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Mapping the distribution of electronic states
within the 5D4 and 7F6 levels of Tb

3+ complexes
with optical spectroscopy†

Nicolaj Kofod, * Margrete Juel Henrichsen and Thomas Just Sørensen *

The Tb(III) ion has the most intense luminescence of the trivalent lanthanide(III) ions. In contrast to Eu(III),

where the two levels only include a single state, the high number of electronic states in the ground (7F6)

and emitting (5D4) levels makes detailed interpretations of the electronic structure—the crystal field—

difficult. Here, luminescence emission and excitation spectra of Tb(III) complexes with 1,4,7,10-tetraazacy-

clododecane-1,4,7,10-tetraacetic acid (DOTA, [Tb(DOTA)(H2O)]−), ethylenediaminetetraacetic acid (EDTA,

[Tb(EDTA)(H2O)3]
−) and diethylenetriaminepentaacetic acid (DTPA, [Tb(DTPA)(H2O)]2−) as well as the Tb(III)

aqua ion ([Tb(H2O)9]
3+) were recorded at room temperature and in frozen solution. Using these data the

electronic structure of the 5D4 multiplets of Tb(III) was mapped by considering the transitions to the singly

degenerate 7F0 state. A detailed spectroscopic investigation was performed and it was found that the 5D4

multiplet could accurately be described as a single band for [Tb(H2O)9]
3+, [Tb(DOTA)(H2O)]− and [Tb

(EDTA)(H2O)3]
−. In contrast, for [Tb(DTPA)(H2O)]2− two bands were needed. These results demonstrated

the ability of describing the electronic structure of the emitting 5D4 multiplet using emission spectra. This

offers an avenue for investigating the relationship between molecular structure and luminescent pro-

perties in detailed photophysical studies of Tb(III) ion complexes.

Introduction

Lanthanide luminescence has found widespread use in anti-
counterfeiting agents,1 sensing,2,3 bioassays,4–7 and display
technology.8 Terbium(III) ions, in particular, have emerged at
the forefront of a number of applications such as FRET-based
biosensing,9–16 luminescent bioprobes,17,18 and single-mole-
cule magnets.19–22 In addition, the high energy gap between
the emitting 5D4 level and the lower lying 7F6-0 manifold
makes Tb(III) luminescence less susceptible to quenching by
the chemical environment than other luminescent
lanthanides.23–25 However, unlike the similarly luminescent
Eu(III), extracting useful information about the electronic struc-
ture from Tb(III) optical spectra is a difficult task.

In contrast to most other lanthanides, for Eu(III) ions, both
the ground state 7F0 level and main emissive level 5D0 consist
of only a single electronic state. The simplicity of the involved
states allows a high level of detail, when investigating the elec-

tronic structure of Eu(III) from the optical spectra alone. The
key is that the Eu(III) electronic structure can be obtained from
the luminescence spectra because the individual lines—the
individual electronic states—can be resolved. Thus, Eu(III)
luminescence spectra can be directly linked to the point group
symmetry of the emitting species, which provides detailed
information on the crystal field splitting and the molecular
structure.26–28 This also allows for Eu(III) to be used as a struc-
ture probe for similar lanthanide complexes.

For Tb(III), the most optically studied Ln(III) after Eu(III), the
ground state (7F6) and main emissive (5D4) levels consist of 13
and 9 electronic states respectively. The difference in elec-
tronic structure of Tb(III) and Eu(III) is illustrated in Fig. 1.

This convolutes the Tb(III) luminescence spectra making
deconvoluting the emission bands hard, and as the individual
electronic states cannot be resolved, the electronic structure is
not readily resolved. Without this information, the optical
spectra cannot be correlated to a specific molecular structure.

