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Big data benchmarking: how do DFT methods
across the rungs of Jacob’s ladder perform for a
dataset of 122k CCSD(T) total atomization
energies?†

Amir Karton

Total atomization energies (TAEs) are a central quantity in density functional theory (DFT) benchmark

studies. However, so far TAE databases obtained from experiment or high-level ab initio wavefunction

theory included up to hundreds of TAEs. Here, we use the GDB-9 database of 133k CCSD(T) TAEs

generated by Curtiss and co-workers [B. Narayanan, P. C. Redfern, R. S. Assary and L. A. Curtiss, Chem.

Sci., 2019, 10, 7449] to evaluate the performance of 14 representative DFT methods across the rungs of

Jacob’s ladder (namely, PBE, BLYP, B97-D, M06-L, t-HCTH, PBE0, B3LYP, B3PW91, oB97X-D, t-HCTHh,

PW6B95, M06, M06-2X, and MN15). We first use the A25[PBE] diagnostic for nondynamical correlation to

eliminate systems that potentially include significant multireference effects, for which the CCSD(T) TAEs

might not be sufficiently reliable. The resulting database (denoted by GDB9-nonMR) includes 122k

species. Of the considered functionals, B3LYP attains the best performance relative to the G4(MP2)

reference TAEs, with a mean absolute deviation (MAD) of 4.09 kcal mol�1. This first-generation hybrid

functional, in which the three mixing coefficients were fitted against a small set of TAEs, is one of

the few functionals that are not systematically biased towards overestimating the G4(MP2) TAEs, as

demonstrated by a mean-signed deviation (MSD) of 0.45 kcal mol�1. The relatively good performance of

B3LYP is followed by the heavily parameterized M06-L meta-GGA functional, which attains a MAD of

6.24 kcal mol�1. The PW6B95, M06, M06-2X, and MN15 functionals tend to systematically overestimate

the G4(MP2) TAEs and attain MADs ranging between 18.69 (M06) and 28.54 (MN15) kcal mol�1.

However, PW6B95 and M06-2X exhibit particularly narrow error distributions. Thus, scaling their TAEs by

an empirical scaling factor reduces their MADs to merely 3.38 (PW6B95) and 2.85 (M06-2X) kcal mol�1.

Empirical dispersion corrections (e.g., D3 and D4) are attractive, and therefore, their inclusion worsens

the performance of methods that systematically overestimate the TAEs.

Introduction

The total atomization energy (TAE) is the most fundamental
thermodynamic property of a molecule, which captures the
energetics of the molecular system. The calculation of TAEs is a
major challenge for density functional theory (DFT) methods

since it involves simultaneously breaking all the bonds in the
molecule. Whereas typical bond dissociation energies (BDEs)
range between 200–400 kcal mol�1, the TAEs for medium-sized
species with B10 nonhydrogen atoms are typically one order of
magnitude higher. Thus, whereas a 0.5% error in the BDE
translates to 1–2 kcal mol�1, a 0.5% error in the TAE translates
to 10–20 kcal mol�1. Consequently, TAEs are among the most
challenging tests for approximate electronic structure
methods.1–9 It should be mentioned that a successful approach
for calculating TAEs using relatively low levels of theory is via
thermochemical cycles in which the parent molecule is broken
down into smaller fragments for which accurate TAEs are
available from theory or experiment.10–19

A number of databases of highly accurate theoretical TAEs
have been generated over the past decade, for example, the
W4-08,20 W4-11,21 and W4-1722 databases of TAEs calculated at the
full configuration interaction (FCI) complete basis-set limit (CBS)
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via the Weizmann-n (Wn) composite ab initio methods.23–26 The
most recent of these databases (W4-17) includes 200 TAEs for
molecules with up to eight non-hydrogen atoms, which cover a
broad spectrum of bonding situations, electronic states, and
multireference character. However, a collection of a few hundred
small molecules cannot possibly represent the chemical space of
small organic and inorganic species. For example, although the
W4-17 database includes alkenes, alkynes, haloalkenes, haloalk-
ynes, arenes, aromatic heterocycles, nonaromatic heterocycles,
alcohols, aldehydes, ketones, anhydrides, carboxylic acids, amines,
imines, and nitriles; many of these classes include only 2–3
prototypical examples. In addition, there are only a few examples
of (i) molecules combining several of these functional groups in
the same molecule or (ii) complex chemical functionalities such as
conjugation, hyperconjugation, aromaticity, and ring strain.

In a landmark study, Ramakrishnan et al.27 considered the
GDB-9 subset of over 130 000 molecules with up to nine
nonhydrogen first-row atoms (i.e., composed of H, C, N, O,
and F) from the much larger GDB-17 database with 166 billion
organic molecules.36 All the structures in the GDB-9 database
were fully optimized at the B3LYP/6-31G(2df,p) level of
theory.28–30 Importantly, all structures were verified to be equili-
brium structures on the potential energy surface (PES) by con-
firming they have all real harmonic frequencies. It should be
noted that the B3LYP functional has been found to provide
excellent performance for calculating equilibrium structures of
organic molecules.31 Accordingly, B3LYP is used for optimizing
the geometries in many high-level composite ab initio proce-
dures, including the Gn, ccCA, and low-level Wn thermochemical
protocols.32–34 A comprehensive overview of composite ab initio
methods, including the Wn and Gn methods (n = 1–4), is given in
ref. 1, 2, 32, and 33. Overall, this exhaustive database covers a
significant portion of the chemical space of small drug-like
molecules with up to nine first-row atoms.27 This work also
refined the energies for a subset of 6095 C7H10O2 isomers using
the G4(MP2) composite ab initio method.35,36

In a tour de force follow-up study, Narayanan et al.37 calcu-
lated G4(MP2) energies for the species of the GDB-9 database.
The G4(MP2) method is a computationally efficient composite
ab initio procedure for obtaining highly accurate thermoche-
mical properties for organic systems at the CCSD(T) level
(coupled cluster with singles, doubles, and quasiperturbative
triple excitations).38,39 Even for challenging thermochemical
properties such as total atomization energies, the deviations
between the CCSD(T) and full configuration interaction (FCI)
method are typically below B1 kcal mol�1 for systems that are
not dominated by strong multireference effects.1,2,33 G4(MP2)
theory has been found to produce gas-phase thermochemical
properties (such as reaction energies, bond dissociation ener-
gies, and enthalpies of formation) with a mean absolute devia-
tion (MAD) of 1.0 kcal mol�1 from the experimental energies of
the G3/05 test set.35 In addition, G4(MP2) theory has been
found to produce accurate theoretical thermochemical proper-
ties with MADs below or around the threshold of chemical
accuracy (i.e., B1.0 kcal mol�1), including bond dissociation,
atomization, isomerization energies, and reaction barrier

heights involving species which are not characterized by strong
multireference effects.10,21,22,40–46 It should be emphasized that
G4(MP2) theory is a computationally economical CCSD(T)-based
composite ab initio method that calculates the CCSD(T) energy in
conjunction with the small 6-31G(d) basis set and uses DE(MP2)
and DE(HF) basis set correction terms calculated using triple-z
and quadruple-z quality basis sets, respectively.32,35 As such
G4(MP2) is applicable to systems as large as C60.47 However, to
compensate for systematic deficiencies in the theoretical model
(e.g., basis set incompleteness and core-valence corrections),
G4(MP2) theory employs an empirical higher-level correction
(HLC) term. Therefore, the G4(MP2) theory is not as robust as
nonempirical CCSD(T)-based composite ab initio procedures such
as W1 and W1-F12 theories,23,25 which are computationally more
demanding (for recent reviews of composite ab initio procedures,
see ref. 1, 2, 32, and 33).

