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Computation of Overhauser dynamic nuclear
polarization processes reveals fundamental
correlation between water dynamics, structure,
and solvent restructuring entropy†

Dennis C. Robinson Brown, a Thomas R. Webber, a Thomas M. Casey,b

John Franck,c M. Scott Shella and Songi Han*abd

Hydration water dynamics, structure, and thermodynamics are crucially important to understand and

predict water-mediated properties at molecular interfaces. Yet experimentally and directly quantifying

water behavior locally near interfaces at the sub-nanometer scale is challenging, especially at interfaces

submerged in biological solutions. Overhauser dynamic nuclear polarization (ODNP) experiments

measure equilibrium hydration water dynamics within 8–15 angstroms of a nitroxide spin probe on

instantaneous timescales (10 picoseconds to nanoseconds), making ODNP a powerful tool for probing

local water dynamics in the vicinity of the spin probe. As with other spectroscopic techniques, concur-

rent computational analysis is necessary to gain access to detailed molecular level information about the

dynamic, structural, and thermodynamic properties of water from experimental ODNP data. We chose a

model system that can systematically tune the dynamics of water, a water–glycerol mixture with com-

positions ranging from 0 to 0.3 mole fraction glycerol. We demonstrate the ability of molecular

dynamics (MD) simulations to compute ODNP spectroscopic quantities, and show that translational,

rotational, and hydrogen bonding dynamics of hydration water align strongly with spectroscopic ODNP

parameters. Moreover, MD simulations show tight correlations between the dynamic properties of water

that ODNP captures and the structural and thermodynamic behavior of water. Hence, experimental

ODNP readouts of varying water dynamics suggest changes in local structural and thermodynamic

hydration water properties.

Introduction

Local hydropathies near molecular interfaces to water (e.g.,
proteins and polymers) modulate the surface activity for solute
binding,1–5 among many other properties.2,6–19 Locally hydro-
phobic regions of proteins are key to facilitating folding and
inter-protein interactions, and are often characteristic of active
sites.1,16,17,20 In reality, hydropathy or hydrophobicity is not truly
a property of the protein itself, but rather a statement of how
water in the vicinity responds to the presence of particular
protein side chains. Experimentally characterizing the structural,

dynamical, and thermodynamic properties of water in fully
hydrated environments at the molecular scale is challenging.
Several experimental methods can probe the behavior of hydration
layer waters,6,16,19,21,22 but experimental measurements are often
limited to detecting average water properties of the entire
ensemble.23–25 There is extensive literature on molecular dynamics
(MD) simulation studies that probe hydration dynamics of differ-
ent solution systems with heterogeneous water–protein
interfaces,7–9,11,16,17,21,26–34 but relatively few directly compare
and validate with experimental techniques,16,17,21,22 in part, due
to the difficulty of resolving local water dynamics experimentally.
Undoubtedly, it is critical to leverage atomistic MD simulations
synergistically with experiments to comprehensively and robustly
characterize the heterogeneous hydration environments on soft
material and biomolecular surfaces1,3,4,9,17,20

Advanced techniques such as quasi-elastic neutron scatter-
ing (QENS),17,35,36 Overhauser dynamic nuclear polarization
(ODNP),16,21,37 terahertz (THz) spectroscopy38–41 and pump–
probe infrared (IR) spectroscopy42 can directly yield surface-
specific water properties. Among those, only ODNP is sensitive
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to translational hydration water properties around localized
sites or surfaces that are fully surrounded by bulk water in
biological or synthetic solution-state environments. Fundamen-
tally, ODNP is a magnetic resonance technique that quantifies
electron-1H cross-relaxation by measuring (1) the enhancement
of 1H NMR signals induced by dynamic nuclear polarization
(DNP) via the transfer of polarization from an unpaired electron
of a nitroxide spin probe to the 1H nucleus of water, and (2) the
longitudinal spin lattice relaxation time, T1, that reports on all
1H relaxation mechanisms induced by the dipolar coupling
between the 1H nuclear spin and the electron spin of the nearby
spin probe. The electron-1H cross-relaxivity at a magnetic field
of 0.35 Tesla and electron Larmor frequency of 9.8 GHz is
sensitive to translational movement of hydration waters near
the electron spin probe on instantaneous timescales ranging
from about 10 picoseconds to nanoseconds and within 8 to
15 angstroms of nitroxide-based spin probes that can be
tethered to specific surface sites.