Over the last decade, we have used molecular photophysics
to revisit the electronic structure of several lanthanide
ions.23,29–40 Due to the reasons laid out above, the focus has
been on Eu(III) in particular, where the correlation between
molecular structure and photophysics has been investigated in
detail for both sensitized europium luminescence,31,41,42 and
direct excitation.29,36,37 While others have aimed to optimize
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e.g. luminescence sensing,43–46 our goal was to establish the
molecular structure in solution,30,32,33,36,47 in order to deter-
mine the photophysical properties of Eu(III) ions in different
crystal fields.29,36,37 Benchmarking on Eu(III)34 has allowed us
to develop methodologies for analysing optical spectra that
can be transferred to other lanthanides.23,33,35–37,39 We have
revisited complexes of Eu(III) with dipicolinate.36,40,48 We have
determined quantum yields of luminescence and the radiative
rate constants.23,29,37 We have investigated the relationship
between electronic structure and molecular structure of Dy(III),
Sm(III), Yb(III), and Nd(III),33,35,37,39 and now we turn to Tb(III).

Despite the apparent complexity of the optical spectra of
Tb(III), we have the methodologies33,35,39 to resolve parts of the
electronic structure. Tb(III) emission occurs from the 5D4 emit-
ting level into the seven 7F6-0 levels. Each level contains 2J + 1
individual electronic states, split by the crystal field.
Depending on the thermal energy and the size of the crystal
field splitting, only a certain number of states within the emit-
ting 5D4 multiplet will be populated.33,35 The same is true for
the ground state 7F6 level in absorption. Electronic transitions
in both absorption and emission spectroscopy only occur from
the populated states within a multiplet. In Tb(III) spectra each
observed spectral band is a convolution of the splitting of the
final levels and the thermally accessible states of the initial
level. In contrast to most of the other lanthanide ions, most
Tb(III) transitions involve a number of states that is so high
that deconvolution of the spectral bands is difficult if not
impossible. For example, the emission around 488 nm from
the 5D4 level into the 7F6 level contains up to 117 (9·13) indi-
vidual electronic transitions in a spectral band that often
appears with limited fine structure. However, the low energy
emission band around 680 nm (∼14 700 cm−1) from 5D4 →

7F0
transitions is less complicated. The 7F0 level consists of a
single electronic state. This means that the shape of the spec-
tral band is dictated only by the splitting of the emitting 5D4

level, and that the band contains up to 9 (9·1) individual elec-
tronic transitions. That is, the 680 nm band shows the crystal

field splitting of the thermally populated electronic states in
the emitting 5D4 level. In this work, we use this knowledge in
combination with high resolution optical spectroscopy to map
the electronic structure of the emitting 5D4 level of four Tb(III)
complexes: [Tb(H2O)9]

3+, [Tb(EDTA)(H2O)3]
−, [Tb(DTPA)(H2O)]

2−

and [Tb(DOTA)]−.

Results and discussion

The structure of the lanthanide(III) aqua ions in solution has
been debated in the literature at length.49–53 Recently, there
has been evidence pointing to the 9-coordinated tricapped tri-
gonal prismatic (TTP) structure being the dominant structure
in solution for the Tb(III) aqua ion.23,50 The TTP structure has
nine oxygen donors in a D3h point group symmetry, see Fig. 2.
For the Eu3+ analogue this results in a highly symmetric
species.26,28,37,47

The [Ln(DOTA)(H2O)]
− complexes has been studied in detail

in literature.54–64 The molecular structure of [Ln(DOTA)(H2O)]
−

complexes can be generalised as a capped square antiprismatic
(cSAP) structure with one H2O acting as a capping ligand with
a 4N-4O-1O* donor set, see Fig. 2, where O* denotes oxygen
donors from the solvent. This notation is used for all following
complexes. Looking closer, the complex exists in an equili-
brium between several forms: two nine-coordinated isomers
differing in the twist angle between the two 4 atom donor-
planes with a capped SAP structure with a twist angle ∼39°
and a twisted capped SAP structure (cTSAP) with a twist angle
of ∼22°.49,58,62 Traces of the two eight-coordinated, uncapped
isomers will also be present, but can often be ignored. For
[Tb(DOTA)(H2O)]

− the distribution between the major isomer
couple is approx. 9 : 1 cSAP : cTSAP.10,39 Note that the C4 axis of
the complex is retained in solution, and that compared to the

Fig. 1 Illustration showing the number of electronic states within the
ground 7FJ and main emissive 5DJ electronic energy levels of Eu(III) and
Tb(III) ions (CF = crystal field).