The combination of the works of Ramakrishnan et al.27 and
Narayanan et al.37 has generated an invaluable database of over
130 000 CCSD(T) TAEs that could be used for the evaluation of
approximate theoretical procedures and, in particular, DFT
methods. As mentioned above, the largest databases of TAEs
that have been used for this purpose in the past included only
hundreds of TAEs,20–22,48 which cannot represent the same
chemical space represented by over 130 000 species (for a
comprehensive discussion of the chemical composition of the
GDB-9 database, see ref. 27, 37, and 49). In the present work, we
evaluate the performance of a representative set of DFT methods
across rungs 2–4 of Jacob’s ladder for their ability to reproduce
the G4(MP2) total atomization energies in the GDB-9 database.
This will enable us to provide insights into the following aspects
of the benchmarking and performance of DFT methods:
� The performance of DFT methods for an extensive data-

base of CCSD(T) TAEs that covers a large segment of the
chemical space of small molecules.
� Does the performance of the considered DFT methods

improve in the order GGA - MGGA - HGGA - HMGGA.
� Does the size of the database matter? The W4-17 database

contains 200 TAEs (i.e., B0.15% of the number of species in the
GDB-9 database). Can this small database capture the same
trends as a database that covers a larger segment of the
complete chemical space?
� How do empirical dispersion corrections (D3, D3BJ, and

D4) affect the performance of the DFT methods for TAEs across
a large database of organic molecules?

Computational details

We calculate the TAEs for the extensive set of molecules in the
GDB-9 database with 14 representative DFT methods from
rungs 2–4 of Jacob’s ladder.50 All the DFT single-point energy
(SPE) calculations were carried out in conjunction with the 6-
31G(2df,p) basis set. Since the evaluation of each DFT method
requires 122k SPE calculations (vide infra), we were only able to
consider a handful of DFT methods. We, therefore, carefully
choose the set of exchange–correlation (XC) functionals to be
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considered, including DFT methods that have been found to give
relatively good performance for the TAEs in the W4-11 database.21

In particular, we consider the following XC functionals:
� Rung 2: the generalized gradient approximation (GGA)

methods BLYP,30,51 PBE,52 and B97-D53

� Rung 3: the meta-GGAs t-HCTH54 and M06-L55

� Rung 3.5: the global hybrid GGAs B3LYP,28–30 B3PW91,28,56

PBE0,57 and the range-separated hybrid GGA oB97X-D58

� Rung 4: the global hybrid-meta GGAs t-HCTHh,54

PW6B95,59 M06,60 M06-2X,60 and MN1561

We note that we have confirmed that our B3LYP TAEs are
consistent with the B3LYP/6-31G(2df,p) TAEs from ref. 27, e.g.,
the MAD between the two sets of TAEs amounts to
0.007 kcal mol�1, with no significant outliers.

DFT functionals from the fifth rung of Jacob’s ladder are not
considered since the G4(MP2) reference TAEs are not deemed
sufficiently accurate for evaluating the performance of double-
hybrid DFT methods.62 Empirical D3 and D4 dispersion correc-
tions are also considered, where the D3 corrections are
included using the finite Becke–Johnson (denoted by D3BJ)
and zero damping (denoted by D3) potentials.63–68 All the DFT
calculations were carried out with the Gaussian16 program
suite.69 The default convergence criterion of 10�8 a.u. for the
self-consistent field (SCF) iterations was used in conjunction
with an ultrafine integration grid. For the atomic calculations,
the unrestricted Kohn–Sham framework was used.

Results and discussion
Multireference considerations

It is well established that the CCSD(T) method cannot achieve
chemical accuracy for TAEs of multireference systems.1–5,21,22,25,33

For example, for species characterized by moderate-to-severe
multireference effects, the difference between the CCSD(T) and
FCI TAE at the CBS limit amounts to 1.1 (ClF5, NO2), 1.2 (S3), 1.3
(N2O4), 1.4 (B2, ClNO), 1.7 (linear-C7), and 1.8 (F2O2, cis-HO3) kcal
mol�1.1 Whereas for pathologically multireference systems, the
CCSD(T)–FCI difference can exceed 2.0 kcal mol�1, for example, it
is 2.4 (S4), 2.9 (O3), 3.0 (FO2), and 3.5 (ClO2) kcal mol�1.1 There-
fore, before using reference CCSD(T) TAEs for benchmarking DFT
methods, it is instructive to remove any potentially multireference
systems from the data set. For this purpose, we use the TAE-based
multireference diagnostic A25[PBE], which is readily calculated
from our DFT computations as A25[PBE] = (1 � TAE[PBE0]/
TAE[PBE])/0.25, where the factor 0.25 corresponds to the 25%
of HF exchange involved in the PBE0 XC functional.70 The
A25[PBE] diagnostic correlates well with the more robust
%TAE[(T)] multireference diagnostic, which is the percentage
of the TAE accounted for by parenthetical connected triple
excitations.21,24,34,70,71 In addition, the A25[PBE] diagnostic has
been found to provide a better correlation with the magnitude of
post-CCSD(T) contributions than the popular T 1 diagnostic.70 It
has been shown that A25[PBE] values of 0.10% (or lower) indicate
systems dominated by dynamical correlation effects; A25[PBE]
values of about 0.15% indicate systems with mild nondynamical

correlation effects; and A25[PBE] values of about 0.30% indicate
moderate nondynamical correlation effects. Table S1 of the ESI†
gives the A25[PBE] values for the species in the GDB-9 database.
For half of the systems (49.8%), we obtain A25[PBE] o 0.10%,
indicating that these systems are dominated by dynamical
correlation effects. For another 42.1% of the species, we obtain
A25[PBE] values between 0.10–0.15%, indicating mild nondyna-
mical correlation effects. For 8.1% of the species, we obtain
A25[PBE] values between 0.15–0.30%, and values above 0.3% are
obtained for merely 0.03% of the species. These results indicate
that the GDB-9 database is dominated by species with mild
nondynamical correlation effects. To be on the safe side, how-
ever, we remove all systems with A25[PBE] 4 0.15%. Importantly,
only B8% of the species are removed, leaving us with a subset
of species that is likely to include mostly non-multireference
species but is still sufficiently large and diverse. The resulting
database (denoted as GDB9-nonMR) includes 122 476 species.
This extensive database is used to evaluate the performance of a
representative set of DFT exchange–correlation functionals in
predicting G4(MP2) total atomization energies.

Statistical analysis

Both the mean absolute deviation (MAD) and root-mean-square
deviation (RMSD) have been extensively used for gauging the
accuracy of DFT methods and other approximate quantum
chemical methods. Each of these error statistics has its own
strengths and weaknesses. The MAD is a simple and robust
measure of the average absolute difference between predictions
and reference values. However, it can downplay large errors,
potentially masking significant discrepancies. As noted by
Ruscic,72 for a normal distribution, the MAD is smaller than
the 95% confidence interval by a factor of 2.5–3.5 depending on
the distribution. The RMSD, on the other hand, amplifies
larger errors, providing a more sensitive measure of outliers.
However, the sensitivity of the RMSD to outliers can also be
misleading since a few large outliers can result in an RMSD that
significantly overestimates the average deviations. Therefore, in
this work, we report both the MAD and RMSD. We note that in
the present work, using either the MAD or the RMSD leads to a
very similar ranking of the best and worst DFT functionals.

Another useful statistical measure is the MAD/RMSD ratio.21

For a normal distribution, with no systematic errors, this ratio

is
MAD

RMSD
¼

ffiffiffi
2

p

r
� 0:8.73,74 Thus, when this ratio approaches

0.8, it indicates a small systematic error for a purely Gaussian
error distribution. However, error distributions for which this
ratio approaches unity are expected to have a large systematic
error across the dataset. Finally, the mean-signed deviation
(MSD) is also a very useful statistical measure for detecting
systematic bias, i.e., whether the predicted values are consis-
tently overestimating or underestimating the reference values.
In particular, MSD E MAD indicates systematic overestima-
tion, whilst MSD E �1 � MAD indicates systematic under-
estimation. However, it should be emphasized that while MSD
E �1 � MAD confirms the presence of a systematic bias, a
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near-zero MSD does not necessarily imply that systematic errors
do not exist. Therefore, it is useful to consider both the MSD
and the MAD/RMSD ratio for identifying systematic biases.