ODNP responds sensitively to the chemically or topologically
distinct local environments that are generated by highly hetero-
geneous surfaces immersed in bulk water. It thus demonstrates a
diversity of local water dynamics and structure that reflects the
diversity in these local environments. A recent synergistic ODNP-
MD simulation study of sites with varying hydropathy on a CheY
protein surface displayed a positive correlation between site-
specific hydrophobicity and translational water dynamics.16,43 This
study demonstrated a connection between the ODNP spectro-
scopic quantities and computed thermodynamic properties of
water by demonstrating a correlation between the two. However,
no study has directedly computed ODNP parameters for the
purpose of deriving hydration water dynamical information and
coupling to molecular dynamical, structural, and thermodynamic
properties of hydration water near surfaces or solutes.

In the present work, we compute ODNP spectroscopic para-
meters—specifically, the coupling factor and electron-1H cross-
relaxation rates—and use molecular dynamics simulations to
characterize the dynamical, structural, and thermodynamic prop-
erties of water in water–glycerol mixtures with increasing glycerol
content [Fig. 1]. Water–glycerol mixtures allow us to probe the
complex interrelationship between water properties at the mole-
cular scale while varying solution viscosity by a known amount.
Moreover, glycerol is of fundamental interest due to its ubiquity in
biological studies for its role in cryopreservation of proteins and
has been recently shown to alter not only the dynamical, but also
structural and thermodynamic properties of water.44 Regardless of
the system, the study of molecular determinants of surface hydra-
tion requires dual experimental and computational insight. Experi-
mental techniques like ODNP offer valuable, but incomplete,
insight on the molecular scale properties of hydration waters.
On the other hand, without experimental validation, simulations
can be subject to doubts, especially when it comes to variations in
the structure and dynamics of water near interfaces. Synergistic
fully-atomistic simulations can aide in elucidating the molecular
details that are often inaccessible to experimental methods.

In this study, we perform atomistic MD simulations of glycerol–
water to test the ability of MD simulations to reproduce ODNP

spectroscopic quantities and to connect ODNP spectroscopic and
MD-derived translational, rotational, and hydrogen bonding
dynamical quantities. We furthermore exploit the atomistic
information content of MD simulations to quantify the relation-
ship between hydration water dynamics, structure, and thermo-
dynamics in glycerol–water mixtures across a wide range of
compositions.

Methods
Overhauser dynamic nuclear polarization

We perform experimental ODNP measurements with samples
containing mixtures of water (Milli-Q purity, Milli-Q UV Plus
system, Millipore Inc., Bedford, MA, USA), glycerol (d8, 99%,
DLM-558, Cambridge Isotope Laboratory, Tewksbury, MA, USA)
and 4-hydroxy-TEMPO (176141, Sigma Aldrich) at a constant
concentration of 318 mM. We transfer 4 mL samples into round
quartz capillaries of 0.6 mm ID � 0.84 mm OD (Vitrocom, New
Jersey, USA), sealed with Critoseal on one end and melted
beeswax on the other end. We perform ODNP experiments
using the X-channel of a a Bruker EMXPlus spectrometer and
a Bruker Avance III NMR console (Bruker, Massachusetts, USA)
that utilizes specialized automation (AU) programs to interact
with the ODNP microwave hardware. We install the capillaries
in a home-built NMR probe with a U-shaped coil centered in a
high sensitivity microwave cavity (Bruker ER 4119HS-LC).45

