Open Access Article. Published on 04 2024. Downloaded on 08/11/25 23:46:45.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Faraday Discussions

Cite this: Faraday Discuss., 2024, 254, 295

#® ROYAL SOCIETY
P OF CHEMISTRY

A perspective on the future of quantum
chemical software: the example of the
ORCA program package

Frank Neese

Received 11th March 2024, Accepted 28th March 2024
DOI: 10.1039/d4fd00056k

The field of computational chemistry has made an impressive impact on contemporary
chemical research. In order to carry out computational studies on actual systems,
sophisticated software is required in form of large-scale quantum chemical program
packages. Given the enormous diversity and complexity of the methods that need to be
implementation in such packages, it is evident that these software pieces are very large
(millions of code lines) and extremely complex. Most of the packages in widespread use
by the computational chemistry community have had a development history of
decades. Given the rapid progress in the hardware and a lack of resources (time,
workforce, money), it is not possible to keep redesigning these program packages from
scratch in order to keep up with the ever more quickly shifting hardware landscape. In
this perspective, some aspects of the multitude of challenges that the developer
community faces are discussed. While the task at hand — to ensure that quantum
chemical program packages can keep evolving and make best use of the available
hardware — is daunting, there are also new evolving opportunities. The problems and
potential cures are discussed with the example of the ORCA package that has been
developed in our research group.

1 Introduction

There can be little doubt that over the past several decades quantum chemistry
has enjoyed tremendous success and should now be considered an integral and
indispensable component of chemical research. In fact, few papers are being
published these days without including the results of quantum chemical calcu-
lations. A big part of this success, and the accompanying popularity of quantum
chemistry, is the fact that program packages have evolved to the point of being
highly efficient and also highly user-friendly. This allows experimental chemists
to make use of quantum chemistry without having to be experts in the underlying
theory or experts in the advanced use or programming of computers. Calculations

Department of Molecular Theory and Spectroscopy, Kaiser-Wilhelm-Platz 1, D-45470 Miilheim an der Ruhr,
Germany. E-mail: neese@kofo.mpg.de

This journal is © The Royal Society of Chemistry 2024 Faraday Discuss., 2024, 254, 295-314 | 295

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4fd00056k
https://pubs.rsc.org/en/journals/journal/FD
https://pubs.rsc.org/en/journals/journal/FD?issueid=FD024254

Open Access Article. Published on 04 2024. Downloaded on 08/11/25 23:46:45.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

View Article Online
Faraday Discussions Paper

can usually be carried out without access to large-scale computing facilities, but
rather can be performed on modest computer clusters or even, to some extent, on
personal computers or laptops.

Concomitant with this undeniable success, there arise many questions that
surround the creation, maintenance and also the proper use of these highly
complex software packages. In this commentary, I wish to discuss some of these
challenges. It is important to point out that the comments made in the manu-
script merely reflect the opinions of the author and are not intended in any shape
or form to represent undisputable facts. The goal is rather to stir a debate that our
community needs to have rather sooner than later.

This article touches on many aspects that were also discussed in a recent
perspective by Di Felice et al.,* as well as the perspective of Lehtola and co-workers
on open-source software.>® The discussion here should be considered as
complementary.

2 The evolution of quantum chemical program
packages

It is probably fair to state that none of the quantum chemistry packages in large-
scale use were started with a long-term master plan by a large group of individ-
uals. There have been attempts in this direction, but they apparently met with
limited success. Rather, it appears that all packages have been initiated by one
person, or a very small group of individuals (often close friends). The driving force
appeared to be largely scientific curiosity, or, perhaps, the intention to solve
a chemical problem for which there was no other solution available.

There may be a few noticeable exceptions, for example when a quantum
chemical software project was started after a dispute between the developers of
another, older package that led a group of people to start all over again and make
use of the knowledge that had been gained in the earlier project. Since the author
has no inside knowledge about specific cases in which the design was initiated in
this way, further comment is deferred.

Hence, most packages that were started in this way have evolved for several
(presently up to five) decades. Along the way, typically dozens if not hundreds of
programmers have contributed to the project and these individuals, more likely
than not, were disjointed in space and time. The code base may have grown to
consist of millions of lines of code and may be spread over tens of thousands of
source files. At this point no single individual can probably rightfully claim to
know and understand every single detail of such a code.

It is an enormously challenging task for the team-leaders of the project to
ensure that the code remains streamlined without major duplication of func-
tionality, dead-ends or insurmountable design obstacles along the way. It is
questionable whether any project can be legitimately considered as fully
successful in this respect.

Importantly, when a large-scale software project is started without a detailed
master plan, it is certainly subject to a vulnerable evolution. Every shortcut and
every design flaw incorporated into the initial design will tend to amplify and
compromise the integrity of code down the line. This is a necessary consequence
of the code writing being carried out, at least up to the present day, by humans.

296 | Faraday Discuss., 2024, 254, 295-314 This journal is © The Royal Society of Chemistry 2024

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4fd00056k

Open Access Article. Published on 04 2024. Downloaded on 08/11/25 23:46:45.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

View Article Online
Paper Faraday Discussions

While science, in general, intendeds to take the actual observer out of the picture
to create what could be considered as “objective facts”, this is impossible or at
least highly unrealistic when it comes to software design: software is written by
humans and individual skills, taste, discipline and team-spirit varies by many
orders of magnitude over a group of a few hundred programmers.

At this point, a few archetypes of individuals may be broadly characterized
without the idea that any specific individual purely belongs to any of these
categories.

The ideal developer may be characterized as a person that carefully studies the
literature and underlying theory of the methods they are going to implement
before starting to code. The initial implementation plan would then be discussed
with the development team. The code would be written in a clean manner and
kept as simple as possible, while being as complex as necessary. The code would
be well-tested and well-commented in the source (in English as the smallest
common denominator). There would be a comprehensive set of test-jobs created
and their results would be archived such that code integrity could always be
controlled. Finally, these ideal developers also write a user-friendly manual and
see their project to completion, even after the initial excitement may have faded.
These idealized developers also always discuss before changing, rewriting or
massively extending code of other developers and stay clear of “short-term hacks”.

Unfortunately, not all developers of quantum chemical program packages, the
author included, belong to this class of idealized programmers. There are several
types of behaviors that render the development and maintenance of large-scale
software projects challenging. Among those, some frequently encountered are:

(1) Always taking the shortest shortcut to meet one’s individual goals. This may
be characterized as a “no matter how” or “crash and burn” policy.

(2) Rewriting or changing other people’s code without prior notice or consent.

(3) Never documenting their code or leaving a comment as to why something
was done a certain way.

(4) Using in-depth knowledge of programming languages to “show-off” a high-
level of sophistication. This is frequently combined with an unwillingness to
comment the code. Frequently, this results in very difficult, if not plainly
unreadable, code that tends to be not understood even by its own creator only
a few months later.