Overview of the CCSD(T) reference TAEs in the GDB9-nonMR
database

All the G4(MP2) reference TAEs are taken from ref. 37. To
ensure we are comparing apples to apples, we will compare
bottom-of-the-well CCSD(T) TAEs (TAEe) from G4(MP2) theory
with TAEe values obtained for the various DFT methods. There-
fore, zero-point vibrational energies (ZPVEs) are not included in
the G4(MP2) reference values. Fig. 1 gives an overview of the
electronic G4(MP2) TAEs. The G4(MP2) TAEs exhibit a logit-
shaped distribution, with sharper variations in the TAEs of the
most and least energetic species and a very shallow region in
between with much smaller variations in the TAEs. Only 3.8%
of the molecules in the GDB-9 database are associated with
TAEs below 1500 kcal mol�1. The species associated with the
lowest TAEs are small molecules such as water, hydrogen
cyanide, formaldehyde, acetylene, carbon tetrafluoride, cyano-
gen, and methanol. The lion’s share of the molecules in the
GDB9-nonMR database (95.7%) are associated with TAEs
between 1500.0 and 2500.0 kcal mol�1. Whereas 0.5% of
the systems are associated with TAEs between 2500.0 and
2777.8 kcal mol�1. For comparison, the W4-17 database of
200 TAEs includes mostly TAEs below 1000 kcal mol�1, with
only 11 TAEs ranging between 1000–1600 kcal mol�1.22

Table 1 gives an overview of the molecular size and ele-
mental distribution in the GDB9-nonMR database. Inspection
of these results reveals that practically all species contain at
least one carbon atom, 59% of the species contain at least one
nitrogen, 85% of the species contain at least one oxygen,
and 0.9% of the species contain at least one fluorine atom. The
species in the GDB9-nonMR database contain up to 9 carbon,
5 nitrogen, 4 oxygen, and 3 fluorine atoms. As might be expected,
the largest TAEs in the database correspond to saturated aliphatic
hydrocarbons. Of these, the C9H20 alkanes are associated with the

largest TAEs ranging between 2770.9 (3-ethyl-2,4-dimethyl-
pentane) and 2777.8 (2,2,5-trimethylhexane) kcal mol�1. Then
there is a gap of 116.4 kcal mol�1 in the TAEs, which is visible
in the top right corner of Fig. 1. This gap is followed by the TAEs of
C9H18 monocyclic saturated hydrocarbons, which range between
2620.9 (2-tert-butyl,1,3-dimethylcyclopropane) and 2654.5 (1,3,5-
trimethylcyclohexane) kcal mol�1.

Performance of DFT methods for describing the TAEs in the
GDB9-nonMR database (122k species)

Table 2 summarizes the error statistics for a representative set
of DFT methods across rungs 2–4 of Jacob’s ladder. Namely,
BLYP, PBE, and B97-D (rung 2), t-HCTH and M06-L (rung 3),
B3LYP, B3PW91, PBE0, and oB97X-D (rung 3.5), and
t-HCTHhyb, PW6B95, M06, M06-2X, and MN15 (rung 4). Before
proceeding to a detailed discussion of the performance of the
DFT methods, we note the following general observations:
� The RMSDs and MADs spread over a very wide energetic

window. Namely, the RMSDs range between 5.16 (B3LYP) and
79.70 (PBE), and the MADs range between 4.09 (B3LYP) and
79.22 (PBE)
�Most of the functionals tend to systematically overestimate

the CCSD(T) TAEs, as indicated by MSD E MAD. Notable
exceptions are BLYP, M06-L, and B3LYP.
� Hybrid GGA methods (B3LYP and PBE0) outperform their

GGA counterparts (BLYP and PBE). However, surprisingly, the
considered HMGGA functionals show poor performance rela-
tive to their counterparts from the lower rungs (e.g., M06 and
M06-2X relative to M06-L and t-HCTHh relative to t-HCTH)

Let us begin by examining the performance of the GGA
methods BLYP, PBE, and B97-D. Of these, the moderately
parameterized, dispersion-corrected B97-D functional gives
the best performance with an RMSD of 9.05 and a MAD of
8.03 kcal mol�1. Consistent with previous benchmark
studies for TAEs,20,21,75,76 the nonempirical PBE functional
shows exceptionally poor performance with RMSD E MAD E
80 kcal mol�1. Table 2 lists the total number of positive and
negative deviations – for PBE, all deviations but one are
positive. Table 2 also lists the number of deviations that are
larger than the MAD (denoted by #LPD). For PBE, there are as
many as 62 815 such deviations. Thus, PBE systematically
and severely overestimates the TAEs, as also evidenced by

Fig. 1 Overview of the 122 476 CCSD(T) total atomization energies at the
bottom-of-the-well (TAEe) from G4(MP2) theory in the GDB9-nonMR
database. The TAEs are ordered by increasing values from 232.3 (water)
to 2777.8 (2,2,5-trimethylhexane) kcal mol�1.

Table 1 Size and elemental distribution for the 122 476 species in the
GDB9-nonMR dataset. The tabulated values are the number of species
containing a certain number of each element; for example, the second
column provides the number of species with 1–9 carbon atoms

# of atoms C N O F

1 4 43 907 50 898 713
2 19 20 143 41 068 69
3 285 6878 11 322 330
4 3405 1504 829 0
5 18 808 145 0 0
6 39 136 0 0 0
7 39 079 0 0 0
8 18 010 0 0 0
9 3729 0 0 0
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MSD = MAD = 79.22 kcal mol�1 and MAD/RMSD = 0.99. This
systematic and severe overbending is already apparent from
examining much smaller and less diverse databases. For exam-
ple, for the set of linear and branched alkanes with up to eight
carbon atoms,40 PBE attains an RMSD of 13.7 and a MAD =
MSD = 12.7 kcal mol�1. For the 140 TAEs in the W4-11
database,21 PBE attains similar error statistics, namely, RMSD =
16.9 kcal mol�1, MAD = 13.8, and MSD = 12.5 kcal mol�1.
However, the increase of these RMSDs and MADs by nearly an
order of magnitude for the GDB9-nonMR database is indeed
unexpected. These results demonstrate the dramatic changes in
the results obtained for some DFT methods (vide infra) when
benchmarking against small databases with dozens or hun-
dreds of TAEs compared with a database with over 120 000 TAEs
that covers a larger segment of the chemical space. The lightly
empirical GGA BLYP functional performs much better than
PBE, with an RMSD = 11.89 and MAD = 9.59 kcal mol�1.
Notably, BLYP is one of the few functionals that does not
systematically overestimate the CCSD(T) TAEs, for example,

the MSD of 2.52 kcal mol�1 is smaller than the MAD (9.59 kcal
mol�1). BLYP has B53 000 negative deviations vs. B69 000
positive deviations. In addition, an RMSD/MAD ratio of 0.81
suggests a reasonable Gaussian distribution of the deviations.
The number of positive deviations larger than the MAD (33 485) is
much smaller than for PBE (62 185) and B97-D (61 270). Similarly to
the number of positive deviations larger than the MAD, we can
calculate the number of negative deviations that are smaller than
�1�MAD. For BLYP, there are as many as 19 255 such deviations.
These results are illustrated in the error distribution depicted in
Fig. 2. It is also apparent that BLYP exhibits a very wide error
distribution with a standard deviation of 11.62 kcal mol�1, com-
pared with 8.80 (PBE) and 4.48 (B97-D) kcal mol�1.