ODNP measurements rely on the saturation of the electron

Fig. 1 Snapshots of simulation boxes for a range of glycerol–water com-
positions. Here, OPC water molecules are represented as VDW spheres and
glycerol is shown in green (licorice representation). 4-OH-TEMPO is shown
in licorice representation with carbons, oxygens, hydrogens, and nitrogens
represented in cyan, red, white, and blue, respectively. The water and
glycerol molecules closest to the 4-OH-TEMPO are made fully transparent
in each panel to make the 4-OH-TEMPO visible amidst the densely packed
glycerol mixture.
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paramagnetic resonance (EPR) of 4-hydroxy-TEMPO at 9.8 GHz
(X-band) frequency at a center field of 3484 G, which coincides
with the center resonance of the nitroxide EPR spectrum. Dry air
at 9.44 L min�1 streams through the cavity across the probe and
capillary to maintain a temperature of 18 1C. Theory and experi-
mental details are outlined in previous publications.16,22,37,46

Molecular dynamics simulations

We perform molecular dynamics simulations using the OPC
4-site water model,47 the Blieck–Chelli (BC) model for glycerol48–50

and a 4-hydroxy-TEMPO nitroxide spin probe. Both the OPC water
model and the BC model for glycerol accurately reproduce the
diffusivities of pure water47 and pure glycerol48,50 under ambient
conditions (298.15 K and 1-bar). For the spin probe, its partial
charges are obtained using the AMBER18 Antechamber package51

informed by quantum chemical calculations using the Gaussian
16 software.52 Specifically, we apply the B3LYP functional and the
6-311++G(d,p) to perform geometry optimization of 4-hydroxy-
TEMPO. All other inter- and intramolecular parameters derive
from the second-generation generalized Amber forcefield
(GAFF2).53,54 The results of this parametrization scheme yield
similar parameters to those obtained in previous publications.55

All Coulombic interactions are modeled with the particle–mesh
Ewald summation scheme (PME).56

We simulate glycerol–water–spin probe systems with glycerol
mole fractions (xglyc) of 0, 0.01, 0.033, 0.05, 0.075, 0.1, 0.15, 0.2
and 0.3 using the GPU-optimized OpenMM molecular simula-
tion software.57 At each of these concentrations, we include a
single 4-OH-TEMPO molecule in the simulation box. Hence, the
spin probe concentration varies depending on glycerol concen-
tration (from 27 mM in pure water to 10 mM for xglyc = 0.3). We
first energy minimize each system, then equilibrate in the NPT
ensemble using a Langevin thermostat57 paired with a Monte
Carlo barostat57 at 290 K and 1 atm. Following equilibration, the
NPT run continues for 250 ns with system configurations saved
every 10 ns. Each saved configuration serves as the starting
point for an independent 1 nanosecond NVE simulation for
dynamic properties, with system coordinates saved every 0.1 ps.
To calculate hydration water dynamics timescales and ODNP
spectroscopic quantities, we compute 95% confidence intervals
by bootstrapping the results obtained from 20 independent MD
simulations.

We characterize the effect of glycerol on solvation thermo-
dynamics via the solvation free energy DGsolv of methane—an
ideal small hydrophobic solute—in glycerol–water. To estimate
DGsolv for this series of mixtures, we implement an expanded
ensemble simulation procedure in which we gradually scale
intermolecular interaction parameters between the methane
molecule and the glycerol–water mixture. We smoothly scale
Lennard Jones (LJ) and coulombic interaction parameters via a
scalar parameter l from l = 0 (non-interacting, or ideal gas
molecule) [panels (1) and (3) in Fig. 6(a)] to 1 (fully interacting
methane) [panels (2) and (4) in Fig. 6(a)]. To estimate the Gibbs
free energy of solvation DGsolv [Fig. 6(b)], we then apply the
multistate Bennett acceptance ratio (MBAR) method distribu-
ted via the pymbar58 Python library.

Theory
Computing spectroscopic quantities

Dipolar autocorrelation functions. ODNP is an NMR techni-
que that quantifies pairwise magnetic dipolar cross-relaxation
between an electron spin on a free radical spin probe molecule
(here of 4-hydroxy-TEMPO) and the nuclear spin of the water
proton. The spin–spin dipolar coupling energy between the
radical electron and a water proton that are dynamically
diffusing in solution state is governed by the following semi-
classical Hamiltonian24,59

Ĥ r tð Þð Þ ¼ 2ffiffiffi
6
p Î zŜz �
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� �
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(1)

where F(m)
2 (r(t)) (and F(m)

2 (r(t))*) are spherical harmonic func-
tions (and their complex conjugates) [ESI,† Section D] that are
dependent on the displacement vector between the electron
spin and the proton nuclear spin, r(t). Îi and Ŝi are the quantum
mechanical spin operators for the proton nuclear spin and
electron spin, respectively. The constant cd = m0h�gSgI/4p appears

in eqn (1) where m0 ¼ 4p� 10�7
N

A2
, gI ¼ 4:26� 107

Hz

T
, and

gS = gI/1.52 � 10�3 are the vacuum permeability, gyromagnetic
ratio of the proton spin, and the gyromagnetic ratio of the
electron spin, respectively.