(5) Being afraid to break something may lead to uncontrolled “copy-paste”
approaches to development. With the best of intentions sometimes thousands of
lines of code are copied and pasted only to make a few minor changes at the very
end or change a few prefactors or signs.

(6) Implementing a useful improvement only in one part of the code but
lacking the commitment to make the feature consistent throughout.

(7) Leaving code parts that are known to be incorrect in the code without
warning or comments. This is often motivated by a lack of trust in one’s own
abilities or a lack of time or commitment.

(8) Trying to be funny during development. A funny name of a routine that
makes reference to, say, a certain movie character or celebrity may be considered
to be funny by a given developer at a given moment in time. However, this wears
off very quickly and what remains is cryptic function name that confuses later
generations of developers.

This journal is © The Royal Society of Chemistry 2024 Faraday Discuss., 2024, 254, 295-314 | 297

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4fd00056k

Open Access Article. Published on 04 2024. Downloaded on 08/11/25 23:46:45.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

View Article Online
Faraday Discussions Paper

The result of years of continued accumulation of these problems will be a code
base that is deeply incoherent, nearly impossible to decipher and very difficult to
maintain. Modern generations of students may even (and rightfully so) refuse to
work with such a code. Adapting such a code to the quickly shifting hardware
landscape is a daunting prospect and probably not possible with realistic effort.

In recent years artificial intelligence (AI) systems have made impressive
progress and have shown some promise in the production of high-level code.
Whether such AI tools, such as ChatGPT, will be able to replace humans as
developers of quantum chemical software remains to be seen. It seems certain,
however, that Al will at least complement human efforts in program development.
A thorough discussion of the multitude of legal and ethical questions that arise
from these developments is outside the scope of this article.

3 Desirable features of large-scale quantum
chemistry packages

A modern quantum chemistry package typically incorporates the collective
wisdom of 80+ years of research in the field as well as in the neighboring disci-
plines of physics, numerical mathematics and computer science. The code base
may consist of several million lines of source code and may be spread over
thousands of source files. In order to remain manageable, a number of require-
ments should be met.

At this point it is important to point out that the requirements for a large,
general-purpose quantum chemistry package are very different than for
a purpose- and project-specific piece of software. If an individual needs to solve
a specific problem in order to complete a project, then whatever is necessary to
reach the finish line is adequate. This can involve mixed language programming,
exotic and platform-dependent libraries, no documentation or comments in
alanguage different from English. After the project is finished, the code is likely to
disappear or is of no use anymore. It only matters to the individual who created it.
On the other hand, a big package that is supposed to live for decades and that is
distributed to tens of thousands of computational chemists world-wide must
meet far more stringent requirements. There certainly is no consensus in the
community as to what these requirements precisely are. Therefore, further
comment will be deferred to the section describing our own efforts.

Perhaps the most important requirement for a big program is modularity. It is
important to break down the complex workflow that characterizes modern algo-
rithms into digestible pieces. These pieces should exist as independently of each
other as possible. This means that global data should be avoided to the largest
extent. Cross dependencies should be avoided, code duplication for related tasks
should be avoided, object-oriented programming should be used in order to unify
data with productive tasks. It will usually be necessary to break down a big
package into separate executables with well-defined tasks. The more independent
these “task handlers” are of each other, the more readily the whole package will be
maintainable.

Modularity also comes in the form of clarity. “Clarity” in this context refers to
the transparency with which a given workflow is implemented such that it can be
read and understood by future generations of developers. A single 50 000-line

298 | Faraday Discuss., 2024, 254, 295-314 This journal is © The Royal Society of Chemistry 2024

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4fd00056k

Open Access Article. Published on 04 2024. Downloaded on 08/11/25 23:46:45.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

View Article Online
Paper Faraday Discussions

source file containing one monstrous function that accepts 38 arguments is likely
very hard to follow and understand. Hence, modularizing such software pieces is
important.

An equally important subject is documentation. Source code must be exten-
sively documented and commented on in order to stay maintainable. Hence,
programmers are encouraged to envision a future developer reading their code
and having to add or modify something. It should be possible for this person to
understand what the code is doing and how it is doing it in order to make
additions and changes with confidence.

Among the many other requirements that could be mentioned, code integrity
is another highly important subject. Large programs contain many input options.
Not all of these options will lead to valid workflows with correct results. Since
programs tends to evolve while features are being added or improved, it is
important to maintain a library of reference results for implemented and sup-
ported tasks. It should regularly (and preferably automatically) be checked that
the current state of the program is still able to regenerate the reference results.
Without such a check, it is almost inevitable that certain functionalities in a given
program will be lost over time.

In order for a large program project to remain maintainable, it should not
incorporate dependencies on specific operating system constructs (e.g. reliance
on shell scripts) and the dependence on external pieces of software or libraries
that are outside the control of the development team should be minimized. In
some cases, for example in the case of basic linear algebra (BLAS), message
passing interface (MPI) or the Linear Algebra package (LAPACK) such depen-
dencies are hardly avoidable. However, these are extremely well-established
libraries that can be relied on long term. Any reliance on external pieces of soft-
ware or libraries of uncertain origin or uncertain future, are a potential breaking
point for the entire software project. Whether the development team wants to
accept the associated risks is an important design decision that should not be
made lightly.

4 Challenges associated with maintaining large
quantum chemistry packages
4.1 Academic software development

Among the many challenges associated with quantum chemical program devel-
opment, the circumstances under which this development takes place is probably
the biggest. The overwhelming majority of this development takes place in an
academic environment. In these environments there are very few permanent
positions for software engineers, which means that the majority of the develop-
ment is carried out by PhD students and postdoctoral fellows that are on termed
contracts. Thus, these individuals are under high-pressure to produce publish-
able results in a relatively short amount of time.

These requirements are clearly strongly conflicting with the requirements for
sustainable, high-quality quantum chemical software. Such software, ideally, is
well conceptualized and largely feature complete. A necessary consequence is that
a fair amount of time in quantum chemical software development is spent “re-
inventing the wheel”, e.g. implementing methods and features that were

This journal is © The Royal Society of Chemistry 2024 Faraday Discuss., 2024, 254, 295-314 | 299

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4fd00056k

Open Access Article. Published on 04 2024. Downloaded on 08/11/25 23:46:45.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

View Article Online
Faraday Discussions Paper

previously already available in other program packages. Such a re-invention may
sometimes be involved with additional innovation in which case the results are
publishable. A simple re-implementation of a given method, even if it takes
a substantial amount of time and effort, is only marginally justifiable as an
addition to the scientific literature.

To create software that is feature complete, well-tested, highly optimized and
well-documented is very difficult, if not impossible under such circumstances.
What the community would require is a far larger number of software-oriented
quantum chemists on permanent contracts that ensure the continuity and code
quality of large-scale program packages.