Let us move on to the hybrid GGA counterparts of PBE and
BLYP. The inclusion of exact exchange in the functional form
reduces the RMSDs and MADs by B60% for both functionals.
Adding 25% of exact exchange in PBE0 reduces the RMSD from
79.7 to 32.29 kcal mol�1, and a similar reduction is observed for
the MAD. The inclusion of 20% exact exchange in B3LYP results
in an equally dramatic reduction in the RMSD from 11.89
to 5.16 kcal mol�1 and a similar reduction in the MAD from
9.59 to 4.09 kcal mol�1. However, whilst PBE0 still severely
and systematically overestimates the TAEs, as evidenced
by practically no negative deviations and MAD = MSD =
31.79 kcal mol�1, B3LYP shows a balanced performance with
a near-zero MSD and a near-perfect MAD/RMSD ratio for a
Gaussian distribution of 0.79 (see Table 2 and Fig. 2). Further-
more, B3LYP is the only functional that exhibits nearly equal
amounts of B61 000 positive and negative deviations (Table 2).

Overall, B3LYP is the best-performing DFT functional consid-
ered here. To put the MAD = 4.09 and RMSD = 5.16 kcal mol�1

into perspective, the average TAE in the GDB9-nonMR database is
1878.9 kcal mol�1 (with TAEs reaching up to 2777.8 kcal mol�1,
Fig. 1). Thus, a MAD of 4.09 kcal mol�1 represents an error of
merely 0.2% of the average TAE. This result illustrates that this
first-generation HGGA functional, which includes only three
mixing coefficients fitted against a small set of atomization

Table 2 Performance of a representative set of DFT methods in conjunction with the 6-31G(2df,p) basis set for the 122 476 total atomization energies in
the GDB9-nonMR dataset (error statistics are given in kcal mol�1)a

RMSD MAD MSD MAD/RMSD SD #ND (LND) #PD (LPD) #LPD

PBE 79.70 79.22 79.22 0.99 8.80 1 (�2.30) 122 475 (106.94) 62 815
BLYP 11.89 9.59 2.52 0.81 11.62 53 085 (�30.03) 69 391 (38.99) 33 485
B97-D 9.05 8.03 7.86 0.89 4.48 5453 (�16.56) 117 023 (29.53) 61 270
M06-L 7.62 6.24 4.99 0.82 5.76 23 972 (�18.64) 98 504 (35.30) 57 317
t-HCTH 8.56 7.29 6.87 0.85 5.09 10 288 (�16.36) 112 188 (38.05) 61 270
PBE0 32.29 31.79 31.79 0.98 5.66 4 (�8.86) 122 472 (50.82) 64 595
B3LYP 5.16 4.09 0.45 0.79 5.14 60 780 (�27.73) 61 696 (21.48) 51 629
B3PW91 17.43 16.94 16.94 0.97 4.10 9 (�6.87) 122 467 (30.18) 28 185
oB97X-D 15.87 15.31 15.30 0.96 4.24 323 (�15.16) 122 153 (27.15) 64 896
t-HCTHh 11.11 9.87 9.81 0.89 5.22 2561 (�8.16) 119 915 (32.88) 69 679
PW6B95 22.67 22.34 22.34 0.99 3.83 2 (�6.00) 122 474 (35.37) 58 961
M06 19.20 18.69 18.69 0.97 4.39 13 (�6.77) 122 463 (39.22) 64 918
M06-2X 19.68 19.41 19.41 0.99 3.24 6 (�14.20) 122 470 (34.84) 64 881
MN15 29.08 28.54 28.54 0.98 5.59 3 (�3.62) 122 473 (49.13) 62 819

a RMSD = root-mean-square deviation, MAD = mean-absolute deviation, MSD = mean-signed deviation, SD = standard deviation, #ND = total
number of negative deviations, LND = largest negative deviation in parentheses, #PD = total number of positive deviations, LPD = largest positive
deviation in parentheses, #LPD = number of positive deviations exceeding the MAD.

Fig. 2 Distribution of deviations between the DFT and CCSD(T) TAEs (in
kcal mol�1) in the GDB9-nonMR database for three functional pairs BLYP/
B3LYP, PBE/PBE0, and M06-L/M06 (see Table 2 for error statistics; for the
error distribution of all functionals, see Fig. S1 of the ESI†).
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energies, ionization potentials, and proton affinities, can outper-
form next-generation functionals. Most of the more modern
HGGA and HMGGA employ more parameters and were parame-
terized against broader datasets covering thermochemistry,
kinetics, and noncovalent interactions. Replacing the LYP correla-
tion functional in B3LYP with PW91 results in a significant
deterioration in performance and a severe tendency for over-
binding, as demonstrated by MAD = MSD = 16.94 kcal mol�1.
This is also demonstrated by the remarkable drop in the number
of negative deviations from 60 780 (B3LYP) to 9 (B3PW91).
These results confirm the important role that the LYP correlation
functional, which is rooted in the Colle–Salvetti correlation-
energy formula,77 for obtaining good overall performance for
thermochemistry.20,78

Even though B3LYP turns out to be the best performer
overall relative to the G4(MP2) TAEs in the GDB9-nonMR
database, it still has its share of problems, documented in the
literature,10,20,21,24,79,80 but also visible in our results. It is
therefore important to highlight some of the challenges that
B3LYP experiences for specific categories of TAEs. B3LYP has
been found to perform poorly for TAEs of pseudo-hypervalent
and polarly bound systems (mostly containing both first- and
second-row elements).20,21 For example, deviations larger than
16 kcal mol�1 have been observed for TAEs obtained from W4
theory24 for systems such as HClO4, SF6, PF5, SiF4, and SO3.
Purely first-row systems with significant deviations ranging
between 6–10 kcal mol�1 include perfluoro compounds such
as BF4 and CF4,20,21 as well as fluorine oxides.79 It was also
found that B3LYP tends to underbind the TAEs of linear
alkanes,80 however, this deficiency is partly remedied by the
inclusion of an empirical dispersion correction.40 Yet, even
with the inclusion of the empirical D3BJ dispersion correction
B3LYP-D3BJ performs poorly for TAEs of strained (CH)n poly-
cyclic hydrocarbon cages (e.g., tetrahedrane, triprismane,
cubane, pentaprismane, octahedrane, and dodecahedrane),
see ref. 10 for further details. Examining the error statistics
for subsets of the GDB9-nonMR database, we can identify an
increase in the RMSD for saturated hydrocarbons with an
increasing number of cyclic rings. For example, we obtain the
following RMSDs for saturated hydrocarbons with nine carbons
1.9 (one ring), 3.1 (two rings), 5.5 (three rings), and 8.2 (four rings)
kcal mol�1. Furthermore, as is the case of other functionals (vide
infra), B3LYP attains poor performance for the subset of 145 TAEs
involving five nitrogens (RMSD = 17.5) and 330 TAEs involving
three fluorine atoms (RMSD = 28.8 kcal mol�1).

We also consider here the long-range correctedoB97X-D method,
which includes about 22% of exact exchange for the short-range and
100% exact exchange for long-range interactions. oB97X-D performs
better than the global hybrids PBE0 and B3PW91. However, all three
functionals suffer from a systematic tendency to overbind, as
demonstrated by MAD = MSD and MAD/RMSD ratios of 0.96–0.98
(Table 2). Similarly to PBE0 and B3PW91,oB97X-D has practically no
negative deviations. Thus, the only hybrid functional that does not
suffer from systematic overbinding is B3LYP.