Using this semi-classical framework, we compute the equili-
brium translational diffusion of water molecules by construct-
ing the time-autocorrelation functions (ACFs), C(m)

ODNP(t), that
depend purely on the relative positions of water hydrogen and
the unpaired electron of a spin probe via the classical spherical
harmonic functions included in eqn (1)

C
mð Þ
ODNP tð Þ ¼

X
i

F
mð Þ�

2 ~rOr�Hw ;i tð Þ
� �

F
mð Þ

2 ~rOr�Hw ;i 0ð Þ
� �

(2)

where ~rOr�Hw;i tð Þ is the displacement vector between the water
hydrogen i and the oxygen radical of the spin probe and m = 0,
1, 2 the order, which correspond, respectively, to the flip–flop,
single spin flip, and double spin flip transitions of the coupled
I–S spin system. The C(m)

ODNP(t) functions decay with time as
water molecules diffuse from their initial position relative to
the spin probe, just as the dipolar coupling between the proton
and electron spin weakens with increased spatial separation.
The C(m)

ODNP(t) functions are complex-valued, but the complex
part is negligible for isotropic systems59 and thus ignored in
this study [more detailed description in ESI,† Section D].
Further, the system isotropy ensures that C(m)

ODNP(t) = C(n)
ODNP(t)

for all n and m. Hence, we refer to only a single ACF for
computing ODNP properties, CODNP(t), for the remainder of
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the discussion. For the present work, we find that all measured
CODNP(t) are well-described by a tri-exponential fit:

CODNP,fit(t) = a1e�t/t1 + a2e�t/t2 + a3e�t/t3 (3)

where t1 4 t2 4 t3 and the coefficients, ai (i = 1, 2, 3), sum to
unity. Note, that the fitting parameters are independently
determined for each glycerol–water mixture.

Spectral density function. With analytical models for
CODNP(t) at hand [eqn (3)], we next derive the spectral density
function, J(o), required to compute ODNP spectroscopic quan-
tities for a given glycerol–water mixture. Specifically, we define
the three spectral densities via the real part of the Fourier
transform of CODNP,fit(t) that contains three decay terms, and
hence three t values.

J o; tif gi¼1;2;3
	 


¼ ReF CODNP;fit tð Þ
� �

¼ ReF
X3
i¼1

aie
�t=ti

( )
¼
X3
i¼1

aiti
1þ otið Þ2

(4)

Here, the three terms in the sum account for the contribution
of long (t1), intermediate (t2) and short (t3) timescales to local
water diffusion. In the low-frequency regime (o { oS), the
spectral densities are more affected by the long timescale
contribution (collective motion). On the other hand, the short
timescale contribution (instantaneous motion) dominates the
spectral densities at high frequency (o c oI). To computation-
ally derive the spectroscopic quantities measured by ODNP, we
determine the transition rate via the amplitude of the spectral
density, J(o), for an electron spin–proton spin (e–n) transition
that occurs at a given electron spin resonance (ESR) frequency,
o. Alternatively, J(o) may be predicted using a theoretical
continuum model60—the force-free hard sphere (FFHS) mod-
el—for water diffusion relative to the spin probe’s radical
electron. While previous work has demonstrated that the FFHS
approach yields experimental water dynamics in qualitative
agreement with simulation results,21,61 the approach presented
in eqn (4) more directly determines the spectral density from
e–n dipolar correlations with molecular detail and in dynamic
systems that cannot be modeled by the FFHS model.

