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Trifluoroacetylacetone (TFAA) has two enol forms, which can switch to each other via proton transfer.
While much attention has been paid to their conformational preferences, the influence of
microsolvation on regulating the proton position remains unexplored. Herein, we report the rotational
spectra of trifluoroacetylacetone—(water),, (n = 1-3) investigated by chirped pulse Fourier transform
microwave spectroscopy in the 2-8 GHz frequency range. Two conformers were identified for both
TFAA-H,O and TFAA-(H,0O),, while only one conformer was characterized for TFAA—(H,O)s. The results
indicate that water binding on the CHj5 side stabilizes the enolr form, whereas water binding on the CF3

Received 11th March 2024, side stabilizes the enoly form. The enolr form predominates over the enoly form in these hydrated com-

Accepted 1st April 2024 plexes, which contrasts with the fact that only enoly exists in isolated TFAA. Enoly becomes preferred
DOI: 10.1039/d4cp01061b only when water inserts itself into the intramolecular hydrogen bond. Instanton theory calculations
reveal that the proton transfer reaction is dominated by quantum tunneling at low temperatures, leading

rsc.li/pcep to the stable existence of only one enol form in each configuration of the hydrated clusters.

in Scheme 1. These isomers undergo interconversion that
involves PT processes with a low barrier height,'® rendering
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Proton transfer (PT) is an ubiquitous process in biological and
chemical reactions,"” commonly occurring in solution and mark-
edly influenced by environmental molecules, particularly water.*®
The influence of water on the PT process is well established in
various biological contexts, such as DNA mutations”® and enzy-
matic reactions in proteins.’ In these cases, water facilitates PT by
forming a water bridge, known as Grotthuss mechanism.'® This
process reduces PT barriers,"" " representing a primary means by
which water engages in and facilitates PT. When water serves as
an environmental molecule without direct participation in the
water bridge, its impact is generally weak and insufficient to
enable PT due to high PT barriers.”> Herein, we report a spectro-
scopic investigation of the effect of water as an environmental
molecule on the PT process of the intramolecular hydrogen bond
(HB) in trifluoroacetylacetone.

Trifluoroacetylacetone exists in two tautomeric forms,
namely 1,1,1-trifluoro-4-hydroxy-3-penten-2-one (enoly) and
5,5,5-trifluoro-4-hydroxy-3-penten-2-one (enolg), as illustrated
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TFAA a prototypical model system for the study of PT. The
enoly form was reported to be more stable than the enolg form.
Only the enoly form was observed in the gas phase by rotational
spectroscopy and in a low temperature solid argon matrix by
infrared absorption spectroscopy.'”'® In contrast, both forms
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Scheme 1 Schematic illustration of the double minimum potential gov-
erning proton transfer along the intramolecular HB between the enoly and
enolg forms of trifluoroacetylacetone and the molecular electrostatic
potential surfaces.
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were confirmed to coexist in a low temperature solid nitrogen
matrix and in aqueous solution by Fourier transform infrared
absorption spectroscopy.'® The influence of water on the struc-
ture of trifluoroacetylacetone has also been studied by matrix
isolation infrared spectroscopy. The most abundant isomer
among trifluoroacetylacetone-water complexes was found to
be the enolg-water form with water attached to the C—=0 group
of TFAA in both the argon and nitrogen matrices. The other
isomer of the enoly-water complex was also observed in
smaller amounts."®

Rotational spectroscopy has inherently high resolution and
is exceptionally sensitive to molecular mass distribution and
geometry, making it capable of providing precise experimental
evidence for tautomerism equilibrium."®' This technique has
been widely used to characterize the structural and/or dynamic
properties of microsolvated clusters.'>**™>* In this work, the
structures and dynamic properties of PT reactions in the TFAA-
(H,0);-3 clusters were investigated using chirped-pulse Fourier
transform microwave (CP-FTMW) spectroscopy’*™>’ comple-
mented with theoretical calculations. The results demonstrate
that the direction of PT is contingent upon the quantity and
specific docking sites of water molecules, elucidating an indir-
ect influence of water on the PT process.

