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Spintronics-based artificial neural networks (ANNs) exhibiting nonvo-
latile, fast, and energy-efficient computing capabilities are promising
neuromorphic hardware for performing complex cognitive tasks of
artificial intelligence and machine learning. Early experimental efforts
focused on multistate device concepts to enhance synaptic weight
precisions, albeit compromising on cognitive accuracy due to their
low magnetoresistance. Here, we propose a hybrid approach based on
the tuning of tunnel magnetoresistance (TMR) and the number of
states in the compound magnetic tunnel junctions (MTJs) to improve
the cognitive performance of an all-spin ANN. A TMR variation of 33—
78% is controlled by the free layer (FL) thickness wedge (1.6—2.6 nm)
across the wafer. Meanwhile, the number of resistance states in the
compound MTJ is manipulated by varying the number of constituent
MTJ cells (n = 1-3), generating n + 1 states with a TMR difference
between consecutive states of at least 21%. Using MNIST handwritten
digit and fashion object databases, the test accuracy of the compound
MTJ ANN is observed to increase with the number of intermediate
states for a fixed FL thickness or TMR. Meanwhile, the test accuracy for
a 1-cell MTJ increases linearly by 8.3% and 7.4% for handwritten digits
and fashion objects, respectively, with increasing TMR. Interestingly, a
multifarious TMR dependence of test accuracy is observed with the
increasing synaptic complexity in the 2- and 3-cell MTJs. By lever-
aging on the bimodal tuning of multilevel and TMR, we establish viable
paths for enhancing the cognitive performance of spintronic ANN for
in-memory and neuromorphic computing.

A. Introduction

Neuromorphic computing, based on the brain-inspired frame-
work of hosting massive interconnected artificial neurons and
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Achieving high cognitive accuracy in digit recognition and pattern detec-
tion tasks is a compelling attribute for high-performance spintronics-based
artificial neural networks (ANNs). While earlier experimental efforts
focused on developing multistate devices to mimic spin synapses of
variable synaptic weights, such device concepts are mainly based on
domain wall motion and vertically stacked MTJ which suffer from low
magnetoresistance readout, and hence, poor synaptic resolution and
higher recognition errors. Meanwhile, improvement in recognition
accuracy through magnetoresistance modulation is posited in
simulation, yet plausible experimental approaches are starkly absent. In
this work, we introduce a novel bimodal experimental route to improve
cognitive accuracy by tuning the number of states and tunneling
magnetoresistance of the ANN constructed over a CMOS-compatible
design of compound spin-orbit torque magnetic tunnel junctions (SOT-
MTJs). This is achieved by the concomitant implementation of a network of
multiple SOT-MT] on a shared write channel and a free layer thickness
wedge. Remarkably, we show 3-cell compound MTJ with TMR between
states, which is 7-fold higher than reported state-of-the-art, and enhanced
recognition accuracies when coupled with optimal free layer thickness. Our
bimodal design provides a path to realize enhanced cognitive performance
in spintronics ANN for in-memory and neuromorphic computing.

synapses as memory and processing units, can overcome the
inevitable limitations of Von-Neuman architectures in performing
computationally intensive tasks for artificial intelligence
and big data."™ Nonvolatile neuromorphic concepts built upon
resistive,® phase change,” and ferroelectric®® memristors typi-
cally require high energy (0.1-10 pJ) and long write time (10-100
ns) for switching, and display average endurance (10°~10"2 cycles)
for practical and efficient computing applications." On the other
hand, spin-based neuromorphic hardware utilizing the spin-orbit
torque (SOT) mechanism for electrical switching is expected to
offer energy efficiency (~ 0.1 pJ), fast write (<10 ns) and read time
(30 ns), and high endurance (10" cycles), enabling scalable
sustainable computing.'® In this light, the commercialized
industry-compatible SOT-magnetic tunnel junctions (MTJs) -
consisting of an insulating barrier sandwiched between the heavy
metal/ferromagnetic free (FL) and reference layers, are the ideal
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building block for neurons and synapses, wherein the latter is
mimicked by a multistate MTJ."