Fig. 2 Complexes used in this study. Inner-sphere water are highlighted
in red.
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millisecond time-scale of Tb(III) luminescence, these isomers
are in fast exchange. Thus, the average luminescence spectrum
from the two species will be observed in solution.64

The [Tb(EDTA)(H2O)3]
− complex has a 2N-4O-3O* donor set

with three H2O molecules completing the coordination sphere,
see Fig. 3.65 The structure is often described as a distorted
TTP, but closer inspection reveals that it is neither TTP nor
cSAP.66 In competitive media, the [Ln(EDTA)(H2O)3]

− com-
plexes dissociate.65,67,68

[Tb(DTPA)(H2O)]
2− has a 3N-5O-1O* donor set, with a

single H2O molecule completing the coordination sphere, see
Fig. 3.65 The [Gd(DTPA)(H2O)]

2− was used as a MRI contrast
agent, but was banned in 2017 in the EU due to concerns over
metal dissociation.68,69 As for the EDTA complex, the structure
of the DTPA complex lies somewhere between a cSAP and a
TTP form.65

We recorded the luminescence spectra and time-resolved
emission decay profiles for the four Tb3+ species, [Tb(H2O)9]

3+,
[Tb(EDTA)(H2O)3]

−, [Tb(DTPA)(H2O)]
2− and [Tb(DOTA)(H2O)]

−

in H2O and D2O. In D2O, we further recorded the same sample
at room temperature (RT) and flash frozen in liquid nitrogen
(77 K). Note that all spectra have been normalised as the non-

transparency of the frozen samples does not allow for accurate
absolute intensities to be obtained. This data is shown in
Fig. 3. Due to the inherently low molar absorption coefficient
of Tb(III), absorption spectra were omitted. The excited state
lifetimes are compiled in Table 1. All lifetimes show a mono-
exponential decay, indicating that all complexations have
reached thermodynamic equilibrium and that only one species
is present in solution, see Fig. S4, S9, S15 and S21.†70 Where
the luminescence lifetimes of [Tb(EDTA)(H2O)3]

− in H2O and
D2O, and [Tb(DTPA)(H2O)]

2− in H2O match those found in lit-
erature,24 the luminescence lifetimes of [Tb(DTPA)(H2O)]

2− in

Fig. 3 Emission spectra of 0.1 M [Tb(D2O)9]
3+ (a), 0.05 M [Tb(DOTA)(D2O)]− (b), 0.05 M [Tb(DTPA)(D2O)]2− (c) and 0.05 M [Tb(EDTA)(D2O)3]

− (d)
measured in D2O at 77 K (black) and RT (red). Excitation was done at 372 nm. Excitation slits were kept at 5 nm for all samples. Emission slits were
kept at 1 nm for [Tb(D2O)9]

3+, [Tb(DOTA)(D2O)]−. [Tb(DTPA)(D2O)]2− and 2 nm for [Tb(EDTA)(D2O)3]
−.

Table 1 Excited state lifetimes and number of inner-sphere solvent
molecules (q) of the four Tb3+ complexes in this study

τH2O (ms) τD2O (ms) q q lit

[Tb(H2O)9]
3+ 0.425 4.033 10.2 10.1a

[Tb(EDTA)(H2O)3]
− 1.079 3.547 2.9 2.9b

[Tb(DTPA)(H2O)]
2− 1.590 3.153 1.3 1.1b

[Tb(DOTA)(H2O)]
− 2.035 3.418 0.7 1.1b

a Ref. 23. b Ref. 24.