Let us examine the performance of the two meta-GGA
methods, which include the kinetic energy density – t-HCTH

and M06-L. These empirical XC functionals can be considered
moderately and heavily parameterized, respectively. M06-L
includes 39 empirical parameters and was parameterized against
an extensive set of energetic data covering main-group thermo-
chemistry, thermochemical kinetics, transition-metal chemistry,
and noncovalent interactions. The thermochemistry subset
included 109 TAEs for main-group compounds.81 t-HCTH
includes 16 empirical parameters, which were parameterized
against an extensive set of thermochemical data, including
atomic energies, TAEs of neutral and charged species, ionization
potentials, electron affinities, and hydrogen bond energies. Both
M06-L and t-HCTH show relatively good performance for the
122k TAEs in the GDB9-nonMR database. Both methods tend to
systematically overestimate the CCSD(T) TAEs, however, not as
severely as the GGA methods PBE and B97-D. This is evidenced
by MSD o MAD and MAD/RMSD ratios of 0.82 (M06-L) and 0.85
(t-HCTH), and a nonnegligible number of negative deviations
23 972 (M06-L) and 10 288 (t-HCTH) (Table 2). Overall, both
methods result in respectable RMSDs of 7.62 (M06-L) and 8.56
(t-HCTH) kcal mol�1, and MADs of 6.24 (M06-L) and 7.29
(t-HCTH) kcal mol�1. Thus, the heavily parameterized M06-L
method has a visible edge over t-HCTH.

Somewhat surprisingly, moving from the meta-GGAs M06-L
and t-HCTH to their hybrid-meta GGA counterparts, M06 and
t-HCTHhyb, results in a deterioration in performance and
an enhanced tendency for overbinding. The deterioration in
performance is much more pronounced for M06 than for
t-HCTHhyb. The RMSD and MAD for M06 are 19.20 and
18.69 kcal mol�1, respectively. These values are nearly three
times higher than for M06-L. The deterioration in performance
for t-HCTHh relative to t-HCTH is not as significant, but still
visible (Table 2). We note that for both M06 and t-HCTHh we
obtain MAD E MSD and MAD/RMSD ratios that indicate
systematic errors across the dataset. However, while M06 has
practically no negative deviations, t-HCTHh has B2% (or 2561)
negative deviations. The deteriorated performance of M06
relative to t-HCTHh could be related to the significantly higher
percentage of exact exchange included in M06 (27%) relative to
t-HCTHh (15%). However, moving from M06 to M06-2X with
54% of exact exchange leads only to a small deterioration in
performance relative to M06. Namely, M06-2X attains RMSD
and MAD of 19.68 and 19.41 kcal mol�1, respectively.

We also consider here the lightly parametrized PW6B95
hybrid-meta-GGA method with 28% of exact exchange and the
heavily parameterized MN15 with 44% of exact exchange. We
note that PW6B95 shows good performance for the 121 TAEs
in the W4-11-nonMR database (namely, RMSD and MAD of 2.5
and 1.8 kcal mol�1, respectively). Nevertheless, PW6B95 results
in rather disappointing RMSD and MAD values for the much
larger GDB9-nonMR database that are nearly an order of
magnitude larger (Table 2). MN15 results in the worst perfor-
mance of the considered hybrid-meta-GGAs with MAD, RMSD,
and MSD of B29.0 kcal mol�1. All the Minnesota functionals
(M06, M06-2X, and MN15) and PW6B95 suffer from systematic
overbinding as demonstrated from MAD = RMSD and positive
deviations reaching up to 49.13 kcal mol�1 for MN15 (Table 2).
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Overall, t-HCTHh shows better performance than the other
HMGGA functionals (PW6B95, M06, M06-2X, and MN15). This
could be attributed to the former being paramatrized against
the HCTH/407 dataset, which is dominated by thermochemical
properties. In contrast, PW6B95, M06, M06-2X, and MN15 were
trained using more diverse databases, including thermochem-
istry, transition-metal chemistry, thermochemical kinetics, and
noncovalent interactions.

Inspection of the standard deviations in Table 2 reveals that
although PW6B95 and M06-2X tend to systematically overesti-
mate the G4(MP2) TAEs, they exhibit particularly low standard
deviations of 3.83 and 3.24 kcal mol�1, respectively. For com-
parison, the standard deviation for B3LYP is 5.14 kcal mol�1.
Therefore, it is worthwhile exploring the possibility of eliminat-
ing the systematic bias of PW6B95 and M06-2X by empirical
scaling. Scaling the PW6B95 and M06-2X TAEs by a single
empirical scaling factor optimized to minimize the RMSDs,
reduces the RMSD for PW6B95 from 22.67 to 4.20 and for M06-
2X from 19.68 to merely 3.60 kcal mol�1. The optimal scaling
factors are 0.9884 (PW6B95) and 0.9899 (M06-2X).

Basis set effects

It is well established that TAEs exhibit a significant basis set
dependency.21,22,26,75 The error statistics reported in Table 2
reflect the performance of the DFT methods in conjunction
with the relatively small 6-31G(2df,p) basis set. Considering the
size of the GDB9-nonMR database, evaluating the performance
of the DFT methods in conjunction with a larger basis set is
beyond the computational resources currently available to us.
However, it is of interest to examine the basis set effect for the
smaller W4-17* database. The W4-17* dataset is simply the
original W4-17 set without the highly multireference and
second-row systems (a more comprehensive description of the
W4-17* dataset is provided in the next section). These multi-
reference and second-row systems are eliminated to enable a
more straightforward comparison to the GDB9-nonMR dataset.
Table S2 of the ESI† gives the error statistics for the W4-17*
database for the considered DFT functionals calculated in
conjunction with the 6-31G(2df,p) and aug0-pc3 basis sets.82

The later basis set is a large quadruple-z-quality basis set, which
was optimized for DFT calculations (we have chosen this basis
set since it was used for evaluating the performance of the DFT
methods for the W4-11 database).21 Inspection of Table S2
(ESI†) reveals that the performance of all functionals deterio-
rates when moving from the aug0-pc3 basis set to the smaller
6-31G(2df,p) basis set. However, the degree of deterioration can
change drastically between different functionals. Particularly
large deteriorations in performance where the RMSD for the
W4-17* database nearly triples when moving from the aug0-pc3
to the 6-31G(2df,p) basis set are observed for PW6B95, M06-2X,
and oB97X-D. Cases where the RMSD doubles include MN15,
M06, B3PW91, PBE0, t-HCTH, B97-D, and t-HCTHhyb. It is
reasonable to assume that the basis set effect will become more
pronounced for the much larger GDB9-nonMR database, which
includes larger and more complex systems with more demand-
ing basis set requirements. Thus, the large RMSDs obtained for

these functionals in Table 2 are partly attributed to their
stronger basis set dependency. This is particularly important
for the three functionals that exhibit the strongest basis set
dependencies (PW6B95, M06-2X, and oB97X-D). On the other
hand, PBE, BLYP, B3LYP, and M06-L exhibit a less pronounced
basis set dependency; namely, the RMSD increases by a factor
of 1.1–1.2 when moving from the aug0-pc3 to the 6-31G(2df,p)
basis set.

Comparing the performance of DFT for the TAEs in the GDB9-
nonMR and W4-17* databases

There has been a discussion in the literature around the ability
of relatively small databases to represent larger ones.83–85 In the
context of the present work, it is important to highlight that the
W4-17* database includes a range of organic species with up to
six non-hydrogen atoms; however, it is not a derivative of the
GDB9-nonMR database.22 To ensure the comparison between
the performance of DFT methods for the GDB9-nonMR and
W4-17 databases is made on an even keel, we consider a
modified version of the W4-17 database in which multirefer-
ence and second-row species have been removed. This results
in a subset of 121 TAEs for first-row systems, which are listed in
Table S3 of the ESI† (we will denote this subset of the W4-17
database as W4-17*). The systems in the W4-17* database cover
a broad spectrum of bonding situations and functional groups
(for a comprehensive description of all the species in the W4-
17* database, see ref. 22 and 31). However, the W4-17* database
contains smaller and less diverse systems than the GDB9-
nonMR database. Finally, we note that the reference TAEs in
the W4-17* database are zero-point exclusive, all-electron, non-
relativistic, clamped-nuclei TAEs calculated close to the FCI/
CBS limit.22 Thus, these two databases represent two extreme
cases: the W4-17* database is highly accurate but small (i.e.,
121 TAEs of small systems obtained at the FCI/CBS level of
theory via W4 theory) and the GDB9-nonMR database is mod-
erately accurate but exceptionally large and diverse (i.e., 122k
TAEs of medium-sized systems obtained at the CCSD(T)/TZ
level of theory via G4(MP2) theory).