Experimental and theoretical methods

A chirped pulse Fourier transform microwave (CP-FTMW) spec-
trometer operating in the 2-8 GHz range was used to investigate
the TFAA-(water), complexes. Commercial samples of TFAA
(Aladdin, anhydrous 99.9%), H,'®0 and D,O (Sigma-Aldrich
LLC., 97%) were used without further purification. TFAA and
water were mixed in a gas tank with helium. Natural water and
isotopically enriched water samples containing 33% H,'®0 or
D,O were used in the measurements. The TFAA-water complexes
were produced by supersonic expansion of helium seeded with
about 0.1% TFAA and 0.1% water, respectively, at a backing
pressure of about 0.3 MPa using a pulsed solenoid valve, which
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was oriented perpendicular to the axis of microwave propaga-
tion. After a delay of 860 ps, a chirped pulse of 4 ps was
broadcasted into the vacuum chamber through a horn antenna.
The free induction decay signal (FID) due to molecular relaxation
was collected using another horn antenna, amplified, and
recorded in a digital oscilloscope in the time domain. The signal
was then transformed into the frequency domain by the applica-
tion of Fourier transform. A fast frame setup of six excitation-
emission cycles per supersonic expansion was used to reduce the
measurement time and sample consumption. The spectra have
an accuracy in the frequency measurement better than 15 kHz
and a resolution power better than 25 kHz. The FID data were
collected 1.2 million times. The rotational spectrum was firstly
assigned to a semi-rigid (D; corrected) asymmetric rotor Hamil-
tonian using our homemade automatic fitting program, then the
fitted parameters were refined using the assignment and analy-
sis of broadband spectra (AABS) package®® and pickett’s SPFIT.>
The search for stable isomers was performed with the CREST
(conformer-rotamer ensemble sampling tool) software,>**! an
efficient scheme employing the meta-dynamics algorithm com-
bined with semiempirical tight-binding methods. The resulting
structures were further optimized at the B3LYP-D4/def2-TZVP
level of theory, and their single-point energies were evaluated at
the DLPNO-CCSD(T)/def2-TZVP level using the Orca 4 program
package.®” The zero-point energy (ZPE) and basis set superposi-
tion error (BSSE) of the stable conformers were calculated at the
B3LYP-D4/def2-TZVP level of theory. Additionally, the relaxed
potential energy surfaces of proton transfer along the intra-
molecular HB in the TFAA monomer and observed TFAA-
(H,0),-3 complexes were calculated at the B3LYP-D4/def2-TZVP
level as well. The plots were generated by Chimera software.*®

Results and discussion

The conformers predicted to lie within 15 kJ mol ™" for each
cluster are listed in Fig. S1 (ESIf) (the conformations are
abbreviated by the form of TFAA (enoly or enolg), the number
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Fig. 1 The rotational spectra of the TFAA-(H,0);_3 complexes. The black upper trace corresponds to the experimental spectrum after removing the
spectral lines arising from the TFAA monomer and pure water clusters. The lower traces in different colors represent the simulated spectra of TFAA—
(H,0);1-3 complexes from the experimental spectroscopic parameters, at a rotational temperature of 1 K, and the theoretical dipole moment components
for the respective complexes. The bottom panel shows some representative transitions for the TFAA—(H,0);_3 complexes.
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of waters (1W, 2W, 3W), and the water(s) docking site at CH3
(Wcn), between HB OH- - -O (Wqy), or at CF5 (W¢g), respectively.
Their calculated rotational constants are listed in Table S1
(ESIY). Fig. 1 shows the experimental spectrum after removing
the spectral lines arising from the TFAA monomer'” and pure
water clusters.>*® Guided by the spectral parameters predicted
by theoretical calculations, five sets of rotational transitions are
assigned to five isomers of TFAA-(H,0),-;. The representative
transitions for each isomer are shown in the bottom panel of
Fig. 1. All observed transitions are listed in the ESI{ Their
experimental rotational constants are in good agreement with
the calculated values (Table 1). The relative intensities of the a-,
b-, and c-type transitions are consistent with the theoretical
dipole moment components.