4.2 The legacy curse

Quantum chemistry is a fast-progressing field. While a few decades ago, the state
of the art consisted basically of a closed-shell Hartree-Fock calculation and
perhaps a geometry optimization, the array of available methods and properties
together with sophisticated analysis tools that can be approached with quantum
chemistry now is bewildering. Thus, it is very difficult to see how a single young
researcher or a small team could possibly start all over again from scratch to
generate the next generation quantum chemistry software. It would probably take
at least one decade of highly concentrated work to arrive at a package that would
be state-of-the-art today.

Finding financial support for such an endeavor, that initially creates nearly no
new research, seems to be challenging if not impossible. Since the cycles of
performance evaluation by funding agencies or universities tend to get shorter
and shorter and future funding depends on being successful in the previous
funding period, it seems unlikely that another major quantum chemistry package
could emerge from an empty piece of paper anytime soon - if ever again.

What does that mean for future developers? A lot of future development will
probably focus on specific tasks. For example, writing a program that only does
approximate full-CI calculations, say, together with relativistic corrections to
calculate some properties can probably be approached from scratch. This is
something that can, will and should be done. However, those researchers who are
interested in creating a full featured package for general purpose use by a large
audience will probably remain tied to one of the existing major packages. This
begs the question of how well-suited these existing packages are to adapt them-
selves to the quickly evolving hardware landscape? The answer is probably: in
general, not very well.

The history of quantum chemistry speaks a clear language: there have been
many ingenious methods that were implemented on a specific hardware, say the
CRAY or the CYBER 205. After these hardware platforms became hopelessly
outdated, these programs disappeared and the hard- and dedicated work that led
to the programs in question was lost to the community. Given the difficulty to
secure funding, expertise (and also enthusiasm) to re-create existing quantum
chemical methods, the community simply cannot afford let history repeat itself
and accept the losses that arise from our programs not keeping up with the
hardware anymore. Thus bringing the established quantum chemical machinery
onto the computers of the future in a way that is efficient and clean, is certainly
one of the major challenges that our field faces.

300 | Faraday Discuss., 2024, 254, 295-314 This journal is © The Royal Society of Chemistry 2024

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4fd00056k

Open Access Article. Published on 04 2024. Downloaded on 08/11/25 23:46:45.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

View Article Online
Paper Faraday Discussions

4.3 Leadership

It is obviously very important how project leadership is implemented. Leadership
could rest on the shoulders of a single individual or, more commonly, on a small
leadership team. It is important that leadership clearly communicates develop-
ment guidelines and expectations on quality standards as well as procedures to
the development team. Regular team-meetings are required to inform developers
about emerging new infra-structure or changing policies. Shared “delocalized”
responsibility that appeals to the discipline of individual developers is usually not
a successful model since it tends to trigger no- or arbitrary actions. Whether open-
source projects provide a successful avenue towards reliable, efficient large-scale
quantum chemistry program packages (as opposed to open-source libraries dis-
cussed below) remains to be seen.

Quantum chemical program packages are frequently very closely associated
with the names and personalities of the original inventors. This is a necessary
consequence of the way that these packages evolve. The question is what happens
when these inventors eventually leave the scientific arena? It clearly is a very tall
order for a young and upcoming researcher to make the life’s work of another
person the central projects of their own careers. While the willingness to “carry on
the torch” is commendable, it may be difficult for young researchers to convince
the community of their own and independent scientific standing if they “follow
the line of succession”. The result is that a number of significant, influential and
highly successful program packages have already disappeared and more are likely
to disappear in the foreseeable future. Thus, finding a solution to the problem of
continued career-spanning program development is an important topic for the
future of the quantum chemistry community.

4.4 Community and inter-operability

No matter how large or dedicated a research group is, it will not be possible for
a single quantum chemical package to combine all the know-how and achieve-
ments of the community in one place. Thus, it is necessary and also desirable that
there remains a multitude of software solutions for computational chemists to
choose from. It is also not necessary for the progress of the field that every
package is as feature-complete as possible. Rather, having specialized programs
for specialized tasks appears to be perfectly acceptable.

However, in order to guarantee efficient workflows it would be highly desirable
for programs to be more interoperable than they currently are. Unfortunately, this
would seem to imply that the developer community agrees on certain data
formats that are used to exchange data or other information. To the best of this
author’s knowledge, all attempts in that direction have failed so far. It would still
be desirable for the community to make a joint-effort towards more readily
exchangeable data.

Of course, as long as inter-operability means exchanging coordinates and
orbitals and similar quantities that are not time-critical, there is no problem as
long as a well-defined, stable and well-documented interface exists. Unfortu-
nately, not even this criterion appears to be met by most existing packages. The
need for a general, well-designed, well-documented and well-maintained inter-
face can hardly be overemphasized. Our own experience is that custom-made
interfaces to other programs are always vulnerable, short-lived and unreliable.

This journal is © The Royal Society of Chemistry 2024 Faraday Discuss., 2024, 254, 295-314 | 301

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4fd00056k

Open Access Article. Published on 04 2024. Downloaded on 08/11/25 23:46:45.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

View Article Online
Faraday Discussions Paper

Hence, the efforts should not be directed towards “patching something together”
that just works for a short moment in time, but to create a more general interface
solution. Our own efforts within the ORCA project are discussed below.

The next level of inter-operability would result from using common libraries. If
these libraries are well-designed, they have an easy-to-use programming interface
and make no demands on specific operating features or create new dependencies
on other external libraries. Such libraries could be created in a highly task specific
way, for example, the calculation of integrals, the evaluation of density func-
tionals and their functional derivatives, the numerical integration in density
functional theory, the solution of large-scale linear equations or eigen-equations,
the optimization of molecular structures etc. Very successful examples of this kind
are the libint* and libcint® integral libraries, the LibXC® and XCFun’ DFT libraries,
the IntegratorXX® numerical integration library, among many others. Such efforts
should definitely be applauded as they represent an invaluable asset to the
community and save humungous amounts of development effort. In order for
such libraries to be successful, it is important that they do not depend on
complicated data structures that require the host program to deeply incorporate
these data structures, or even other external libraries (such as, e.g., matrix/vector/
tensor libraries) in its own design. This requirement certainly limits the number
and nature of tasks that can be “library-field”. Also, the language in which the
libraries are written is an important aspect as mixed language programs tend to
be more vulnerable than programs that are written in established, stable and truly
platform independent languages such as C/C++ or Fortran.

Given that open-source software faces certain challenges (briefly discussed
below) that may prevent some developers to making their libraries open-source,
there might be a medium ground in which libraries are provided in binary
form with a documented Application Program Interface (API). Such libraries can
be linked to other existing programs in binary form. Of course, this requires these
libraries to be available on a multitude of platforms and operating systems. This
avenue seems to remain largely unexplored to date.

4.5 Community and funding aspects

One aspect that can certainly not be ignored in the context of a community effort is
money - in the form of research funding, as well as in terms of commercialization.
Quantum chemistry went commercial probably around the 1980s. The pros and
cons of commercial versus free versus open-source software is a complex subject in
itself that is outside the scope of this article. It is self-evident, however, that
commercialization does not help the case for open-science as software companies,
understandably, want to protect their intellectual property. However, as far as
publicly funded, basic research is concerned, the algorithms developed must be
available in full in the open scientific literature. This is a non-negotiable require-
ment for science that should not be violated. Whether this requires the actual
source code to be available or not is a complex question with far-reaching legal and
ethical ramifications that are outside the scope of the present discussion.

