequencing, may enhance
the sensitivity and specificity of biomarker detection.
Integration of these technologies could contribute to more
accurate and reliable diagnostic tools. Development of point-
of-care and wearable diagnostic devices may facilitate on-the-
spot biomarker analysis. These devices could enable continu-
ous monitoring, early detection of changes, and timely inter-
vention. The use of big data analytics and AI algorithms may
help process complex datasets generated from biofluid
analyses.222,223 Machine learning approaches could assist in
identifying subtle patterns and correlations in biomarker pro-
files for improved diagnostic accuracy. Collaborative efforts
between academia, industry, and healthcare institutions are
likely to accelerate biomarker discovery and validation. Large-
scale studies involving diverse patient populations may
provide a more comprehensive understanding of the hetero-
geneity of NDs. Biomarkers from biofluids may be crucial for
patient stratification in clinical trials, helping to identify suit-
able participants and monitor treatment responses. This could
enhance the efficiency of drug development and facilitate the
discovery of disease-modifying therapies. Successful validation
of biofluid-based biomarkers may lead to regulatory approvals
and their incorporation into routine clinical practice.
Widespread adoption of validated biomarkers could signifi-
cantly impact the early diagnosis and management of NDs.

In summary, the future of using biofluids for NDs diagnosis
holds great potential for early detection, personalized treat-
ment approaches, and advancements in our understanding of
these complex conditions. Ongoing interdisciplinary research
and technological innovations are likely to shape the land-
scape of NDs diagnostics in the coming years. Raman-based
liquid biopsy detection systems are expected to play a pivotal
role in personalized medicine, guiding treatment strategies,
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monitoring disease progression, and ultimately improving
patient outcomes in the realm of NDs and brain disorders.
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