Fig. 2(a) illustrates the dynamic spin–spin dipolar inter-
action between the unpaired electron of 4-OH-TEMPO and
water protons underpinning the calculation of CODNP,fit(t). In
Fig. 2(b), we depict CODNP(t) for a representative model system,
a water–glycerol mixture with xglyc = 0.1. We find that CODNP(t)
and its model fit, CODNP,fit(t), are nearly indistinguishable with
R2 = 0.99. In Table S1 (ESI†), we summarize the tri-exponential
fitting parameters for each glycerol–water mixture. In Fig. 2(c),
we apply eqn (4) to compute the spectral density function J(o)
from CODNP(t) for the same mixture with xglyc = 0.1. Here, the
amplitude of the spectral density values at frequencies oI and oS

[J(oI = 14.8 MHz) and J(oS = 9.8 GHz)] are sensitive to transla-
tional dynamics on nanosecond and picosecond timescales,
respectively.

ODNP spectroscopic probes. From the amplitudes of the spectral
density function, we directly compute several spectroscopic

quantities derived from ODNP experiments. One such quantity is
the cross-relaxivity ks—the rate of transitions for the mutual flip of
electron and proton spins in opposite directions—that strongly
depends on the translational mobility of water on instantaneous
timescales and within 8–15 angstroms of the spin probe.16,37,60 As
defined in prior work,46,60,62 ks originates from the zero and double
quantum transition of the dipolar coupled electron and proton spin
pairs (expressed in the Hamiltonian of eqn (1)), as given by

ks ¼
cd

2

12CSL
6J oS þ oIð Þ � J oS � oIð Þ½ � (5)

where CSL, oS = gSB0, and oI = gIB0 are the molar spin label
concentration [Table S2, ESI†], Larmor precession frequency of

Fig. 2 Schematic of ODNP spectroscopic quantities calculation from classi-
cal MD trajectories. (a) The snapshot shows 4-OH-TEMPO in a 0.1 mole
fraction glycerol mixture at 290 K with bulk water represented in VMD as a
medium and the hydration waters within 3.5 angstroms of the spin probe in
VDW sphere representation. Glycerol molecules are omitted for clarity. The
diagram to the right of the snapshot illustrates the ODNP mechanism for the
nearest water molecule to the spin probe at some time t. (b) The ODNP time
autocorrelation function CODNP(t) at a glycerol mole fraction of 0.1 (red line) is
fit to a tri-exponential model [eqn (3)] (black line) as described in the text. (c)
The real part of the Fourier transforms of CODNP,fit(t) gives spectral density
function J(o). Subsequently, J(o) values at radical electron J(oS) and proton
Larmor frequencies J(oI) are identified on the plot by the blue and green
vertical lines, respectively. Approximate functional forms of ODNP spectro-
scopic quantities ks and x are in blue and green text, respectively. (d) Based on
the force-free hard sphere model,60 we depict the expected trends in ks/ks,bulk

(blue line) and x/xbulk (green line). Here, ks,bulk and xbulk are the expected bulk
values of ks and x in pure STP water as defined by Franck et al.22
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the electron spin, and Larmor precession frequency of the proton
spin, respectively. The ODNP experiments are conducted at a static
magnetic field of B0 = 0.35 T, which sets oS = 9.8 GHz and oI =
14.8 MHz. For the purposes of the present study, we determine the
ks values from the simulation-derived spectral densities [eqn (4)].

To provide an illustration, we depict the theoretical FFHS-
derived cross-relaxivity, kFFHS

s , at B0 = 0.35 T as a function of the
correlation time in Fig. 2(d). The kFFHS

s values exhibit non-
monotonic behavior with increasing translational correlation
time, tc, of hydration waters. Specifically, kFFHS

s increases with
correlation times up to tc E 100 ps. Upon further retardation of
translational dynamics, kFFHS

s decreases monotonically with
increasing tc. Notably, this maximum in kFFHS

s is found at tc

that is 3 times greater than the expected correlation time, tc E
33 ps, for pure water at standard temperature (298.15 K) and
pressure (1 bar) conditions (STP).22 The precise location of the
peak in kFFHS

s strongly depends on the Larmor precession
frequencies by way of the applied magnetic field strength, B0.