The other aspect that limits a more widespread exchange within the scientific
community is the competition for research funding and the way that the merit
generation system in science works. Both are closely related to citation statistics
and, at least subconsciously, also to publication impact factors. Thus, a person

302 | Faraday Discuss., 2024, 254, 295-314 This journal is © The Royal Society of Chemistry 2024

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4fd00056k

Open Access Article. Published on 04 2024. Downloaded on 08/11/25 23:46:45.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

View Article Online
Paper Faraday Discussions

that spends years designing, debugging, optimizing and documenting a fantastic
library may generate a single paper in a low- to medium impact factor journal. A
person taking that library, plugging it into their workflow and running some
calculations on “hot en vogue” systems may be able, as a matter of only a few
weeks, to generate far more (on paper) impact that then a method developer could
in a lifetime. It is then customary to cite the inventor of a given functional and the
creator of a given basis set but to not even provide any reference to the people
who’s algorithmic development efforts have enabled their study in the first place.
It is clear that this system of scientific merit generation is strongly disfavoring
long, tedious and complex development tasks. If, as a community, we want to
maintain development at a high-level, it will be necessary to create some “safe
space” where developers are “protected” from unfair treatment by the scientific
merit generation machinery.

5 The case of the ORCA package

In order to make the foregoing discussion more concrete, I will now use the ORCA
package as an example and will provide some hints towards the answers that the
ORCA team has been pursuing in response to the challenges discussed above. The
ORCA program package is free-of-charge for academic researchers (nearly 70 000
registered users world-wide turn ORCA into the second-most used quantum
chemistry program) and is commercially distributed by the company FAccTs to
industrial users. The evolution of the ORCA package is probably a rather typical
example of a development that was never intended to turn into a large-scale,
general-purpose toolbox. Rather the cradle version of ORCA resulted as
a byproduct of my PhD thesis in order to solve a very specific problem in metal-
loprotein biochemistry.®'® Space does not permit a description of the program’s
evolution. The only thing that should be mentioned is that ORCA underwent
a complete rewrite in the years following the release of ORCA 5 (ref. 11) for all the
reasons stated in Section 2. That this was possible is a luxury of secure positions
and generous base level funding and is therefore not a generalizable strategy.

5.1 Performance progress: driven by software or by hardware?

During rewriting the ORCA code, we stumbled upon an old calculation on one the
guinea pigs that was consistently used as a test case: the molecule Vancomycin
with 176 atoms. Back in 2003, I had presented a calculation in a meeting of the
group of the late Walter Thiel, where I was proud to show that the calculation
could finish within 1 hour of elapsed time. Today, the same calculation takes
about 1 minute on a contemporary laptop computer. The question arose as to how
much of this improvement is due to improved hardware and how much is due to
the algorithmic progress made over the course of two decades. In order to address
this question, ORCA versions between 2005 and 2023 were taken from the source
code repository (Fig. 1). It was pleasing to see that the old code could be compiled,
linked with modern libraries and executed without any problems on present day
computers - something that would not possible with many other codes or less
stable languages (such as Python).

Since the increase in clock speed of a single processor is well known, we could
estimate the algorithmic progress by comparing the timings between the old code

This journal is © The Royal Society of Chemistry 2024 Faraday Discuss., 2024, 254, 295-314 | 303

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4fd00056k

Open Access Article. Published on 04 2024. Downloaded on 08/11/25 23:46:45.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

View Article Online

Faraday Discussions Paper
Vancomycin / B3LYP / def2-SVP / 16 Cores Vancomycin / B3LYP / def2-TZVP / 16 Cores

P T T T T . T T T ——
{ _ I " DRCA
18] omch| | 165 Newstur - Gk

a 151 71 o120 5

3 3

2 9 SHARK

o4 2 1004 B

%])

© 10 - 4 2 god 1

£ ORCA g 80 ORCA

£ 5.0 £ 5.0

5 5 60 il

=2 2 Libint

< 5 ORCA ORCAORC 1 < 4 g

°2R°A 3.0 40 42
oRCA 2 20 ORCA ORCA ORCcA ORCA ORCA -
2.4.29 2429 27 3.0 40 42
T 0 U T U
2005 2010 2015 2020 2005 2010 2015 2020
Year of Release Year of Release

Fig. 1 Algorithmic speedup over time relative to the early ORCA versions of 2005. The
respective versions were all compiled with the same compiler, linked against the same
libraries and run on the same computer. The test molecule was Vancomyin with 176
atoms. Left: def2-SVP basis set, right: def2-TZVP basis set.

and the present code by compiling and running them on the same modern
computer under identical conditions. The results very clearly demonstrated that
the algorithmic progress led to a speedup approaching 20 for small split-valence
basis sets (def2-SVP) while a speedup approaching a factor of 200 was achieved for
larger basis sets (def2-TZVP). The hardware related speedup is estimated to be
only a factor of seven. While this comparison is not without flaws, it still clearly
demonstrates that the algorithmic progress largely outweighs the performance
increase due to the hardware. It is not claimed that this is a general and gener-
alizable conclusion. Rather, the result serves to show that investment of time in
effort to create better algorithms is well invested and, in many cases, will render
the use of super-computing facilities unnecessary.

5.2 Organization of low-level tasks: the case of SHARK

The SHARK integral algorithm is based on the simple observation that the
McMurchie-Davidson integral algorithm can be written in terms of matrix
multiplications.
(,LLV‘K‘L') _ (EbraRbra,ketEket)uW<T (1)
The E-coefficients transform between the spherical harmonics Gaussian basis
and the Hermite Gaussian basis and the R-integrals represent the repulsion
integrals over pairs of Hermite Gaussian functions. The algorithm is readily
extended to different integral kernels such as spin-orbit integrals, spin-spin
integrals, range separation or F12-integrals among many others.*> The SHARK
algorithm is not only very simple but also highly performant since it relies on the
most efficient operations that a modern computer can carry out: matrix multi-
plications. Given that every present and future computer will be delivered
together with a highly optimized BLAS library, the performance of this integral
package appears to be guaranteed long-term.
However, a perhaps even more important aspect of the development has been
the use of virtual functions for the digestion of the integrals. Many quantum

304 | Faraday Discuss., 2024, 254, 295-314 This journal is © The Royal Society of Chemistry 2024

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4fd00056k

Open Access Article. Published on 04 2024. Downloaded on 08/11/25 23:46:45.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

View Article Online
Paper Faraday Discussions

Various Initialization tasks
Loop ish=1..NShells
Loop jsh=1..ish
Loop ksh 1..ish
Loop lsh=1.. (ish==ksh?jsh:ksh)
Skip= Prescreen(ish, jsh,ksh, 1sh)
if (not Skip)
Generate integrals
Digest integrals

Various shut-down tasks

Scheme 1 Pseudocode showing a typical loop structure to generate batches of two-
electron integrals.

chemical codes rely on loops over shell-pairs, triples or quadruples of the kind
shown in Scheme 1.