Table 3 summarizes the error statistics for the considered
DFT methods for the W4-17* database. The GGA methods PBE
and BLYP perform poorly for the W4-17* database with RMSDs
of 29.59 and 14.36 kcal mol�1, respectively. As expected and
consistent with the results for the GDB9-nonMR database, the
inclusion of exact exchange significantly improves the perfor-
mance. Namely, the PBE0 and B3LYP methods attain RMSDs of
9.17 and 4.84 kcal mol�1, respectively. Again, consistent with
the results for the GDB9-nonMR database, replacing the LYP
correlation functional in B3LYP with PW91 results in deterio-
rated performance with an RMSD of 6.73 kcal mol�1. The meta-
GGA methods perform significantly better than the GGA meth-
ods. Of the hybrid-meta GGA methods, M06-2X shows the best
performance with an RMSD of 6.80 kcal mol�1. Followed by
t-HCTHh and PW6B95 with RMSDs of B8 kcal mol�1. This is in
contrast to the results for the GDB9-nonMR database in which
t-HCTHh outperforms the other hybrid-meta GGA methods.
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Inspection of the MADs and RMSDs in Tables 2 and 3 reveals
that for both the GDB9-nonMR and W4-17* databases, PBE
ranks as the worst-performing functional, and B3LYP ranks as
the best-performing functional. It should also be noted that
M06-L ranks highly for both databases, i.e., it ranks as the
second-best functional for the GDB9-nonMR database and the
third-best functional for the W4-17* database. Similarly, MN15
ranks as one of the worst-performing functionals for both
databases. Whilst there are some differences in the ranking
of the medial functionals, overall, there seems to be a reason-
able degree of qualitative agreement between the performance
of the DFT methods for the two databases. The main exception
to this is oB97X-D, which ranks second-best for the W4-17*
database but seventh-best for the GDB9-nonMR database.

It is also instructive to examine the qualitative agreement
between the performance of the functionals for both databases.
Table 4 depicts the differences in RMSD and MAD obtained
for the GDB9-nonMR and W4-17* databases, i.e., DMAD =
MAD(GDB9-nonMR) � MAD(W4-17*); DRMSD = RMSD(GDB9-
nonMR) � RMSD(W4-17*). However, it is important to stress
that since the GDB9-nonMR database is dominated by larger
and more challenging species than the W4-17* database, the
error statistics for the former are expected to be larger. Accord-
ingly, in nearly all cases, the performance deteriorates when
moving from the small W4-17* database to the GDB9-nonMR
database. Nevertheless, the magnitude of the DMAD and
DRMSD values can vary significantly between different func-
tionals. In particular, for some functionals, the RMSD and MAD
change drastically between the two databases (most notably for
PBE and PBE0), whilst for others, the performance remains
relatively unchanged (most notably BLYP, B3LYP, and t-HCTH).
For two methods (BLYP and t-HCTH), the overall performance
for the GDB9-nonMR database is better than that for the W4-

17* database. For the B3LYP functional, the RMSD and MAD
obtained for the W4-17* database are similar to those obtained
for the GDB9-nonMR database (i.e., DMAD = 0.38 and DRMSD =
0.32 kcal mol�1). BLYP, B97-D, M06-L, and t-HCTH also
exhibit relatively small variations in performance between the
two databases, with DMADs below 1.7 and DRMSDs below
3.1 kcal mol�1 (in absolute values). In contrast, B3PW91 and
oB97X-D exhibit deterioration in performance in the DRMSDs
and DMADs of B10 kcal mol�1. Similarly, the hybrid-meta GGA
methods M06-2X and PW6B95 methods exhibit deterioration in
performance in the DRMSDs and DMADs of B12 kcal mol�1.

Overall, the DMADs and DRMSDs in Table 4 show that five
functionals (B3LYP, M06-L, BLYP, t-HCTH, and B97-D) exhibit
similar performance for the two databases with DMADs ranging
between �0.7 (BLYP) and 1.72 (M06-L) kcal mol�1. While eight
functionals (oB97X-D, B3PW91, M06, M06-2X, MN15, PW6B95,
PBE0, and PBE) exhibit significant deterioration in perfor-
mance when moving from the W4-17* to the GDB9-nonMR
database with DMADs ranging between 11.43 (oB97X-D) and
54.45 (PBE) kcal mol�1. t-HCTHh exhibits intermediate dete-
rioration in performance with DMAD = 4.29 kcal mol�1. Exclud-
ing PBE and PBE0, which are not expected to perform well for
TAEs in the first place, it seems that functionals from the
higher rungs of Jacob’s ladder tend to exhibit larger variations
in performance between the two databases.

Ref. 37 evaluated the performance of three functionals
(B3LYP, M06-2X, oB97X-D) for the 459 heats of formation in
the Pedley test set, which contains 175 hydrocarbons and 284
first-row substituted hydrocarbons. The MADs for the Pedley
test set are 3.99 (B3LYP), 2.71 (M06-2X), and 1.85 (oB97X-D)
kcal mol�1. The MAD for B3LYP is similar to that obtained
for the larger GDB9-nonMR database (4.09 kcal mol�1). In
both studies, B3LYP is evaluated in conjunction with the
6-31G(2df,p) basis set. The performance of the M06-2X and

Table 3 Performance of a representative set of DFT methods in con-
junction with the 6-31G(2df,p) basis set for the 121 TAEs in the W4-17*
dataset (error statistics are given in kcal mol�1)a

RMSD MAD MSD
MAD/
RMSD #ND (LND) #PD (LPD) #LPD

PBE 29.59 24.77 24.51 0.84 5 (�4.52) 116 (99.8) 55
BLYP 14.36 10.29 8.99 0.72 28 (�10.36) 93 (64.4) 46
B97-D 9.11 6.80 6.26 0.75 11 (�12.86) 110 (39.24) 44
M06-L 6.10 4.52 0.88 0.74 57 (�11.15) 64 (26.9) 29
t-HCTH 11.72 7.81 5.94 0.67 23 (�39.43) 98 (47.8) 35
PBE0 9.17 6.81 5.45 0.74 28 (�9.49) 93 (29.8) 41
B3LYP 4.84 3.71 2.85 0.77 23 (�7.25) 98 (16.7) 47
B3PW91 6.73 5.25 4.27 0.78 25 (�7.52) 96 (21.9) 47
oB97X-D 5.26 3.88 2.65 0.74 30 (�8.08) 91 (22.5) 42
t-HCTHh 8.43 5.58 4.14 0.66 36 (�14.43) 85 (38.4) 39
PW6B95 8.04 6.15 5.48 0.76 18 (�6.71) 103 (29.4) 47
M06 8.82 5.90 4.61 0.67 32 (�10.66) 89 (42.57) 40
M06-2X 6.80 4.60 3.46 0.68 35 (�6.26) 86 (32.7) 43
MN15 11.03 8.03 7.48 0.73 15 (�5.61) 106 (50.1) 42

a The reference values are obtained at the FCI/CBS level of theory from
W4 (or higher) theory. RMSD = root-mean-square deviation, MAD =
mean-absolute deviation, MSD = mean-signed deviation, #ND = total
number of negative deviations, LND = largest negative deviation in
parentheses, #PD = total number of positive deviations, LPD = largest
positive deviation in parentheses, #LPD = number of positive deviations
exceeding the MAD.