The functional performance of such spintronic neuromorphic
devices is benchmarked to vital parameters such as their learning
and testing accuracies in performing cognitive tasks of digit
recognition and pattern detection."'> Numerous concepts have
been proposed for accuracy improvements, including (i) the
reduction of device energy barrier in enabling faster fluctuation
speed for improved probabilistic behavior,"*'* (ii) the enhance-
ment of magnetoresistance values to amplify the distinction
between synaptic states,'” and (iii) the increase in the number of
conductance states'®?° to strengthen synaptic weight precision.
The first option of reducing the switching energy barrier intro-
duces undesirable thermal instability and device reliability issues,
as well as a higher recognition error rate due to its sensitivity
to structural defects and process-related size variation.>' Notably,
clubbing multistate synapses with a magnetoresistance-enhancing
mechanism will be a promising means of concomitantly elevating
the synaptic precision and resolution of artificial synapses for
cognitive tasks. Yet, experimental efforts have largely been
restricted to singly tuning the multistate functionality of synaptic
devices built upon domain wall motion,”*>* and vertically stacked
MT]J," " albeit with low multistate magnetoresistance readout
between two consecutive resistance states of <3%. Meanwhile, the
notion of magnetoresistance modulation for enhanced accuracies
is limited to simulations, without proposals of feasible routes for
practical implementation. In this light, it is compelling to establish
practical approaches to modulate the synaptic precision and
resolution and elucidate their interplaying effects on the synaptic
performance.

In this work, we adopt a bimodal approach of tuning multi-
state and magnetoresistance, by introducing compound MT]J
with a varying number of SOT-MTJ cells (n = 1-3) and free layer
thickness wedge of 1.6-2.6 nm, to modulate the digit and object

Low TMR
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recognition performance of our spintronic artificial neural
network (ANN) (Fig. 1). We show that the CMOS-compatible
compound MT]J design will enable thermally stable and well-
distinguished multistate with large tunneling magnetoresis-
tance (TMR) ratio between states. Further, the variation in the
FL thickness enables more than 2-fold enhancement in TMR.
By varying the number of states and TMR, we demonstrate
enhanced test accuracies of the compound MTJ-based ANN in
performing MNIST handwritten digit and fashion object recog-
nition tasks. These results underscore that a high TMR multi-
state synapse is a feasible solution for enhanced performance
of spin-based ANN in executing cognitive tasks.

B. ANN design and measurement
setup

The ANN consists of interconnected synapses in a crossbar
fashion with multiple presynaptic input and postsynaptic out-
put neurons (Fig. 1). The input voltages (V4, V,, ... V,) are
applied along the horizontal line, while the output voltages (O,
O,, ... Op) collected along the vertical line of the crossbar will
be fed as input current spike to the postsynaptic output
neurons. The intersection of the row and column of the ANN
represents the bit cell, and the conductance states of these cells
encode the corresponding synaptic weight (w). The output of
each postsynaptic neuron follows the vector-matrix multiplica-
tion stated as: 0; = S_w; V;.*

These bit cells are represented by the multistate compound
MT]J. Each constituent MTJ on the compound MTJ comprises a
MgO tunnel barrier sandwiched by the bottom CoFeB free layer
of varying thickness (1.6-2.6 nm) and top-pinned CoFeB refer-
ence layer (Fig. 2a, See Methods). The cross-sectional scanning

transmission electron microscopy (STEM) images with

Synaptic crossbar network (axb)

Fig. 1 Spin-based artificial neural network (ANN). The spin—orbit torque magnetic tunnel junction (SOT-MTJ)-based crossbar array of artificial
synapses connecting the two layers of neurons (input: a, output: b). An experimental bimodal approach of tuning free layer (FL) thickness (t) and the
number of MTJ cells (circled, left inset) is utilized to improve the ANN cognitive performance. The FL thickness is controlled by the wedge (t: 1.6-2.6 nm)
along the whole wafer, while t is uniform for all constituent MTJs across the compound MTJ. The synapses can be implemented using the compound
SOT-MTJ device concept which incorporates 1, 2, and 3-cell MTJs without altering the prevailing crossbar architecture. The elliptical MTJ has a shape
anisotropy (long axis) along the y-axis. The current is applied longitudinally through the SOT channel i.e., along the x-axis direction while the assisted field
is applied along the y-axis.