Loops of this kind are then repeated over and over again throughout the
program for all kinds of tasks such as calculation of Fock matrices, response
matrices, direct CI residuals, gradients, Hessians, integral transformations or
alternative integral kernels, to name only a few. If an innovation appears that
requires changes, for example, more modern pre-screening algorithms,**” the
changes would need to be implemented in all places that contain such integral
loops. Quite typically, the team may have enough resources to implement the
innovation in a few places but will leave less frequented parts of the code
untouched. This eventually leads to a large functional incoherence of the code
that will contribute to its decline.

In order to avoid this trap, the revamped ORCA code only has a single place
where integrals are actually generated, e.g. a function called IntegralLoop. This
function receives as an argument an object called IntegralConsumer whose task it
is to take a batch of integrals and perform some action on it as defined by a virtual
function DigestIntegrals. Thus all that is required to trigger the sophisticated
integral machinery is to write one small consumer function consisting of a few
lines of code and then call the IntegralLoop function that provides a highly
optimized way to generate all kinds of integrals over different kernels. We refer to
this as the “Loop-Kernel-Consumer” (LKC) concept.

This architecture was, for example, crucial in bringing point group symmetry
into ORCA. Traditionally, it was a program made for calculations on biological
molecules where there is no symmetry. With the demands on a general-purpose
program, it became evident that the proper handling of symmetry via a “petite
list” approach is desirable. Using the LKC concept, this the implementation of
symmetry was only necessary in a single place in the code in order to be available
everywhere in the code. This is a good example of how unnecessary and counter-
productive code duplication can be avoided.

5.3 Organization of mid-level tasks: the case of molecular properties

Over time, many different electronic structure methods were implemented in
ORCA. Starting from the Hartree-Fock and DFT modules, methods such as MP2,
coupled cluster theory with singles, doubles and perturbative triples (CCSD(T)),

This journal is © The Royal Society of Chemistry 2024 Faraday Discuss., 2024, 254, 295-314 | 305

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4fd00056k

Open Access Article. Published on 04 2024. Downloaded on 08/11/25 23:46:45.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

View Article Online
Faraday Discussions Paper

their domain-based local pair-natural orbital (DLPNO) counterparts, complete
active space self-consistent field (CASSCF), multi-reference configuration inter-
action (MR-CI), N-electron valence perturbation theory (NEVPT2) among many
others were added. Each of these methods is typically implemented in its own
module that is independent of the other modules and only shares a “Tools”
library that is global to ORCA.

When it comes to the calculation of molecular properties, it is possible to
express a first-order response property in terms of energy derivatives (response to
a perturbation A):*®

S g
1

where E® is the total ground state energy delivered by electronic structure

method X, {u} is the orbital basis, P, represents the one-particle electron or spin-
: .) " o

density matrix and &z = 7 s the first-derivative of the Hamiltonian operator

with respect to the perturbation. Likewise, a second order property can be
written as:'®

~A

h

)oY

uy

P*EX) o

T ;P 2 ’) G)
where in addition to the unperturbed electron and spin-densities the respective
response-densities are required. Examples of such properties include the electric
dipole polarizability or all spin-Hamiltonian parameters met in electron- and
nuclear magnetic resonance (EPR and NMR)."*>?

Traditionally, each module dealt with these properties separately. This led to
a large amount of incoherence in the code where the feature set available for
different electronic structure methods varied significantly. In addition, a large
amount of overhead and redundancy was created by each module calculating and
re-calculating the property integrals. In addition, relativistic corrections, such as
picture change effects or finite nuclei treatments were handled incoherently by
the legacy code.

In the workflow of the re-written code, the commonalities between the prop-
erty treatments are fully explored. To this end, there is common property integral
“container” that collects the integrals required for all property calculations
downstream. If there are relativistic picture change effects to be taken into
account, they can be incorporated at this point. The electronic structure methods
are next triggered in order to create the density and response density electron and
spin densities and store them in a “density container”. All that is required now is
that a single, common property program (called orca_prop) picks up the property
integrals and (response) densities and evaluates the first- and second-order
properties. This happens automatically for all “eligible” densities. Thus, if
a single run of the program produced Hartree-Fock, MP2 and CCSD(T) densities,
then the property program will evaluate and print, say, the requested NMR
shielding tensors for all of these methods without any creation of overhead.

SCF response properties are of particular importance since they are the by far
most requested in actual application studies. In order to streamline the genera-
tion of SCF response densities, a separate module was created called orca_scfresp.

306 | Faraday Discuss., 2024, 254, 295-314 This journal is © The Royal Society of Chemistry 2024

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4fd00056k

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

Open Access Article. Published on 04 2024. Downloaded on 08/11/25 23:46:45.

(cc)

View Article Online
Paper Faraday Discussions

This module categorizes all requested response properties into the categories
“real”, “imaginary” and “triplet” perturbations. For each category all right hand
sides for the coupled-perturbed SCF equations are collected together and treated
simultaneously. Thus any overhead relating to the repeated solution of response
equations is completely avoided and all response densities become available
simultaneously. For example, the nuclear and electric field perturbations both
represent “real” perturbations and are treated simultaneously. This allows for the
nuclear Hessians, polarizabilities and Raman intensities to be handled simulta-
neously and without overhead. Likewise, nuclear magnetic perturbations are
pooled and treated simultaneously for NMR spin-spin or EPR second-order
hyperfine calculations with very large computational benefits over solving for
each nuclear perturbation separately.

The generated properties are all stored in the “property” file, which is a fixed-
format human as well as machine readable file that is a result of an ORCA run.
This file can be used by post-processing tools such as, say, spectra simulation
programs in order to generate further analysis.

Excited state properties and properties that do not result from a response
treatment (for example properties resulting from quasi-degenerate perturbation
theory treatments) are a bit more complicated to handle in a streamlined fashion.
However, this has also been accomplished as part of the code redesign.

5.4 Information flow and shell structure design

Taken together, the streamlining of the integral and property codes led to a very
large compaction of the of the code base and the near-complete removal of any
redundant code. At the same time, the infra-structure became very robust and
highly reliable since multiple tasks all run through the same, highly-optimized
and well-tested code. The final layer of organization now concerns the separa-
tion of organizational and computational tasks. To this end, the revamped code
uses a “shell” structure (Fig. 2).

The outer shell consists of the core of the original and now streamlined ORCA
code. Its main task is to interact with the user and to organize the overall flow of
the computation. Nearly all hard-core computational tasks are handled in the

Interfaces

Graphical input
And analysis
,1-click’ solutions

Workflow optimization
Expert systems

Task organization,

ORCA ‘ /0 & Fcll(;\tg?rf'nla%gg;;ement
{DRIVERS

Equation solutions

S HAR K Hardcore numerics

Fig. 2 Illustration of the shell structure of the redesigned ORCA program package.