To achieve straightforward and unequivocal identification,
we performed two experiments using isotopically enriched
water samples containing 33% H,"'®0 (2.1 million FID acquisi-
tions) and 33% D,O (1.7 million FID acquisitions), respectively.
The spectra of H,'®0 mono-substituted species for enolz-1Wcy,
enoly-1Wey, and enoly-2Woy, and the spectra of DOH sub-
stituted species for enoly-1Wc¢y and enoly-2Wgy have been
obtained. Their fitted rotational constants are listed in Tables
S2-S4 (ESIt), respectively. Based on these rotational constants
of isotopologues, the experimental r; coordinates of these
substituted atoms are determined using Kraitchman equations
and are listed in Tables $5-S10 (ESIt).>” The superimposition
between the ry and the calculated coordinates confirms the
isomer assignments.

For the TFAA-H,O complexes, theoretical calculations
predict six conformers within a relative energy of 10 kJ mol "
(Fig. S1, ESIt). In four of them, the water molecule is anchored
to the oxygen atom of TFAA through HB OH---O as a HB donor
(Fig. 2) and interacts with CH; or CF; via a secondary weak HB
(WHB). Two of the four isomers (enolg-1W¢y and enoly-1Weg)
have been characterized in our spectra. One is the global
minimum (enolg-1W¢y) in which water interacts with the
oxygen atom of the C—O group as the HB donor and with
the CH; group as the wHB acceptor, respectively. The other one
(enoly—1Wg) is the third energetic minimum with 5.8 k] mol ™"
higher in energy than the global minimum, which is in
agreement with the observation that the spectral intensity of
enolg-1Wcy is stronger than that of enolg-1Wgg. In isomer
enoly-1Wc¢p, water donates both of its hydrogen atoms to form
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two HBs as the donor. One HB is with the oxygen atom of the
C=O0 group and the other is with the fluorine atom of the CF;

group. The planar moment of inertia P, = > m;c?, which is
i

deduced from the rotational constants, indicates that the mass
distribution lies out of the ab inertial plane of a molecule. The
experimental value of P, of the TFAA monomer was deter-
mined to be 46.72275(6) uA®.'® For the TFAA-H,0 complexes,
the experimental value is 46.3764(8) uA® for enolz-1Wc¢y and
46.499(2) uA? for enoly-1Wcg, which are close to the value of
the monomer. This result indicates that the entire water
molecule lies in the ab plane of TFAA.

For the TFAA-(H,0), clusters, the four most stable isomers
theoretically predicted are shown in Fig. 3 and Fig. S1 (ESIf).
Once again, the global and the third energy minima are
experimentally assigned. The global minimum adopts an
arrangement where the water dimer inserts itself into the
intramolecular HB of TFAA. All the atoms of the water dimer
lie nearly in the ab plane of TFAA, as evidenced by its P, value
of 47.0040(9) uA?, which is close to that of the TFAA monomer.
This water dimer arrangement is structurally different from the
pure water dimer arrangement, where the planes of the two
water molecules are perpendicular to each other.*® With the
insertion of water into its intramolecular HB, the O---O dis-
tance of TFAA dramatically increases to 2.85 A from a distance
of 2.57 A in the TFAA monomer. The O---O distance of the
water dimer in this isomer is experimentally determined to be
2.79(4) (rs), which is much shorter than the O---O distance
(2.98(4) A) in the pure water dimer.*® For the other assigned
isomer, enol;—2W¢y, the HB acceptor of the water dimer forms
a HB with the oxygen atom of the C—O0 group in TFAA as the
HB donor, and the HB donor of the water dimer forms a
secondary wHB with the CH; group as the HB acceptor. The
second water molecule of the water dimer sits above the ab
plane of TFAA rather than in the ab plane. As a result, it can
retain more room to accommodate additional water molecules
and grow into larger microsolvated clusters.