This journal is © The Royal Society of Chemistry 2024 Nanoscale Horiz., 2024, 9,1522-1531 | 1523
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Fig. 2 Structural characterization of MTJs. (a) Schematic of the multilayer stack structure of the fabricated MTJs (thickness of layers are in nm in
parentheses). (b) Cross-sectional scanning transmission electron microscopy (STEM) image of the multilayer stack structure (scale bar: 20 nm), and (c)
corresponding energy-dispersive X-ray composition mapping. (d) Top view scanning electron microscopy (scale bar: 5 um) and (e) cross-section TEM
images (scale bar: 500 nm) of the compound device showing 3 MTJs on a shared SOT channel.

elemental mapping show the distinct layers of the MTJ (Fig. 2b
and c). The plan view scanning electron microscopy imaging
and cross-sectional TEM images of the compound MTJ show
three elliptical MTJs of size 250 x 500 nm” and spaced 1.2 pm
apart on a shared Pt/Ta write channel of 0.9 x (0.9-3.25) um?
(Fig. 2d and e). The spin orientations of the in-plane anisotropy
CoFeB layers are aligned along the long axis of the elliptical
MT]Js, which correspond to the easy axis due to shape aniso-
tropy, while the top RL is additionally pinned to a fixed
orientation by the synthetic antiferromagnet layer. A current
injected into the heavy metal Pt/Ta channel will generate a spin
current at the Pt/CoFeB FL interface due to the spin Hall effect,
inducing magnetization switching of the FL at a sufficiently
large current density.”>*® An external magnetic field, H, is
applied along with the SOT current to assist the FL switching
in a preferable direction.

The resistance dependence of the applied field, R(H), was
acquired by sweeping a magnetic field (£20 mT) along the easy
axis of the MTJs and measuring the output voltage through a
reference resistor (1 MQ) connected in series with the device
under test. To examine the collective resistance dependence of
applied voltage, R(V), the voltage pulses (amplitude: 0.1-2 V,
width: 200 ns, and delay time: 1.5 s) are first applied across the
write channel of the wire-bonded compound MT] in the
presence of an assisted H (+6 — 10 mT), followed by a readout
of the compound MT]J resistance by injecting a small reading
voltage of ~0.1 V across the MT]J.

C. Free layer thickness variation

First, we examine the FL thickness dependence of magnetic
and transport properties of the MTJ material stack and 1-cell
devices. The major M(H) hysteresis loop of the MTJ film
consisting of 1.6 nm-thick FL shows a defined step between

1524 | Nanoscale Horiz., 2024, 9, 1522-1531

the FL (~+5 mT) and RL switching, indicating well-decoupled
switching of FL independent of RL (Fig. 3a). Meanwhile, the
major R(H) loop (Fig. 3b) of the corresponding device depicts a
parallel (P) aligned RL and FL at large applied H of +300 mT.
With a reduction in applied H to +90 mT, the exchange
coupling between the SAF and RL dominates over the Zeeman
energy of the external magnetic field, resulting in the rotation
of the RL and FL to an antiparallel (AP) configuration and
an increased resistance of 33.8 kQ. Further reduction of H to
—10 mT results in the switching of the FL, giving rise to a P
configuration with a low resistance of 25.2 kQ. Similar major
M(H) and R(H) loops are observed across all FL thicknesses with
well-decoupled switching of FL and RL, albeit with coercivity,
H., and saturation field, Hy, variations to be discussed in the
following paragraph.

Fig. 3c exhibits the minor M(H) hysteresis of the multilayer
stacks for FL thickness ranging from 1.6-2.6 nm. As the FL
thickness increases, the M(H) hysteresis with +x offset gradually
shifts towards the left, marked by the diminishing exchange
bias field, Hex, from 2.5 to 0.4 mT (Fig. 3e, violet diamond). This
is due to the reduction of stray field effect on thicker FL, which
originates from the lateral magnetic flux of the SAF layer and
Néel coupling originated at the CFB/MgO interface.”” The
increase in Hy from 12.7 to 14.8 mT suggests that the in-
plane anisotropy along the easy-axis reduces with increasing
FL thickness (Fig. 3e, black circle). Further, the coercive field,
H,, is constant to ~12% across varying FL thicknesses of 1.6-
2.6 nm (Fig. 3e, black square), wherein the fluctuation may be
ascribed to inhomogeneity, structural defects, or localized
disorder in the easy axis of the MTJ.?®