Table 4 Overview of the difference in the performance of the DFT
methods for the GDB9-nonMR and W4-17* databases (in kcal mol�1)ab

DMAD DRMSD

PBE 54.45 50.11
BLYP �0.70 �2.47
B97-D 1.23 �0.06
M06-L 1.72 1.52
t-HCTH �0.52 �3.16
PBE0 24.98 23.12
B3LYP 0.38 0.32
B3PW91 11.69 10.70
oB97X-D 11.43 10.61
M06 12.79 10.38
M06-2X 14.81 12.88
t-HCTHh 4.29 2.68
PW6B95 16.19 14.63
MN15 18.05 20.51

a The tabulated values are DRMSD = RMSD(GDB9-nonMR) � RMSD-
(W4-17*) and DMAD = MAD(GDB9-nonMR) � MAD(W4-17*). Negative
DRMSD and DMAD values indicate that the performance for the GDB9-
nonMR database is better than that for the much smaller W4-17*
database. b It should be noted that since the GDB9-nonMR database
is dominated by larger species (and arguably more challenging) than
the W4-17* database, the error statistics for the former are expected to
be larger.
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oB97X-D functionals was evaluated in ref. 37 in conjunction
with the larger 6-311+G(3df,2p) basis set. Thus, the differences
between the MADs obtained for the Pedley and GDB9-nonMR
databases might partly be attributed to the use of the larger 6-
311+G(3df,2p) basis set for the evaluation of the M06-2X and
oB97X-D methods (vide supra). Having said that, it is of interest
to inspect the largest errors for the M06-2X and oB97X-D
methods for the GDB9-nonMR database. Inspection of the
largest errors for both M06-2X and oB97X-D reveals that they
are dominated by systems that combine several challenging
functional groups in one molecule. For example, a CF3 group, at
least one highly strained ring (e.g., cyclopropane, oxirane,
aziridine, cyclobutene, oxetane, or azetidine), and at least one
oxygen-containing functional group (e.g., alcohol, ether, or
carbonyl). A useful subset to examine, which is dominated by
challenging multifunctional-group compounds, is the group of
268 molecules containing CF3 and at least one heteroatom. The
RMSDs over this challenging subset are 29.0 (M06-2X), 22.3
(oB97X-D), and 11.6 (B3LYP) kcal mol�1. Another subset of
molecules that appears to be more challenging for M06-2X and
oB97X-D than for B3LYP is the subset of saturated hydrocar-
bons containing three rings. This subset can be isolated by
considering all H14C9 structures containing only C–C bonds
longer than 1.48 Å. There are 541 such hydrocarbons in the
GDB9-nonMR database. The RMSDs over this challenging sub-
set are 20.9 (M06-2X and oB97X-D) and 5.5 (B3LYP) kcal mol�1.
Similarly, for the subset of 190 H12C9 saturated hydrocarbons
with four rings, we obtain RMSDs of 21.2 (M06-2X), 19.3
(oB97X-D), and 8.2 (B3LYP) kcal mol�1. Since such systems
are not represented in the Pedley test set, these results partly
explain the appreciably larger MADs obtained for the M06-2X
and oB97X-D functionals for the GDB9-nonMR database rela-
tive to the Pedley test set.

As mentioned above, the difference in RMSD for PBE
between the W4-17* and GDB9-nonMR database is very sig-
nificant. Inspection of the deviations obtained for PBE for the
GDB9-nonMR database reveals that there are 584 deviations
above 100 kcal mol�1. A closer look at these 584 deviations
reveals that they include a significant population of species
(mostly cyclic) containing multiple nitrogen atoms. In particu-
lar, 76 species contain five nitrogens, 194 species contain four
nitrogens, 248 species contain three nitrogens, 56 species con-
tain two nitrogens, and 10 species contain one nitrogen. Thus,
89% of the species with deviations above 100 kcal mol�1 contain
at least three nitrogen atoms, and 46% of the species with
deviations above 100 kcal mol�1 contain at least four nitrogens.
In addition, 177 of the species containing three nitrogens also
contain at least one oxygen. For as many as 12 329 species, PBE
overestimates the G4(MP2) TAE by amounts ranging between 90–
100 kcal mol�1. This set of molecules is much more diverse.
However, it still has an appreciable number of 4408 (or 36%) of
systems with 3–5 nitrogen atoms. Therefore, the increase in the
RMSD, MAD, and MSD when moving from the W4-17* to the
GDB9-nonMR database is partly attributed to the presence of
heterocycles with 3–5 nitrogen atoms. This class of molecules is
not represented in the W4-17* database.

Finally, we have to consider the possibility that the differ-
ence in the performance of the DFT functionals for the two
databases is partly a result of the accuracy of the reference
values used (i.e., W4 theory vs. G4(MP2) theory). Namely, the
W4-17* database uses CCSDT(Q)/CBS, CCSDTQ5/CBS, and
CCSDTQ56/CBS TAEs from W4, W4.n, and W4lite theories,
whereas the GDB9-nonMR database uses CCSD(T) TAEs from
G4(MP2) theory. One way to examine this, is by replacing the
reference values in the W4-17* database with G4(MP2) TAEs
and see how this affects the DMAD and DRMSD values in
Table 4. Table S4 of the ESI† reports the DMAD and DRMSD
values in Table 4, but with using G4(MP2) rather than W4
reference TAEs in the W4-17* database. Indeed, lowering the
quality of the reference values in the W4-17* database changes
the DMAD and DRMSD values in Table 4, however, the changes
are relatively small. Interestingly, upon changing the reference
values in the W4-17* database, all the DRMSD values are reduced
by a relatively constant amount of B1.0 kcal mol�1, and all the
DMAD values are reduced by a relatively constant amount of
B0.8 kcal mol�1. However, these systematic changes do not
change the conclusions in the previous sections. The relatively
small and systematic changes in the DMAD and DRMSD values
when moving from using FCI/CBS to G4(MP2) reference TAEs in
the W4-17* database are largely attributed to the fact that this
subset does not include strongly multireference systems and
second-row systems with which G4(MP2) theory would generally
struggle (e.g., highly polar and pseudohypervalent systems like
SF6, PF5, ClF5, AlF3, PF3, HClO4, HClO3, ClO3, and SO3).

Empirical dispersion effects

We have seen above that, by and large, the considered
dispersion-uncorrected DFT methods tend to overbind the
TAEs. Some XC functionals such as PBE, PBE0, B3PW91, and
PW6B95 overestimate the CCSD(T) TAEs systematically and
severely, whereas others such as BLYP and B3LYP are less
biased toward overestimation of the TAEs. Dispersion correc-
tions are attractive, and therefore they are expected to increase
the errors further for methods that already systematically over-
estimate the TAEs. It is, nevertheless, of interest to consider the
effects of dispersion on the performance of DFT for the 122k
TAEs in the GDB9-nonMR dataset. Table 5 lists the RMSDs,
MADs, MSDs, and MAD/RMSD ratios for a subset of dispersion-
corrected functionals (we focus here on the functionals that do
not account for dispersion interactions in the functional para-
meterization). As expected, the inclusion of an empirical dis-
persion correction results in an overall deterioration in
performance across the board. The deterioration in perfor-
mance is more pronounced with the more recent D3BJ and
D4 dispersion corrections since the zero-damping function in
the original D3 procedure leads to less attractive interatomic
forces at short distances.64–66 In particular, the inclusion of
the D3 dispersion correction increases the RMSDs by
B5 kcal mol�1 for the functionals considered (with the exception
of B3PW91 for which the RMSD is increased by 9.79 kcal mol�1).
For comparison, the inclusion of the D3BJ or D4 dispersion
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correction increases the RMSDs by larger amounts ranging from
about 9–18 kcal mol�1.