For the TFAA-(H,0); clusters, only one isomer, enolg-3Wcyy,
was spectroscopically identified. The structure appears to have
grown stepwise from the smaller cluster enoly—2Wcyy, with the
third water molecule anchored at one end of the water chain of
enolg-2Wcy via OH- - -O as a HB donor (Fig. 4). The orientations
of the free hydrogens are flipped by the added water. Its oxygen

Table 1 Experimental and calculated (at the level of B3LYP-D4/def2-TZVP) spectroscopic parameters of the observed conformers

enoly-1Wey enoly-1Wep enoly—2Woy enoly-2Wey enoly—3Wey

Exp.? Cal. Exp. Cal. Exp. Cal. Exp. Cal. Exp. Cal.
A/MHz 2429.2774(7) 2446.2 1266.877(2) 1278.3 786.5539(4) 809.1 1461.932(6) 1443.6 1188.53(8)  1171.1
B/MHz 436.1908(3)  439.7 668.600(1)  664.7 640.3761(3) 630.1 381.9927(4) 373.5 297.5584(2) 304.0
C/MHz 396.7171(2)  400.0 475.9664(8) 475.6 377.7953(3) 380.9 378.1846(4) 365.4 283.6020(2) 293.3
Dy/kHz 0.011(2) 0.039(7) 0.12(1) 0.200(2) 0.0425(6)
P.Juh®®  46.3764(8)  46.3 46.499(2)  46.5 47.0040(9)  49.9 166.185(2)  160.0 170.82(2)  185.4

Halpp/ue/D  yes/yes/no 0.4/1.2/0.0 yes/yes/no
N° 97 27 57
o?/kHz 8.6 7.3 8.2

4.6/3.8/0.2 yes/yes/no

1.5/1.6/1.0 yes/no/yes  2.0/1.3/1.6 yes/no/no 2.3/1.0/1.2
36 51
9.3 7.3

“ Error in parentheses in units of the last digit. b planar moment of inertia P, = > m;c#. © Number of lines in the fit. ¢ Standard deviation of the fit.
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Fig. 2 Four energetically low-lying isomers of TFAA-H,O with two of them being assigned experimentally. The blue and red spheres superimposed in

the calculated structures are the rg coordinates of the respective atoms.
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Fig. 3 Four energetically low-lying isomers of TFAA—(H,0), with two of them being assigned experimentally. The blue and red spheres superimposed in

the calculated structures are the r, coordinates of the respective atoms.

atom forms bifurcated interactions with the adjacent CH bond
and the carbon atom of the C—O group. The interaction
between the oxygen of water and the carbonyl carbon is well
known as the Biirgi-Dunitz interaction and plays an important
role in the stabilization of the protein structure.?>*°*° The
Biirgi-Dunitz (osp) angle and the Flippin-Lodge (o) angle are
calculated to be 97.2° and 3.9°, respectively. Natural bond
orbital (NBO) analysis can provide insight into this interaction
which is derived from the Ip(O) — 7*(C—O0) electron delocali-
zation, as shown in Fig. 5.

The results indicate that solvation significantly affects the
relative stability of the two enol conformers of TFAA. The
relaxed potential energy surfaces (PESs) of PT between enoly
and enol; show that in the observed clusters where water acts
as an environmental molecule, water binding on the CH; side

assigned

enol -3W .

enol -3

CH

0 (kJ mol™) +12.0

Fig. 4 Two calculated stable isomers of TFAA-(H,0O)s with one of them
being assigned experimentally.
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stabilizes the enolr form, whereas binding on the CF; side
stabilizes the enoly form, as shown in Fig. S2 (ESI{). The enolg
form dominates over the enoly form in these hydrated com-
plexes, which differs from the fact that only enoly exists in
isolated TFAA.