The minor R(H) measurements across the MTJ devices of
varying FL thickness show the sharp transition from the high
resistance AP to low resistance P state for the down-field sweep,
and vice versa, corresponding to the single domain-like char-
acteristics expected in nanoscale 250 x 500 nm? device

This journal is © The Royal Society of Chemistry 2024
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Fig. 3 Magnetic and transport characteristics of the MTJ film and device. (a) and (b) Major (a) film-level M(H) and (b) device-level R(H) hysteresis loop for
stack structure consisting of 1.6 nm-thick FL. (c) and (d) Minor (c) film-level M(H) and (d) device-level R(H) hysteresis loops for different FL thicknesses
ranging from 1.6-2.6 nm. (e) and (f) The FL thickness dependence of (e) exchange field (H.,), coercive field (H.), saturation field (H), and (f) antiparallel
resistance (Rap). parallel resistance (Rp), and tunneling magnetoresistance (TMR) extracted from the R(H) hysteresis loops measured across at least
10 devices for each free layer thickness. Solid lines in (e) and (f) are guides for the eye.

(Fig. 3d). The device-level H, are similar (~10 mT + 15%)
across varying FL thicknesses, while 2x larger than the film-
level H. due to confinement effect which restricts domain
motion and nucleation sites in the nanoscale MTJ.>**° Due to
the fabrication process variability and small uncompensated
stray field from the SAF, a small positive or negative offset in
the R(H) switching hysteresis is similarly observed.
Additionally, the resistances of the P (Fig. 3f, black circle)
and AP (Fig. 3f, black square) states exhibit the same dome-like
dependence of FL thickness, wherein the resistance increases
to a plateau at intermediate FL thicknesses before decreasing at

This journal is © The Royal Society of Chemistry 2024

large FL thicknesses. This multifarious trend of resistance with
increasing FL thickness is ascribed to interplaying factors of FL
roughness®' and resistivity,** variation in the MgO thickness,**
MgO/FL interface quality,>* and fabrication inhomogeneity at
the circumference of the wafer. Meanwhile, the thickness
dependence of TMR follows a near-exponential trend, marked
by a gradual TMR increase from ~33-40% for FL thickness
<1.9 nm and a considerable surge from ~40 to 78% for FL
thickness >1.9 nm (Fig. 3f, violet diamond). The enhancement
of TMR with increasing FL thickness is ascribed to the higher
concentration of tunneling electrons and increase in the spin

Nanoscale Horiz., 2024, 9,1522-1531 | 1525
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polarization in thicker FL,*® wherein the efficiency of spin
filtering across the tunnel barrier remains independent of
scattering effects for FL thickness up to 3 nm.

D. SOT switching

First, we examine the SOT-induced switching of the single-cell
MT]Js across different FL thicknesses of 1.6 to 2.6 nm. All the
MT]Js switch from the AP to P state when subjected to a negative
applied V at a constant negative assisted magnetic field. Con-
versely, the FL switches from P to AP when a positive V is
applied in the presence of a constant positive assisted magnetic
field. This directional dependence of SOT mechanism is indi-
cated by the full R(V) loop of the 1-cell MTJ of 1.7 nm free layer
thickness (Fig. 4b) along with its corresponding R(H) curve
(Fig. 4a). Notably, the critical switching voltage (V.) increases
from 0.7 to 2.0 V with increasing FL thickness from 1.6 to
2.6 nm (Fig. 4c). Expectedly, the dependence of critical current
for SOT-induced switching on the FL thickness follows the
relationship described by the macrospin model as follows:*®

I. = kMy(H:t + Mgt — Ki)Wamtum (1)

where I, is the critical SOT current, M, is the FL saturation
magnetization, ¢ is the FL thickness, K is the interfacial
magnetic anisotropy energy density, and wygy and ¢y repre-
sent the SOT channel width and thickness, respectively.
Further, the probability of the MTJ exhibiting field-free switch-
ing decreases sizably to zero with increasing FL thickness to
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2.6 nm (Fig. 4d). The discernibly larger V. and lower field-field
switching probability suggest a possible origin of larger thermal
stability factor, defined as: Ep/kgT where E}, is the energy barrier
between AP and P states at temperature 7,>” in the MTJs with
thicker FL. Therefore, more extensive SOT driving energy is
required to overcome the energy barrier for switching transition
in a thicker FL.