This journal is © The Royal Society of Chemistry 2024 Faraday Discuss., 2024, 254, 295-314 | 307

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4fd00056k

Open Access Article. Published on 04 2024. Downloaded on 08/11/25 23:46:45.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

View Article Online
Faraday Discussions Paper

innermost shell by the SHARK interface which is largely independent of the
remaining ORCA code base. The missing link between the two shells is provided
by so-called “DRIVERS”. These drivers are called from within ORCA, pass on the
necessary information to SHARK and calls the appropriate SHARK functions.
Importantly, this is the place where all the various integral approximations that
can be chosen by the user are differentiated. Thus thousands and thousands of
lines of legacy code that simply dealt with figuring out whether, say, the chain-of-
spheres (COSX) and Split-RI-J approximations are to be used or not and if yes, how
they are going to be used, are eliminated. What remains is a very straightforward
call from within ORCA to a given task driver which will then ensure that the
necessary tasks are properly executed. For example, the DRIVER for the
construction of a Fock matrix will differentiate between Hartree-Fock and DFT
and then between RHF, UHF, ROHF and CASSCF, between exact four-index or
approximated integrals, within approximated integrals between the RIJCOSX, RI-
JK (both Coulomb and exchange handled by the RI approximation) and RI-DX
(Coulomb handled by RI, exchange by exact integrals). It will know when to add
solvation terms and within solvation differentiate between CPCM, SMD or RISM.
The driver also understands when to add external point charge fields or add
relativistic corrections.

By structuring the code in this way, the main ORCA code can fully concentrate
on setting up and organizing the various computational tasks at hand, the drivers
take care of the nitty-gritty logic required to orchestrate the calculations and the
SHARK infrastructure executes the hard-core numerical tasks. We believe that
this infrastructure is highly streamlined, transparent and reliable and is a solid
basis for future development.

5.5 Dealing with complex methods: automatic code generation

The intellectual complexity of quantum chemical methods has been steadily
increasing. In particular, in the field of wavefunction theory, one eventually hits
a wall of complexity that is beyond the capacity of the human brain. Imple-
menting these high-level ab initio electronic structure theories by hand is
a tedious, lengthy and error prone task. At the same time, there is very little merit
in yet another implementation of the CCSD(T) method since it has been done so
many times. Thus, despite the fact that the effort for the implementation is very
high and may take years to accomplish, there is little scientific merit to be gained
from these efforts.

To ensure that high-level ab initio methods become available in a given
package together with their gradients and response properties and lead to code
that is maintainable and could be extended to future hardware platforms without
years of re-writing effort, we look to the automatic generation of code. This is
a complex subject with a long history and hence, only a few aspects will be briefly
touched upon that are most relevant in the context of sustainable code
development.

Many code generators have been developed over the years, each one with
a specific focus and each with a specific set of strengths and weaknesses. Code
that has been generated with these code generators may live inside a given host
program. However, these code generators tend to be separate from their host
programs and once the developer of the generator moves on to a different career,

308 | Faraday Discuss., 2024, 254, 295-314 This journal is © The Royal Society of Chemistry 2024

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4fd00056k

Open Access Article. Published on 04 2024. Downloaded on 08/11/25 23:46:45.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

View Article Online
Paper Faraday Discussions

these code generators tend to get lost. This means that if the need arises to
change, adapt or extend the generated code, one finds oneself in the position of
being unable to do so which eventually means that the generated code and the
efforts that went into it, are lost.

In our efforts in the field of automatic code generation, we have insisted on
a concept of “deep integration”.>*** The underlying vision is the following: we
envision that in the future, developers only check in the wavefunction Ansatz into
the code repository. This Ansatz is then automatically translated into equations,
the equations are automatically factorized and the factorized equations are
automatically translated into high-level (or even machine level) code. This code is
then automatically placed in the appropriate place within a given host program
where it is triggered by a, presumably hand-written, wrapper that drives the
desired computational task (for example, the generation of a residual vector of
some kind). The code generation chain (equation generator, factorizer and code
generator) are themselves part of the source repository. Organizing the sequence
of actions in the indicated way, ensures that whenever an improvement is made to
the generation chain, it will be immediately applied to all generated code. This
ensures a perfect coherence of all generated code. Since new hardware only
requires an extension of the last step of the chain - the code generator - the
concept allows developers to react very quickly and efficiently to future hardware
developments.

In our opinion, a development like this is not only desirable but also necessary
in order to ensure that high-level wavefunction theories of incredible complexity
can not only be implemented in an efficient and reliable manner, but also remain
maintainable and adaptable to the quickly shifting hardware landscape. For
example, using this concept, we have been able to generate the hierarchy of
closed- and open-shell coupled cluster methods together with nuclear gradients
as well as their densities and response densities as well as methods like internally
contracted multi-reference coupled cluster theory (FIC-MRCC), the implementa-
tion of which would be impossible without the use of automatic code generation.
Importantly, the code generation chain has been optimized to the point that the
generated code, where comparison is possible, performs very similarly to the best
hand-written codes that perform the same task. The development of an opti-
mized, coherent and general code generation tool required many years of effort
and was only possible because of the existence of generous base level funding in
a way that is scarcely available in our community.

5.6 Organization of high-level tasks: compound scripting language

A typical computational chemistry study does not consist of a single or a few
calculations, but often of the series of calculations. In addition, computational
chemists may use a combination of methods in order to obtain the best possible
results in the shortest amount of time. For example, one may want to generate
a geometry optimization and frequencies together with thermochemistry by an
efficient DFT method, then compute an accurate single point energy using
a DLPNO-CCSD(T) calculation and estimate core-correlation effects with DLPNO-
MP2, then extrapolate all of this to the PNO and basis sets limits and finally add
a correction for solvent effects. This is clearly a multi-step procedure that requires
a significant number of individual steps that need to be repeated for each species

This journal is © The Royal Society of Chemistry 2024 Faraday Discuss., 2024, 254, 295-314 | 309

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4fd00056k

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

Open Access Article. Published on 04 2024. Downloaded on 08/11/25 23:46:45.

(cc)

View Article Online
Faraday Discussions Paper

one might be interested in over the course of the study. Implementing such
a workflow is tedious and error prone. Of course, one could resort to shell-scripts
to execute such a workflow. However, this then involves some parsing of the
output files and collection of information that might not be straightforward to
obtain from the electronic structure host program.

Of course, the host program could implement complex workflows, such as the
indicated one, by hard-cording it into the host programs feature set. However, this
would severely limit the creativity of the computational chemist who wants to invent
their own workflows and treats them according to their needs and preferences.