Dalton Transactions Paper

This journal is © The Royal Society of Chemistry 2024 Dalton Trans., 2024, 53, 4461–4470 | 4463

Pu
bl

is
he

d 
on

 1
2 

 2
02

4.
 D

ow
nl

oa
de

d 
on

 3
0/

06
/2

4 
10

:5
6:

43
. 

View Article Online

https://doi.org/10.1039/d3dt03657j


D2O and [Tb(DOTA)(H2O)]
− in H2O and D2O are significantly

shorter than literature values.24 This could be due differences
in pH or differences in proton content of the deuterated
solvent. The number of inner-sphere solvent molecules found
using the modified Horrocks method match literature values,
see Table 1.24

The [Tb(H2O)9]
3+ complex has a q value of 10.2 (Table 1),

which is above the expected 9 inner-sphere solvent mole-
cules.23 This discrepancy has been observed before and using
an A value for the Horrocks equation more suited for non-
macrocyclic complexes yields a q value of 9.1.23

We note that the normalized emission spectra of all four
complexes in H2O and D2O are identical proving that no struc-
tural changes happen upon deuterating the solvent, see
Fig. S1, S6, S12 and S18.†23,37

Fig. 4 shows the luminescence excitation spectra of the 7F6
→ 5D4 transition in the region around 488 nm of the four com-
plexes at RT and 77 K. Closer inspection of these reveals that
all four complexes has a blue shift occurs in the 7F6 → 5D4

transition when temperature is decreased. This is because
fewer of the 13 7F6 states are thermally populated at 77 K
(Fig. 2).33–35,71 The 117 (9·13) individual electronic transitions
in 7F6 →

5D4 makes any efforts to elucidate the electronic struc-
ture of either level very difficult. Closer investigation of the
electronic structure of the emitting 5D4 level requires a more
detailed investigation of the emission spectrum.

The Tb(III) luminescence emission spectra consists of seven
bands arising from transitions from the 5D4 multiplet into the
seven 7F6-0 levels, see Fig. 3. The emission spectra is domi-
nated by the first four transitions, 5D4 →

7F6-3, with more than
95% of the emission intensity recovered from these bands.
Around 680 nm the 5D4 →

7F0 transition can be observed. This

transition is unique in the Tb(III) emission spectra as the 7F0
consists of only a single electronic state. Thus, assuming that
the experimental resolution is high enough, the width of the
band will be defined by the intrinsic width of the electronic
transition and the crystal field splitting of the 5D4

multiplet.23,34 Fitting of 5D4 → 7F0 band in the [Tb(H2O)9]
3+,

[Tb(EDTA)(H2O)3]
− and [Tb(DOTA)(H2O)]

− spectra shows that it
can be accurately described with a single Lorentzian peak, see
Fig. S5, S10 and S22.† The fit parameters are compiled in
Table 2. Since the width of the band arises from the splitting
of the emitting 5D4 level it follows that the next band, the
5D4 → 7F1 transition, consists of 1–3 peaks with the same
width. Fitting the 5D4 → 7F0 and 5D4 → 7F1 bands with
Lorentzian peaks results in a good fit for all three complexes.
This illustrates that the shape of the emitting 5D4 level is
present throughout all Tb(III) emission bands.

It is surprising that the width of the peaks is less than
100 cm−1 in all fits. Either, the emission originates from a
single state (or a few close lying states), where the higher-lying
states remain beyond thermal population. Or, all the states
within the 5D4 level are very close in energy. The first case
would give rise to significant hot bands–bands arising from
higher lying, thermally populated states–at RT.19,72 This is not
observed in the emission spectra, where only temperature
broadening is observed on the blue side of the bands, when
the RT spectra are compared to 77 K spectra. Hot band should
be pronounced shoulders on the blue side of each band.34

Therefore, a cluster of nine close lying states within the 5D4

Fig. 4 Normalised excitation spectra of the 7F6 →
5D4 transiton of 0.1 M

[Tb(D2O)9]
3+ (a), 0.05 M [Tb(DOTA)(H2O)]− (b), 0.05 M [Tb(DTPA)(H2O)]2−

(c) and 0.05 M [Tb(EDTA)(H2O)3]
− (d) measured in H2O or D2O at 77 K

(black) and RT (red). Emission was measured at 545 nm. Emission and
excitation slits were kept at 3 nm.