Next, we study the SOT-induced switching of a multi-cell
compound MT]J. Fig. 4e and f show the R(H) and R(V) loops for
the 3-cell device comprising 1.7 nm-thick free layer, respec-
tively. The 3-cell compound MT]J follows the resistor in-parallel

1 1 1

Reompound  Rm1i-1 - Rmmi2 Rwmi-s
4 resistance states corresponding to the switching of each
constituent MTJ cell. For the same assisted magnetic field of
—6 mT, the V required for fully switching the 3-cell compound
MT]J from their AP to P states is ~20-30% higher than the
single cell-MT]J for the same FL thickness (Fig. 4g). In fact, a
larger assisted magnetic field, e.g. —8.5 mT, is required to
completely switch the thicker FL, e.g. 2.6 nm, without encoun-
tering the breakdown of the MTJ device. This is ascribed to the
larger voltage drop across the more resistive (~600 Q) longer
write channel of the 3-cell MTJ, compared to the single-cell MTJ
channel of lower resistance (~300 Q).

Meanwhile, the trend of higher switching V for the devices with
thicker FL is also similarly observed for the 3-cell MT]Js (Fig. 4g).
On one hand, as the FL thickness increases, the improvement in
the TMR involves a compromise of energy efficiency. On the other
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Fig. 4 Electrical manipulation of compound MTJ. (a) R(H) and (b) R(V) loop for a 1-cell device comprising 1.7 nm-thick free layer. (c) The field-free R(V)
plot of the 1-cell MTJ showing increasing critical switching voltage (V) for AP to P transition with increasing FL thickness. (d) Histogram plot showing the
diminishing probability of field-free switching in 1-cell MTJs with increasing FL thickness. Up to 10 devices were measured for each FL thickness, of which
all MTJs exhibit field-assisted switching. (e) R(H) and (f) R(V) loop for a 3-cell device comprising 1.7 nm-thick free layer. (g) The R(V) plot of the 3-cell MTJ
for different FL thicknesses showing 4 resistance states in the presence of an assisted negative field of 6-8.5 mT. (h) The average breakdown voltage (Vg)
of the 1- and 3-cell MTJ for different FL thicknesses. Schematic inserts with arrows showing the free and reference layer spin orientations of each MTJ
during the switching process. The MTJs in green and red represent the initial antiparallel and switched parallel configurations, respectively. The red
(green) shade in (b) and (f) correspond to the P — AP (AP — P) transitions.
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hand, the average device breakdown voltage (Vi) window extends
from 1.8-2.0 V for 1-cell and 1.7-1.9 V for 3-cell when the FL
thickness increases from 1.6 to 2.6 nm, suggesting that a thicker
FL can better cushion device breakdown (Fig. 4h). However, the
field-free switching of the FL is largely impeded by the Vo > V3
trend observed for thicker FL, hence switching of the thicker FL
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typically require an assisted field. Therefore, we posit that efforts
towards the optimal performance of the MTJ-based neural net-
work, beyond training and test accuracy, should also involve fine-
tuning parameters of SOT switching efficiency and device break-
down voltage by optimizing the FL thickness, number of MT]
cells, and writing channel dimensions.
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Fig. 5 Bimodal tuning of cognitive accuracy for recognition tasks. (a) Schematic of the ANN constructed in a 784 x 128 x 10 configuration (middle) and
illustrated with input examples of MNIST digits ((i), left) and fashion objects (i), left) and corresponding recognition probability ((i) and (ii), right). (b) and (c)
The test accuracy for MNIST (b) handwritten digits and (c) fashion objects after training with 40 epochs for 1-, 2- and 3-cell MTJs. (d) and (e) 2D contour
plots of the test accuracy for (d) handwritten digit and (e) fashion object recognition tasks as a function of TMR values and the number of MTJs of the
synaptic device. The Rp is arbitrarily fixed at 10 kQ while the Rap is varied over the range of 16—36 kQ to generate the TMR values of 60-260%. The test
accuracies in detecting fashion objects are consistently poorer than recognizing digits for a particular number of cells and TMR.
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E. Spintronics artificial neural
networks

The fabricated single and multistate MTJs can be harnessed to
emulate neurons and synapses in an all-spin ANN as described
in Fig. 1. Here, we show the neurons of the input, hidden and
output layers of the ANN structured in a 784 x 128 x 10
configuration with sigmoidal activation functions (Fig. 5a).
The synapses are emulated using 1-, 2-, and 3-cell compound
MT]J devices where the conductance states of the MTJ devices
represent the quantized synaptic weights. The ANNs are trained
with 40 epochs to introduce precision weight distribution to the
discrete 2-, 3-, 4- quantization levels of the pre-trained network.
The trained ANN are subsequently subjected to digit and object
recognition tasks and the respective test accuracies are
determined.