In order to organize such high-level computational tasks in an efficient and
user-friendly manner, we have created the “compound” functionality. In
a nutshell, the compound functionality can be thought of as a shell scripting
language with deep integration of ORCA functions and ORCA data structures.
Using the compound functionality one can drive jobs like:

(1) Multi-step protocols such as the one indicated above.

(2) Sequences of identical calculations on a series of molecules.

(3) Sequences of calculations stepping through a range of input options or
parameters.

(4) Read and process any property created by ORCA from the property file.

(5) Read, write and manipulate molecular structures.

(6) Execute system commands.

(7) Do custom analysis and create customized printouts.

(8) Use programming language constructs such as “for”, “while”, “if” ... “else”,
“goto”.

o) ...

The compound functionality can be written directly into an ORCA input file
alongside other ORCA commands or “compound scripts” can be saved into
a common directory and triggered from an ORCA input file. In the latter case, it is
possible to assign some variable inside the compound script from the ORCA input
file.

Methods . cmpd:

Variable Approx = {LSD, BP86, B3LYP, RI-B2PLYP,
DLPNO-MP2, DLPNO—CCSD(Tl)};

Variable Molecule. wo .

Variable Charge = 0;
Variable Multiplicity = 1;
Variable BasisSet = “def2-8SvVp”;
Variable AuxBasis = “def2/J”

Variable EN[10];
For ivar from 0 to Approx.GetSize()-1 do
New_step
! &{Approx} &{BasisSet} &{AuxBasis} VeryTightSCF SmallPrint
* xyzfile &{Charge} &{Multiplicity} &{Molecule}?’
Step_end
Read EN[ivar] = JOB_INFO_TOTAL_EN[ivar+1];
Endfor;
For ivar from 0 to Approx.GetSize()-1 do
Print (“Energy for method %-12s = %16.91f Eh\n”, Approxl[ivar],EN[ivar]);
Endfor;

Scheme 2 Anexample foran ORCA compound script that implements the comparison of
several quantum chemical approximations.

310 | Faraday Discuss., 2024, 254, 295-314 This journal is © The Royal Society of Chemistry 2024

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4fd00056k

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

Open Access Article. Published on 04 2024. Downloaded on 08/11/25 23:46:45.

(cc)

View Article Online
Paper Faraday Discussions
Fcompound “Methods.cmpd”
With Molecule “MyRadical.xyz”;
Charge = 1;
Multiplicity = 2;
BasisSet = “def2-TZVPP”

End

Scheme 3 An example how to trigger an ORCA compound script from the ORCA input.

For example, a compound script that explores a range of approximate elec-
tronic structure methods could look like this (Scheme 2).

When it is called from an ORCA input, one could do the following (Scheme 3).

Clearly, the applications that can be realized with a powerful scripting
language are near endless and they can lead to highly streamlined workflows. For
example, an entire research group could put down their preferred workflows for
different tasks into a series compound script that is then triggered by every
researcher individually in their specific applications.

5.7 Inter-operability: property file, JSON interface, plugins

No single program package can ever hope to incorporate all features and methods
that a user may need or desires. Hence, it is important that there is a certain
amount of inter-operability between different programs. The challenges associ-
ated with a lack of standardized data formats were discussed above. In addition,
at least for the foreseeable future, there will be no universally accepted and
implemented open-source policy for quantum chemical programs. Even if there
was one, programs are not automatically inter-operable. Rather complex opera-
tions and changes to the respective codes would be necessary that the majority of
users that desire inter-operability of different codes neither could nor would want
to make themselves.

The first layer of interfacing ORCA to outside programs is provided by the
property file alluded to in Section 5.3. The property file is a concise summary of
the calculation results during a given ORCA run. The file is written in a fixed ASCII
format and is designed to be human as well as machine readable. This file is
provided as a longer-term stable interface that allows access to calculation results
without parsing the output file, the format of which may not only be long but is
also subject to change without prior notice. At this point in time over 200 different
properties can be accessed including coordinates, various energies, population
analysis results, and excitation energies among many other properties.

In addition, the upcoming ORCA version will feature a somewhat detailed
interface that uses the Java Script Object Notation (JSON)*® data format. We have
chosen the JSON - not for its simplicity or beauty - but for the fact that it is widely
used and accepted by a generation of younger researchers and computer scien-
tists. Using JSON, one also obtains files that are human as well as machine
readable.

The interface is capable of doing the following:

(1) Provide the entire contents of the property file in JSON format.

(2) Output coordinates, basis sets.

This journal is © The Royal Society of Chemistry 2024 Faraday Discuss., 2024, 254, 295-314 | 311

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4fd00056k

Open Access Article. Published on 04 2024. Downloaded on 08/11/25 23:46:45.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

View Article Online
Faraday Discussions Paper

(3) Output molecular orbital coefficients.

(4) Output CIS/RPA/TD-DFT amplitudes.

(5) Output various one- and two-electron integrals.

(6) Run in reverse and let the user create GBW files from JSON files.

In order to exchange integrals and MO coefficients a detailed understanding of
ORCA orders and normalized basis functions is required. This subject is
explained in detail in the accompanying manual.

Clearly, an interface like this is somewhat limited to types of data sets that do
not get overwhelmingly large. For example, while the interface is able to provide
two-electron integrals, the size of the files that holds these integrals quickly
becomes too large to allow driving calculations on large molecules. For the same
reason, coupled cluster amplitudes are not offered. Nevertheless, the ability to use
ORCA as an integral generator may prove to be very useful for other developers
that want to test their own codes.

In addition to this data exchange, we have also experimented with the concept
of a “plugin”. A plugin would be an external, user-provided program that can be
called at a strategic place from within ORCA. For example, to make a new Fock
matrix using a method that ORCA does not have or provide a new set of orbitals
using the solver that ORCA does not have. Time will tell, whether this concept is
successful and will be embraced by the community.

6 Discussion

In this article, some of the challenges associated with the development of large-
scale, general-purpose quantum chemical program packages were discussed.
Possible solutions or partial solutions to some of the challenges were discussed in
the context of the ORCA program package that underwent a major re-design and
re-write 25 years into its existence.

It appears to be clear that it will be a major challenge for our community to
ensure that the software packages that drive the success of computational
chemistry remain strong, healthy and well-adapted to the rapidly shifting hard-
ware landscape. To keep such large projects, that necessarily involve millions of
lines of source-code, up to date and streamlined, while largely having to rely on
academic developers is clearly a very tall order, especially while facing the realities
of competitive research funding. Whether the now quickly evolving Al tools and/
or an open-source policies alone are sufficient to reach this ambitious goal,
remains to be seen. After all, to keep a large project coherent over extended
periods of time, is not a self-organizing process but requires some form of lead-
ership and agreed-upon policies. The track record of the quantum chemistry
community in agreeing on standards or data formats is not overly impressive.
Rather localized, individual solutions exist for these problems with no consensus
presently in sight. What appears to be more realistic is that the most repetitive of
tasks are being implemented in generally available, possibly open-source,
libraries that greatly benefit the development of future quantum chemistry
packages.