Limitations and scope for future work

Finally, it is important to highlight some limitations that are,
by necessity, inherent to a ‘big data’ benchmark study con-
sidering 122k molecules with up to nine non-hydrogen atoms
and to point out prospects for future work. The performance of
the DFT methods in the present work is benchmarked relative
to CCSD(T) reference TAEs obtained from G4(MP2) theory. It
would be desirable to use reference TAEs from a higher-level
CCSD(T)-based composite ab initio method such as W1 or W1-
F12 theory.1,2,21,23,25 Fig. 3 depicts a typical system in the GDB9-
nonMR database, which involves 64 electrons (H7C7NO,
dsgdb9nsd_133885). A W1-F12 calculation for this system
would require 10.9 hours running on 16 Intel Xeon Cascade
Lake CPUs using 180 GB of RAM and 400 GB of fast SSD scratch
disk. Thus, running W1-F12 calculations for the entire GDB9-
nonMR database of 122 476 structures is expected to take about

one year on a machine with 160 cores and 2 TB of RAM. Clearly,
this is a very significant investment in terms of computer time.

Another limitation of the present work is the use of the
6-31G(2df,p) basis set in the evaluation of the DFT functionals.
A PW6B95/6-31G(2df,p) calculation for the molecule in Fig. 3
runs for 0.40 of a minute on a node with 16 cores. This
translates to over a month’s worth of computer time for
running the entire GDB9-nonMR database on a single node
just for this one DFT functional. In the present work, we have
considered 14 DFT functionals across the rungs of Jacob’s
ladder. Considering the availability of more cores, the different
computational scaling of functionals from different rungs of
Jacob’s ladder, and the optimization of the number of cores
used per calculation makes the 6-31G(2df,p) calculations per-
formed here achievable within a realistic timeframe. However,
moving to the large aug0-pc3 quadruple-z basis set, which was
considered here for the W4-17* database, increases the above
wall time by two orders of magnitude to 42.4 minutes. We note
that even with the smaller triple-z-quality aug0-pc2 basis set,
this calculation requires 3.3 minutes, i.e., an increase by nearly
one order of magnitude in computer time relative to the 6-
31G(2df,p) basis set. Thus, repeating the DFT calculations for
the entire GDB9-nonMR database using a sufficiently large
basis set would require a significant investment in terms of
computer time. As noted in a previous subsection, the results
for the W4-17* database indicate that employing a much larger
basis set is likely to improve the performance for functionals
that exhibit strong basis set dependencies for TAEs, such as
PW6B95, M06-2X, and oB97X-D.

Finally, we note that consistent with previous benchmark
studies,7–10,20–22,40,79 we have used the same geometries for the
evaluation of all the DFT functionals (optimized at the B3LYP/6-
31G(2df,p) level of theory). Reoptimizing the geometries with
the DFT functional being evaluated would require nearly two
million geometry optimizations across the 14 functionals.
Further explorations along these directions considering the
GDB9-nonMR database (or similarly sized databases) would
be desirable.

Conclusions

Total atomization energies (TAEs) are among the most challen-
ging thermochemical tests for electronic structure methods
and, therefore, serve as a central quantity in benchmark
studies. So far, TAE databases used in DFT benchmark studies
included a few hundred of TAEs. Here, we use the GDB9-
nonMR database of 122k CCSD(T) TAEs calculated at the
G4(MP2) level to evaluate the performance of 14 representative
DFT methods across the rungs of Jacob’s ladder (namely, PBE,
BLYP, B97-D, M06-L, t-HCTH, PBE0, B3LYP, B3PW91, oB97X-D,
t-HCTHhyb, PW6B95, M06, M06-2X, and MN15). Importantly,
we used the A25[PBE] diagnostic for nondynamical correlation
to confirm that the GDB9-nonMR database does not include
species with moderate-to-severe multireference effects, for
which the CCSD(T) TAEs might not be sufficiently reliable.

Table 5 Performance of a representative set of dispersion-corrected DFT
methods in conjunction with the 6-31G(2df,p) basis set for the 122 476
total atomization energies in the GDB9-nonMR dataset (error statistics are
given in kcal mol�1)a

RMSD MAD MSD MAD/RMSD

PBE No disp. 79.70 79.22 79.22 0.99
D3 84.68 84.27 84.27 1.00
D3BJ 90.39 89.99 89.99 1.00
D4 90.36 89.94 89.94 1.00

BLYP No disp. 11.89 9.59 2.52 0.81
D3 16.72 14.01 13.47 0.84
D3BJ 26.35 24.67 24.67 0.94
D4 27.68 26.08 26.08 0.94

PBE0 No disp. 32.29 31.79 31.79 0.98
D3 37.54 37.08 37.08 0.99
D3BJ 41.55 41.06 41.06 0.99
D4 41.38 40.88 40.88 0.99

B3LYP No disp. 5.16 4.09 0.45 0.79
D3 10.38 9.27 9.18 0.89
D3BJ 19.10 18.48 18.48 0.97
D4 18.03 17.39 17.39 0.96

B3PW91 No disp. 17.43 16.94 16.94 0.97
D3 27.22 26.89 26.89 0.99
D3BJ 35.60 35.23 35.23 0.99
D4 33.45 33.06 33.06 0.99

a RMSD = root-mean-square deviation, MAD = mean-absolute deviation,
MSD = mean-signed deviation.

Fig. 3 A typical system in the GDB-9-nonMR database in terms of size
(H7C7NO) with 64 electrons.
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With respect to the performance of the considered DFT meth-
ods for the TAEs in the GDB9-nonMR database, we draw the
following conclusions:
� With the main exception of B3LYP and BLYP, all XC

functionals tend to systematically overbind the species in the
GDB9-nonMR database. The most prominent examples are
PBE, PBE0, B3PW91, oB97X-D, t-HCTHhyb, PW6B95, M06,
M06-2X, and MN15.
� Overall, the lightly parameterized B3LYP functional, in

which the three mixing parameters were fitted against a set of
atomization energies, ionization potentials, and proton affi-
nities, shows the best overall performance with RMSD = 5.16
and MAD = 4.09 kcal mol�1. B3LYP is one of the few XC
functionals that are not systematically biased towards over-
binding as demonstrated by MSD = 0.45 kcal mol�1 and nearly
equal amounts of B61k negative deviations and B62k positive
deviations.
� The relatively good performance of B3LYP is followed by

that of the heavily parameterized meta GGA M06-L (RMSD =
7.62 and MAD = 6.24) and the moderately parameterized meta
GGA t-HCTH (RMSD = 8.56 and MAD = 7.29 kcal mol�1).
� None of the considered hybrid-meta GGA functionals out-

perform B3LYP, M06-L, and t-HCTH. Of the considered hybrid-
meta GGAs, t-HCTHh shows the best performance with RMSD =
11.11 and MAD = 9.87 kcal mol�1.
� Whilst PW6B95 and M06-2X systematically overestimate

the G4(MP2) TAEs, they exhibit particularly low standard devia-
tions of 3.83 and 3.24 kcal mol�1, respectively. Thus, scaling the
PW6B95 and M06-2X TAEs by a single empirical scaling factor
optimized to minimize the RMSDs results in RMSDs of 4.20
(PW6B95) and 3.60 (M06-2X) kcal mol�1.
� A comparison between the performance of the XC func-

tionals for the GDB9-nonMR and the much smaller W4-17*
database (121 TAEs) reveals that for some functionals (e.g.,
B3LYP, M06-L, BLYP, t-HCTH and B97-D) the RMSDs and
MADs for the two databases are similar. While other func-
tionals (e.g., oB97X-D, B3PW91, M06, M06-2X, MN15, PW6B95,
PBE0, and PBE) exhibit the expected deterioration in perfor-
mance when moving from the W4-17* to the GDB9-nonMR
database.
� Empirical dispersion corrections are attractive, and there-

fore, their inclusion worsens the performance of methods that
already systematically overestimate the TAEs. In such cases, the
less attractive D3 dispersion correction performs better than
the more attractive D3BJ and D4 corrections.
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