The test accuracies are simulated for various discrete states
with increasing TMR values to gauge the combined impact of
TMR and the number of discrete states. Fig. 5b illustrates the
variation of test accuracy with TMR values for the MNIST
handwritten digits dataset, across different numbers of discrete
states. For 1-cell MT] devices, the test accuracy rises by ~8.3%
with TMR values, following a direct correlation of accuracy with
the ratio of the high and low conductance states of the
synapses. Further, the test accuracy tends to increase more
considerably, by up to ~14.4%, with the number of MT]J in the
devices due to the incremental number of available discrete
conductance states for the synapses. For the 4-state weights, the
91% accuracy for digit recognition is acceptable for practical
applications, and it greatly reduces the synaptic device size,
leading to a lower footprint area and reduced complexity for the
chip. Notably, the test accuracies for 2- and 3-MTJ devices
exhibit a diversified trend with TMR, showing near-constant
fluctuations of +0.7% and 0.3%, respectively, as compared to
the direct correlation of 1-cell MT] devices. It could be ascribed
to the compromised linearity of the synapse as new discrete
states are introduced.

Additional testing of the ANN with the Fashion MNIST
dataset shows similar trends, albeit with a decrease in overall
accuracy due to the increased complexity of the Fashion data-
base (Fig. 5¢c). The test accuracies decrease by approximately 4
and 3.45% for 2- and 3-MTJ devices, respectively, with an
increase in TMR from 33 to 75%. This decline could be
attributed to weight distribution in low-value discrete states,
suggesting the potential benefit of employing more discrete
states to address this issue. However, for datasets of higher
complexity, either an increased number of discrete states,
training samples,*® or advanced network architectures, such
as convolutional networks,*>*® may be necessary to maintain
performance levels.

To elucidate the interplaying effect of synaptic resolution
and precision, we further model the ANNs built upon devices
comprising an extended range of commercially viable TMR of
60-260% and 2-7 resistance states (Fig. 5d and e). Regardless of
the TMR values, large cell numbers, e.g. 6-cell MTJs, produce
consistently higher test accuracies for both digit and object
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recognition tasks. This suggests that the enhancement of
synaptic precision induced by the multistate functionality plays
a dominating role in elevating cognitive accuracies, as com-
pared to synaptic resolution improvements defined by TMR
modulation. Our findings guide future device efforts for realiz-
ing ANN endowed with both sizeable cognitive accuracies as
well as high energy efficiency and robustness. This can be
achieved by leveraging on the multistate MT]J device concept
and moderate free layer thickness for optimal TMR and field-
free switching, respectively.

F. Summary & outlook

In summary, we developed a spintronics ANN consisting of
multistate compound SOT-MT]Js with different FL thicknesses
ranging from 1.6-2.6 nm. This enables a hybrid approach to
tune the cognitive accuracies of the ANN by varying the number
of resistance states and optimizing TMR, respectively. A large
TMR difference of at least 21% between the states is obtained
for the 3-cell MTJ, while a maximum TMR of 78% is observed
for 2.6 nm-thick FL. The ANN constructed based on the 3-cell
compound MTJ with 1.9 nm-thick FL exhibits the highest test
accuracies of 91.7 and 77.4% for recognizing the MNIST hand-
written digit and Fashion objects, respectively. Notably, the FL
thickness in the compound MT]J should be chosen with high
precision to reap the dual benefit of multilevels and high TMR,
and in consideration for optimal SOT switching efficiency to
obtain field-free switching.