Under the present B0, hydration waters with translational
diffusion coefficients smaller than 1/3 of the diffusivity of pure
water under ambient conditions (T = 25 1C and P = 1 bar), Dpure

H2O
,

yield ks values that linearly decrease with the diffusivity of

hydration waters, DH2O,local. In systems with DH2O;local o
1

3
Dpure

H2O
,

such as waters hydrating catalyst support surfaces, hydrophilic
materials interfaces,42 or protein surfaces and interiors,16 ks
decreases upon retardation of hydration water translational
dynamics. However, under the conditions considered in the

present work, ks begins to decrease when DH2O;local 4
1

3
Dpure

H2O
.

Here, we demonstrate the non-monotonicity of ks by spanning
water translational dynamics from those of pure water to

those of water–glycerol mixtures with DH2O;local �
1

10
Dpure

H2O
.

Another ODNP spectroscopic quantity of interest is the
proton self-relaxivity kr—the rate at which water proton polar-
ization returns to thermal equilibrium modulated by the elec-
tron spin dipolar coupled to the proton nuclear spin, as follows:

kr ¼
cd

2

12CSL
J os � oIð Þ þ 3J oIð Þ þ 6J oS þ oIð Þ½ � (6)

Unlike ks, kr is the rate of transition for all proton nuclear spin
flip events induced by dipolar coupling to the electron spins,
not only the mutual proton–nuclear spin flips, and hence
depends on the spectral density at the sum and difference of
the electron and proton Larmor frequency and the proton
Larmor frequency alone. The amplitude of the spectral density
at the sum and difference frequencies, oS � oI, is close to
simply the electron spin Larmor frequency, oS, and is sensitive
to instantaneous translational dynamics correlation times of
sub-nanoseconds, while the amplitude of the spectral density at
the nuclear Larmor frequency, oI, is sensitive to longer 1–10 ns
timescales for the slower, collective, motion of water. Because

both ks and kr contain the pre-factor
cd

2

12CSL
the coupling factor

that is defined by the ratio of ks and kr eliminates the

dependence on CSL.

x ¼ ks

kr
¼ 6J oS þ oIð Þ � J oS � oIð Þ

J oS � oIð Þ þ 3J oIð Þ þ 6J oS þ oIð Þ (7)

In experimental systems with difficult-to-quantify spin label
concentration, the elimination of the pre-factor in eqn (7) facil-
itates direct comparison between the experimental and MD-
derived x. Conveniently, x is readily obtained from ODNP mea-
surements of 1H NMR signal enhancements and 1H T1 spin
lattice relaxation times.37,63,64 As with kr, x depends on both
instantaneous and collective hydration water dynamics.22 When
assuming simple diffusion as reflected in the FFHS model to
determine the form of the spectral density function,22,60 the value
of xFFHS monotonically depends on the characteristic correlation
time for the translational diffusion dynamics of hydration water,
simplifying its analysis, and as depicted in Fig. 2(d).

Proton spin–lattice relaxation times. We computationally
extract the water proton spin–lattice relaxation times T10[0],
which depend on both the system-average translational and
rotational dynamics of water. We directly compute T10[0]
according to the relationship presented by Bloembergen, Pur-
cell and Pound65 which assumes that effects of J-coupling, spin-
rotation, and chemical shift anisotropy of the 1H NMR signals are
negligible, and that T1 only depends on the system-average
dynamics of water that is strongly modulated by the viscosity in
a glycerol–water mixture.65 Because the primary relaxation
mechanism involved in T10[0] is dipolar coupling between water
protons modulated by water dynamics, we again compute the
time autocorrelation functions, this time between the water

protons C
mð Þ
T10

tð Þ ¼
P
i

F
mð Þ�

2 ~rHw�Hw;i tð Þ
� �

F
mð Þ

2 ~rHw�Hw ; i 0ð Þð Þ. The

right-hand-side of the equation is nearly identical to eqn (2),
but with the proton–proton displacement vector~rHw�Hw replacing