Conflicts of interest

There are no conflicts of interest to declare.

312 | Faraday Discuss., 2024, 254, 295-314 This journal is © The Royal Society of Chemistry 2024

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4fd00056k

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

Open Access Article. Published on 04 2024. Downloaded on 08/11/25 23:46:45.

(cc)

View Article Online
Paper Faraday Discussions

Acknowledgements

In this article, I have spoken openly about how I perceive the challenges associ-
ated with quantum chemical software development. It has been written with the
greatest amount of affection for our discipline. I am deeply indebted to my
students, collaborators and long-term co-workers that have shared my passion for
and my vision of quantum chemical software. I am also deeply indebted to the
Max Planck Society and the German Science Foundation for their continued
support of basic science with no strings attached. The author grateful acknowl-
edges financial support of the Max Planck Society as well as the German Science
Foundation in the framework of the special research unit 1639 (“Numeriqs”) that
is installed at the University of Bonn, Germany.

References

1 R. Di Felice, M. L. Mayes, R. M. Richard, D. B. Williams-Young, G. K. L. Chan,
W. A. de Jong, N. Govind, M. Head-Gordon, M. R. Hermes, K. Kowalski, X. S. Li,
H. Lischka, K. T. Mueller, E. Mutlu, A. M. N. Niklasson, M. R. Pederson,
B. Peng, R. Shepard, E. F. Valeev, M. van Schilfgaarde, B. Vlaisavljevich,
T. L. Windus, S. S. Xantheas, X. Zhang and P. M. Zimmerman, J. Chem.
Theory Comput., 2023, 19, 7056-7076.

2 S. Lehtola, J. Chem. Phys., 2023, 159, 180901.

3 S. Lehtola and A. J. Karttunen, Wiley Interdiscip. Rev.: Comput. Mol. Sci., 2022,
12, e1610.

4 E. F. Valeev, 2024, http://libint.valeyev.net/.

5 Q. M. Sun, J. Comput. Chem., 2015, 36, 1664-1671.

6 S. Lehtola, C. Steigemann, M. J. T. Oliveira and M. A. L. Marques, Softwarex,
2018, 7, 1-5.

7 U. Ekstrom, XCFun: A Library of Exchange-Correlation Functionals with Arbitrary-
Order Derivatives.

8 S. Lehtola and M. A. L. Marques, J. Chem. Phys., 2022, 157, 174114.

9 J. A. Farrar, F. Neese, P. Lappalainen, P. M. H. Kroneck, M. Saraste, W. G. Zumft
and A. J. Thomson, J. Am. Chem. Soc., 1996, 118, 11501-11514.

10 F. Neese, W. G. Zumft, W. A. Antholine and P. M. H. Kroneck, J. Am. Chem. Soc.,
1996, 118, 8692-8699.

11 F. Neese, Wiley Interdiscip. Rev.: Comput. Mol. Sci., 2022, 12, €1606.

12 F. Neese, J. Comput. Chem., 2023, 44(3), 381-396.

13 D.S. Lambrecht, B. Doser and C. Ochsenfeld, J. Chem. Phys., 2005, 123,184101.

14 S. A. Maurer, D. S. Lambrecht, J. Kussmann and C. Ochsenfeld, J. Chem. Phys.,
2013, 138, 014101.

15 T. H. Thompson and C. Ochsenfeld, J. Chem. Phys., 2019, 150, 044101.

16 D. S. Hollman, H. F. Schaefer and E. F. Valeev, J. Chem. Phys., 2015, 142,
154106.

17 E. F. Valeev and T. Shiozaki, J. Chem. Phys., 2020, 153, 097101.

18 J. Gauss, in Modern Methods and Algorithms in Quantum Chemistry, ed. J.
Grotendorst, John von Neumann Institute for Computing, Jilich, 2000, vol.
3, pp- 1-52, NIC Series.

19 F. Neese, Chem. Phys. Lett., 2000, 325, 93-98.

20 F. Neese, J. Chem. Phys., 2003, 118, 3939.

This journal is © The Royal Society of Chemistry 2024 Faraday Discuss., 2024, 254, 295-314 | 313

http://libint.valeyev.net/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4fd00056k

Open Access Article. Published on 04 2024. Downloaded on 08/11/25 23:46:45.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

View Article Online
Faraday Discussions Paper

21 F. Neese, J. Am. Chem. Soc., 2006, 128, 10213-10222.

22 F. Neese, Biol. Mag. Res., ed. G. Hanson, 2009, vol. 28, pp. 175-232.

23 F. Neese, in Multifrequency Electron Paramagnetic Resonance. Theory and
Applications, ed. S. Misra, Wiley VCH, Weinheim, 2011, pp. 297-326.

24 M. Krupicka, K. Sivalingam, L. Huntington, A. A. Auer and F. Neese, J. Comput.
Chem., 2017, 38, 1853-1868.

25 M. H. Lechner, A. Papadopoulos, K. Sivalingam, A. A. Auer, A. Koslowski,
U. Becker, F. Wennmohs and F. Neese, Phys. Chem. Chem. Phys., 2024, 26,
15205-15220.

26 F. Pezoa,]. L. Reutter, F. Suarez, M. Ugarte and D. Vrgoc, Foundations of JSON
Schema, WWW '16: Proceedings of the 25th International Conference on World
Wide Web, ACM, Montreal, CANADA, 2016.

314 | Faraday Discuss., 2024, 254, 295-314 This journal is © The Royal Society of Chemistry 2024

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4fd00056k

	A perspective on the future of quantum chemical software: the example of the ORCA program package
	A perspective on the future of quantum chemical software: the example of the ORCA program package
	A perspective on the future of quantum chemical software: the example of the ORCA program package
	A perspective on the future of quantum chemical software: the example of the ORCA program package
	A perspective on the future of quantum chemical software: the example of the ORCA program package
	A perspective on the future of quantum chemical software: the example of the ORCA program package
	A perspective on the future of quantum chemical software: the example of the ORCA program package
	A perspective on the future of quantum chemical software: the example of the ORCA program package
	A perspective on the future of quantum chemical software: the example of the ORCA program package
	A perspective on the future of quantum chemical software: the example of the ORCA program package

	A perspective on the future of quantum chemical software: the example of the ORCA program package
	A perspective on the future of quantum chemical software: the example of the ORCA program package
	A perspective on the future of quantum chemical software: the example of the ORCA program package
	A perspective on the future of quantum chemical software: the example of the ORCA program package
	A perspective on the future of quantum chemical software: the example of the ORCA program package
	A perspective on the future of quantum chemical software: the example of the ORCA program package
	A perspective on the future of quantum chemical software: the example of the ORCA program package
	A perspective on the future of quantum chemical software: the example of the ORCA program package

	A perspective on the future of quantum chemical software: the example of the ORCA program package
	A perspective on the future of quantum chemical software: the example of the ORCA program package
	A perspective on the future of quantum chemical software: the example of the ORCA program package