Our bimodal approach to achieve spin-based ANN with high
cognitive accuracies will open novel paths for the realization of
next-generation energy-efficient and robust neuroinspired com-
puting devices for artificial intelligence at the edge. The neu-
romorphic hardware built upon the design of an array of MTJs
on a shared write channel can be conveniently integrated into
conventional CMOS technology. Future material efforts in
realizing field-free energy-efficient switching with high synaptic
precision can be achieved by incorporating appropriate heavy
metal multilayers and alloys with high SOT efficiency.*' Mean-
while, further TMR enhancement can be achieved by fine-
tuning the atomic structures of the ferromagnetic layers and
tunneling barrier,”> or incorporating FLs such as CoNi and
CoPt which manifest interface resonant tunneling.”®> On the
device front, the synaptic precision can be further enhanced by
device designs that host manifold states of a sizable TMR ratio,
such as creating multi-sized cells on the compound MTJ.**

G. Methods

Multilayer thin film fabrication

The MTJ multilayer stack consisting of SOT channel/FL/Tunnel
barrier/RL/SAF/capping layer was fabricated on an 8-inch ther-
mally oxidized Si-wafer using the Singulus Timaris™ DC
magnetron sputtering at room temperature. Details of the
multilayer stack composition and thicknesses (in nanometers)
are as follows:
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(1) SOT channel: Ta (4)/Pt (10),

(2) FL: CoFeB (1.6-2.6),

(3) Tunnel barrier: MgO (1.8),

(4) RL: CoFeB (2),

(5) SAF: CoFe (0.6)/Ru (0.85)/CoFe (2.6)/PtMn (17),

(6) Capping layer: Ru (8).

The wafer was subsequently annealed in the magnetic
vacuum annealing oven at 573 K for 60 minutes in the presence
of a 1 T in-plane magnetic field applied along the wedge
direction. The spin Hall angle of the Pt/CoFeB layers is ~0.11.

Device fabrication

The MTJ multilayer stack was patterned into three-terminal
compound MT] devices by optical lithography using Canon
EX5™ stepper and Ar-ion beam etching using Oxford CAIBE™.,
The device fabrication involved 5 key steps in creating the
alignment mark, write channel, cell, open pad, and top elec-
trode consisting of Ta (5)/Al (80)/Ru (5). The array of elliptical
MT]Js, of dimension 250 x 500 nm?, are patterned with their
long axis along the wedge direction. For a particular FL thick-
ness, a maximum of 18 dies can be segmented perpendicular to
the wedge direction. The calculated device resistance-area lies
in the range of 2.2-3.6 kQ pm® for the MT]J sizes of 250 x
500 nm”.

Magnetic characterization

The multilayer thin film companion wafer, deposited along
with the device wafer, was diced into 0.4 x 0.4 cm” samples
along the wedge direction. Magnetometry measurements were
performed using the Princeton™ alternating gradient magnet-
ometer on the MT]J samples of varying thicknesses. The major
and minor M(H) hysteresis loops of these diced multilayer thin
film samples were obtained by performing a magnetic field
sweep of £1000 and £20 mT, respectively, parallel to the
inplane easy axis.

Electrical measurements

The R(H) and R(V) measurements were performed using
a custom-designed probe station equipped with AC lock-in
(Zurich Instruments) in the presence of an assisted magnetic
field (6 to 10 mT). To extract the FL thickness dependence of
Ryp, Rp, and TMR, the R(H) loops were measured on at least
~10 devices for each free layer thickness. For R(V) measure-
ments, a train of voltage pulses (0.1-2.0 V, 200 ns, delay time:
1.5 s) was applied across the SOT channel using the Agilent
pulse function generator, and the output voltage was measured
across a reference resistor (1 MQ) connected in series with the
MT]J devices. The top electrodes of the constituent MT]J cells in
the compound MTJ are connected to one another via wire
bonding using the WESTBOND Inc., 7KFH, to obtain the
collective response of the compound MT]Js.

Simulations

The performance evaluation of the spintronics-based ANN is
conducted using TensorFlow,*> employing the MNIST hand-
written digit dataset and the fashion object dataset. Each test
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sample (28 x 28 pixels) is normalized and converted into a
column vector (784 pixels) to feed the input layer of the net-
work. The sigmoid-like curve is considered for the activation
function of the neuron while the network is trained with full
precision weights employing the Adam optimizer,*® with the
loss computed using sparse categorical cross-entropy. Subse-
quently, post successful training with full precision weights,
both positive and negative weights are quantized based on
experimentally measured conductance states (normalized) of
our fabricated multistate MT] devices. The 2, 3, and 4 state
devices represent the synaptic bit precision for the simulation.
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