~rOr�Hw . To efficiently compute C
mð Þ
T10

tð Þ, we only consider displace-

ment vectors~rHw�Hw;i between a randomly chosen ‘‘probe’’ water
proton and all other nearby water protons that the probe water

proton encounters. Just as with CODNP(t), the C
mð Þ
T10

tð Þ decays

monotonically as water protons diffuse away from the ‘‘probe’’
proton. As in eqn (4), we fit eqn (6) to a multiexponential model

and analytically Fourier transform the multiexponential C mð Þ
T10

tð Þ
functions to obtain the spectral density functions, as follows:

K mð Þ oð Þ ¼ ReF C
mð Þ
T10

tð Þ
n o

¼ ReF
X2
i¼1

b
mð Þ
i e�t=Z

mð Þ
i

( )

¼
X2
i¼1

b
mð Þ
i Z mð Þ

i

1þ oZ mð Þ
i

	 
2
(8)

where b(m)
1 , t1 and t2 (with t1 4 t2) are fit parameters and b2

(m) =

1 � b(m)
1 . We apply a bi-exponential model here because C

mð Þ
T10

tð Þ

decays much faster than CODNP(t), allowing us to fit C mð Þ
T10

tð Þ with

R2 4 0.95 for the entire range of glycerol concentrations with only
two exponentials, as shown in Table S2 (ESI†). Given these
analytical spectral densities, we directly compute the longitudinal
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relaxation time using a formula from Bloembergen and
coworkers65

1

T10 0½ �
¼ 9

8

m0�hgI
2

4p

� �2

K 1ð Þ gIB0ð Þ þ 1

2
K 2ð Þ 2gIB0ð Þ

� �
(9)

Further, we physically interpret the translational and rotational
contributions to T10[0] via the decomposition T10

�1[0] = (T10
�1)inter

+ (T10
�1)intra. Here, (T10

�1[0])inter and (T10
�1[0])intra refer to the

intermolecular and intramolecular contributions to T10
�1[0],

respectively. The intramolecular contribution to the relaxation
rate, (T10

�1[0])intra, can be ignored when using a rigid water model
(such as the OPC 4-site model used in this study) that depends
only on the system-average rotational dynamics of water given that
the distance between the two hydrogen atoms is fixed. For the
intermolecular contribution to (T10

�1[0])inter between water, the

spherical harmonic functions F
mð Þ�

2 ~rHw�Hw ;i tð Þ
� �

strictly depend
on the displacement between water protons on separate water
molecules, and not the re-orientation of the displacement vector

between protons on the same water molecules. As such, C mð Þ
T10

tð Þ
reduces to the same functional form as CODNP(t) with water
protons acting as probes (such as the electron in a nitroxide spin
probe) for the surrounding water protons. Because water protons
are indistinguishable from each other, the resulting correlation
functions are manifestly system-average properties of water. The
corresponding intermolecular relaxation rate, (T10

�1[0])inter, calcu-
lated from eqn (8) and (9) is hence sensitive to the system-average
translational dynamics of water.

Computational probes of water dynamics

Translational dynamics. We characterize the translational
dynamics of water by computing the so-called survival prob-
ability Csurvival(t)

33,61 ACF that quantifies the timescale for
waters to remain near the spin probe:

Csurvival tð Þ ¼

PNw

i¼1
Si 0ð ÞSi tð Þ

PNw

i¼1
Si 0ð Þ2

(10)

where Nw gives the number of water molecules in the simula-
tion box, and Si(t) an indicator function that is 1 if the molecule
i is inside a cutoff radius of 8-Å from the unpaired electron of
the spin probe—approximately the width of the first two
hydration shells around the radical oxygen. We apply absorbing
boundary conditions such that only the water molecules that
remain continuously within the cutoff radius from the initial
time t = 0 to time t contribute to Csurvival(t). We find that neither
choosing smaller cutoff radii (for instance, the first hydration
shell near 5-Å) nor removing the absorbing boundary condi-
tions qualitatively affect the trends in any ACF described here
[Fig. S8, ESI†].

Rotational dynamics. To quantify the rotational dynamics
of hydration waters, we compute the orientational ACF
(OACFs)27–29,31,66 that measures a characteristic time for water

reorientation:

C
lð Þ
OACF tð Þ ¼ 1

Nw

XNw

i¼1
Pl~uið0Þ � ui!ðtÞ
� �

(11)

where Nw gives number of waters within the 8-Å cutoff radius at
initial time t = 0, Pl(�) is the l-th Legendre polynomial function,
and ~ui tð Þ is the unit vector of water dipole i. For this present
work, we only consider the second order OACF C(2)

OACF due to its
relevance to longitudinal spin-relaxation rates.