The theoretical results agree well with the experimental
results, showing that only one enol form is experimentally
characterized in each configuration of the hydrated clusters.
As shown in Fig. 2, in the TFAA-H,O system, the enoly-1Wcy
and enolg-1Wcr isomers were predicted to be 4.5 and
2.7 k] mol ™" higher in energy than the corresponding enol;-
1Wcy and enolg—-1Wcr isomers, respectively. The enoly-1Wey
and enolg-1W¢p conformers can isomerize to the more stable

(b)

Fig. 5 (a) Burgi—Dunitz angle agp = 97.2°, Flippin—Lodge angle af = 3.9°
(L = a sin(—sin(agp)-cos(p))), where f is the dihedral angle defined by the
yellow and blue planes, and a distance of nucleophilic 2.99 A calculated at
the B3LYP-D4/def2-TZVP level of theory; (b) NBO representation of the
lone pair (lp) orbital of H,O and the antibonding (n*) orbital of TFAA
(isosurface = 0.03 a.u.).
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Fig. 6 Instanton rates for the enoly—1Wcy to enolg—1Wcy isomerization
reaction. The inset shows the instanton optimized at 80 K. The Eyring
transition state theory rate (kts1) is shown for comparison.

enolg-1Wcy and enoly-1Wer conformers via proton transfer
reactions through a transition state, as shown in Fig. S2 (ESIT).
Despite the barrier being relatively small, the reaction rate
based on the transition state theory (TST)*' decreases to less
than 8 x 10~** s™ at 5 K. This suggests that the barriers would
be sufficient to trap the enoly-1W¢y and enolg-1Wcr isomers,
allowing them to be observed experimentally. However, neither
enoly-1W¢ey nor enolg—-1Wcyr is observed, despite that the
enoly-1Wey conformer is even more stable than the experi-
mentally observed enoly-1Wcr conformer. This suggests that
there is a mechanism that allows fast conversion of the meta-
stable enoly-1W¢ey and enol—1W¢r conformers to the more
stable enolg-1W¢y and enoly-1Wer conformers. Due to the
light mass of hydrogen, quantum tunneling could play an
important role in these PT processes. We therefore used ring-
polymer instanton theory*>*® to understand the proton trans-
fer process from enoly-1Wcy to enolg-1Wcy (computational
details are given in the ESI). As shown in Fig. 6, the instanton
theory calculation results show that the rate constant becomes
almost temperature independent below 120 K, indicating that
the reaction is dominated by quantum tunneling at low tem-
peratures. The tunneling rate is very fast (9 x 10" s™') even at
low temperatures, suggesting that the less stable enolg-1Wcy
conformer can rapidly be converted to the more stable enoly—
1Wcy conformer even at low temperatures.

Conclusions

In summary, the rotational spectroscopy study of TFAA-(H,0),_3
clusters provides experimental evidence that water, as an
environmental molecule, facilitates the proton transfer reaction
without direct participation in the process. Two conformers for
both TFAA-H,0 and TFAA-(H,0),, and one conformer for
TFAA-(H,0); were identified in the rotational spectra guided
by theorical calculations. The results demonstrate that the

12534 | Phys. Chem. Chem. Phys., 2024, 26, 12530-12536
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number and binding sites of water molecules influence the
prototropic tautomerism. Water binding on the CH; side
stabilizes the enolr form, whereas water binding on the CF;
side stabilizes the enoly form. The enolg form emerges in
TFAA-(H,0),_; and dominates over the enoly form in TFAA-
H,0 based on the relative intensity of their spectra, which
differs from the fact that only the enoly form exists in the TFAA
monomer. Instanton theory calculations show that the proton
transfer reaction is dominated by quantum tunneling at low
temperatures, so that only one enol form can stably exist in
each configuration of the hydrated clusters.
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