Table 2 Fit parameters of fitted peaks in the 5D4 → 7F0,
7F1 bands of

emission

[Tb(H2O)9]
3+

Peak # Peak center
(cm−1)

Peak widtha

(cm−1)
Peak area

Peak 1 14 717 ± 0.5 59.2 ± 1.2 88.5 ± 1.4
Peak 2 14 990 ± 1.5 59.2 ± 1.2 47.7 ± 2.3
Peak 3 14 943 ± 2.6 59.2 ± 1.2 33.9 ± 2.3
Peak 4 14 890 ± 1.9 59.2 ± 1.2 33.0 ± 1.9
[Tb(EDTA)(H2O)3]

−

Peak # Peak center
(cm−1)

Peak widtha

(cm−1)
Peak area ×
105

Peak 1 14 713 ± 0.6 75.2 ± 1.2 43.6 ± 0.56
Peak 2 14 990 ± 0.8 75.2 ± 1.2 40.1 ± 0.76
Peak 3 14 915 ± 2.6 75.2 ± 1.2 11.8 ± 0.68
[Tb(DOTA)(H2O)]

−

Peak # Peak center
(cm−1)

Peak widtha

(cm−1)
Peak area ×
105

Peak 1 14 670 ± 0.9 62.8 ± 1.6 9.68 ± 0.23
Peak 2 14 953 ± 0.8 62.8 ± 1.6 12.0 ± 0.25
[Tb(DTPA)(H2O)]

2−

Peak #
(77 K)

Peak center
(cm−1)

Peak widtha

(cm−1)
Peak area ×
105

Peak 1 14 688 ± 1.1 59.1 ± 3.3 19.4 ± 0.86
Peak 2 14 763 ± 6.0 59.1 ± 3.3 3.75 ± 0.60
Peak # (RT) Peak center

(cm−1)
Peak widtha

(cm−1)
Peak area ×
105

Peak 1 14 676 ± 1.0 59.8 ± 2.2 16.1 ± 0.46
Peak 2 14 754 ± 1.3 59.8 ± 2.2 12.2 ± 0.41

a Shared parameter.
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multiplet appears to be the most likely explanation. A total
crystal field splitting of less than 100 cm−1 is small, even for a
lanthanide.33,72 For the ground state multiplet, 7F6, crystal
field splitting on the order of several hundred cm−1 are
known, and there are several examples of crystal field splitting
exceeding 1000 cm−1.73

Detailed crystal field studies of lanthanide complexes are
usually performed with single-molecule magnets in mind, a
field where the ground state level is of primary interest.
Studies with the crystal field splitting of the high lying emis-
sive levels as a focus are rare, except for a few studies focusing
on Yb3+.33,71,74–78 Comparisons of crystal field splitting in
higher lying levels are therefore limited. However, ‘hot’ emis-
sion lines, which arise from higher lying states within the
emitting level, have been observed around 100 cm−1 above the
main emission line.19,72 Thus, we can conclude that the band
shape of the 5D4 → 7F0 can be used to map the emitting level
of Tb(III). And we note that the nine states of the 5D4 level
in [Tb(H2O)9]

3+, [Tb(EDTA)(H2O)3]
− and [Tb(DOTA)(H2O)]

−

must be spaced by mere tens of reciprocal centimetres, in an
envelope with a width <100 cm−1. Fig. 5 shows the spectral
shape and energy levels determined for the [Tb(H2O)9]

3+,
[Tb(EDTA)(H2O)3]

− and [Tb(DOTA)(H2O)]
− complexes. It

should be noted that the choice of a Lorentzian function for
the fit is not trivial. We have previously shown that the peak
shape of lanthanide optical transitions can be described by
either Lorentzian, Gaussian or a Voigt function depending on
the system and conditions.23,30,34,35 Based on these studies
this case should ideally be described by a Voigt function, but
we find this overfits the data. A Gaussian function fits the
5D4 → 7F1 slightly better and reduces the number of peaks in
the [Tb(H2O)9]

3+ 5D4 → 7F1 band to two peaks. However, since
the quality of fit of the 5D4 →

7F0 band is significantly reduced
for all four complexes, we chose to proceed with the
Lorentzian fit.

The [Tb(DTPA)(H2O)]
2− complex is different. Here, the

5D4 →
7F0 transition has two bands separated by ∼75 cm−1, see

Fig. 6. The two bands are present in both the RT and 77 K
data, but varying in relative intensities as a function of temp-
erature. In both RT and 77 K spectra, the bands are accurately
fitted by two Lorentzian functions with a shared width. The fit
parameters are compiled in Table S3.† We note that the rela-
tive area of the bands at 77 K and at RT closely match the
expected Boltzmann distribution between two energy levels
split by the difference between the two band center energies.
This indicates that the emitting 5D4 level must consist of two
groups of states separated by ∼75 cm−1. It should be noted
that the Boltzmann treatment is done considering only two
states. The 5D4 multiplet contains nine individual states, and
assuming that no high-lying states exist (see above), the more
likely explanation is that the groups of states contain 5 and 4
states each. There is no way to determine, which group has 4
states and which has 5 states from the experimental results. As
changing the number of states in the Boltzmann analysis gives
only slight changes in the determined populations, any further
assignment would be purely speculative. The standard devi-
ation between the 2 state model and one with 9 states in either
a 4/5 or 5/4 arrangement is 2.9% and 4.4% for the 77 K and RT
data respectively. This deviation is well within the experi-
mental uncertainty. Note that models with other arrangements
of states, e.g. 1/8, 2/7 etc. are not consistent with the experi-
mental results and can therefore be excluded. The spectral
resolution does not allow for the two sets of transitions to be
observed in the 5D4 →

7F1 band, see Fig. S17.†
An alternative explanation would be that the

[Tb(DTPA)(H2O)]
2− complex exists as two different isomers in

solution, that is two molecular structures in slow exchange.
This is usually the first conclusion drawn from multiple lines
in the 5D0 → 7F0 transition in Eu(III) where the emitting level

Fig. 5 Emission spectra of the 5D4 → 7F0,
7F1 bands of [Tb(H2O)9]

3+

(black), [Tb(DOTA)(H2O)]− (red) and [Tb(EDTA)(H2O)3]
− (red). The lines

indicate the energy of the individual electronic states determined by
fitting the data to Lorenztian functions (see main text).

Fig. 6 Emission spectra of the 5D4 → 7F0 transition of [Tb(DTPA)(D2O)]−

in D2O at RT (top) and 77 K (bottom). The area of the fitted peak as well
as the calculated Boltzmann distribution for a two state system (see
main text for details) is given in the figure.
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has only one state and any explanation invoking split states are
invalid.26,36 However, there are two arguments against this
explanation. First, it is unlikely that the two structures would
have an energy difference that (i) closely matching the spectral
energy difference of the bands and (ii) that is so small.
Second, it seems unreasonable that the two isomers with an
energy difference of 75 cm−1 would have an exchange slower
than the millisecond timescale of the excited state lifetime.

Thus, we can conclude that the emitting 5D4 level of the
[Tb(DTPA)(H2O)]

2− complex consists of two groups of states
separated by ∼75 cm−1, each group giving rise to a separate
emission band in the 5D4 → 7F0 transition. It is noteworthy
that of the four complexes studied, this behaviour is only
observed for the [Tb(DTPA)(H2O)]

2− complex here. As both the
[Tb(DTPA)(H2O)]

2− and [Tb(EDTA)(H2O)3]
− complexes have low

symmetry, it would be expected that the [Tb(EDTA)(H2O)3]
−

would have similar properties. Clearly, this is not the case.

Conclusions

The spectroscopic characterization of the [Tb(H2O)9]
3+,

[Tb(EDTA)(H2O)3]
−, [Tb(DTPA)(H2O)]

2− and [Tb(DOTA)(H2O)]
−

complexes was performed in H2O and D2O. The four com-
plexes show significant changes in the band shape when
cooled from room temperature to 77 K. This was assigned to a
change in the thermally populated states within the absorbing
and or main emissive energy levels. High-resolution emission
spectra of the 5D4 → 7F0 transition revealed the distribution
of states within the 5D4 level. For the [Tb(H2O)9]

3+,
[Tb(EDTA)(H2O)3]

−, and [Tb(DOTA)(H2O)]
− complexes we

found that the individual states within the 5D4 level lies as a
single group of nine states with a total crystal field splitting
significantly less than 100 cm−1. For the [Tb(DTPA)(H2O)]

2−

complex we found that the nine states of the 5D4 state was sep-
arated into two groups separated by ∼75 cm−1. Additionally we
found that knowing the distribution of electronic states in the
5D4 level can be used to determine if the fine structure of the
bands in the full emission spectra of Tb(III) complexes arises
in the 7FJ state or is due to crystal field splitting in 5D4.

Experimental section

All materials were used as received: Tb(CF3SO3)3 (98%, Strem
Chemicals), H4EDTA (own supply, 1H-NMR in Fig. S11†),
H4DOTA (Sigma Aldrich), H5DTPA (CheMatec). D2O (99.90%
D. Eurisotop), and H2O (from a Milli-Q purification system at
18.2 Ω) were used as solvents. pH/pD was adjusted using
NaOH from common vendors or NaOD from Eurisotop. All
solutions were made without buffers.

[Tb(H2O)9]
3+/[Tb(D2O)9]

3+

A 0.1 M solution of [Tb(H2O)9]
3+ was prepared by dissolving

303.4 ± 0.2 mg of Tb(CF3SO3)3 in 5 mL solvent.

[Tb(EDTA)(H2O)3]
−

A 0.05 M solution of [Tb(EDTA)(H2O)3]
− was prepared by

adding 91.95/92.8 mg of TbCl3 and 73.24/74.74 mg of H4EDTA
to 5 mL of solvent for the H2O and D2O samples respectively.
The samples were sealed and stirred for 2 days at 60 °C before
measuring.

[Tb(DTPA)(H2O)]
2−

A 0.05 M solution of [Tb(DTPA)(H2O)]
2− was prepared by

adding 94.30/92.23 mg of TbCl3 and 98.60/98.07 mg of
H5DTPA to 5 mL solvent for the H2O and D2O samples respect-
ively with pH/pD adjusted to ∼5 using NaOH/NaOD. The
samples were sealed and stirred for 4 days at 60 °C before
measuring.

[Tb(DOTA)(H2O)]
−

A 0.05 M solution of [Tb(DOTA)(H2O)]
− was prepared by dissol-

ving 302.11/301.70 mg of Tb(CF3SO3)3 and 201.05/203.85 mg
of H4DOTA in 10 mL of solvent for the H2O and D2O samples
respectively with pH/pD adjusted to ∼5 using NaOH/NaOD.
The samples were sealed and stirred for 4 days at 60 °C for 4
days before measuring.

Spectroscopy

All steady-state and time-resolved emission and excitation
spectra were recorded on a PTI QuantaMaster8075 from
Horiba Scientific using the built-in xenon arc lamps for exci-
tation. All room-temperature samples were measured in
10 mm quartz cuvettes from Starna Scientific. Cooled samples
were measured in standard NMR tubes placed in a quartz
Dewar from Horiba Scientific filled with liquid nitrogen. The
excitation and emission slits varied for the different measure-
ments. The specific width is noted in the caption of each spec-
trum. Corrections for lamp fluctuations and wavelength-
dependent detector sensibility were done by using the factory
provided correction files. A constant flow of nitrogen was sent
through the sample chamber to avoid condensation.
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