Hydrogen bond dynamics. To probe the dynamics of water–
water hydrogen bonding, we compute the hydrogen bond
survival probability30

CHB tð Þ ¼ 1

NHB

XNHB

i¼1
hi 0ð Þhi tð Þ (12)

where NHB is the number of water–water hydrogen bonds
containing waters within the cutoff radius at initial time t = 0,
and hi(t) is a function that assumes a value of 1 if hydrogen bond
i is intact at time t. We define hydrogen bonds via the widely-
used geometric criteria of Luzar and Chandler,67 namely,
distance and angular cutoff values of 3.5 angstroms and
120 degrees, respectively [see the inset schematic in Fig. 4(c)].

Estimating relaxation time constants. To quantify the
shifts in water’s equilibrium dynamics with varying xglyc, we
compute several relaxation time constants: the ODNP derived
translational diffusion correlation time (tODNP), survival correla-
tion time due to translational diffusion (tsurvival), rotational
diffusion correlation time (tOACF), and hydrogen bond correla-
tion time (tHB). More specifically, we estimate these time con-
stants by integrating the multiexponential fits to all ACFs
detailed above

ti ¼
ð1
t¼0

Ci tð Þdt (13)

where i = ODNP, survival, OACF, or HB.

Results
Direct comparison of ODNP and MD-derived spectroscopic
quantities

To directly probe the effect of hydration water retardation on
the ODNP parameters (including T10[0]), we systematically
increase the solution viscosity by adding glycerol to water at
mole percentages ranging from xglyc = 0 to 0.3. In Fig. 3(a), we
highlight the composition-dependent amplitude of the spectral
density, J(o), at the Larmor precession frequencies of protons
(oI = gIB0 E 14.8 MHz) and unpaired electrons (oS = gSB0 E
9.8 GHz) at B0 = 0.35 T. The increase in J(oI) from pure water to
xglyc = 0.3 reflects on the increase in the relaxation rate of the
proton spins, which according to eqn (7), leads to a monotonic
decay of the coupling factor, as depicted in Fig. 3(b). The inset
of Fig. 3(a) shows the approximate spectral density contribution
to the cross-relaxation rate of 5J(oS). The approximation stems
from the limit of oS c oI and hence—by eqn (5)—ks goes as
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5cd
2

12CSL
J oSð Þ. 5J(oS) shows the same trend as the direct compu-

tation of ks [Fig. 3(c)], increasing up to a glycerol concentration
of xglyc = 0.1 and decreasing at xglyc 4 0.1.

The MD simulation-derived relative coupling factor xr = x/
xpure exhibits a similar monotonic decrease as the experimental
coupling factor with increasing glycerol concentration through-
out the whole range of the glycerol–water mixture [Fig. 3(b)].
Here, we normalize x by the coupling factor of pure water to
better compare directly to the experimental results. Though
simulation systematically underestimates the experimental xr

values by 5 to 60%, we observe qualitative agreement between
both measures of xr for xglyc o 0.30. Notably, the 95% con-
fidence interval (CI) broadens with increasing glycerol concen-
tration. At xglyc = 0.3, MD simulations underestimate xr by 60%,
with the experimental value lying outside the 95% confidence
interval (CI) of the MD-computed value. While ODNP measure-
ments measure e–n dipolar correlations averaged over 1014 spin
probes, our simulated systems contain a single spin probe
molecule. Hence, we observe inherent fluctuations in CODNP(t)
due to limited sampling of the dipolar interactions between the
spin probe and the water nuclei. Increasing the concentration
of glycerol exacerbates this sampling limitation due a systema-
tic decrease in the average number of hydration waters. Increas-
ing the NVE simulation length computes CODNP(t) with

improved resolution, which we assess by performing 20 addi-
tional independent 3-ns long (versus the original 1-ns) simula-
tions at xglyc = 0.30. For xglyc 4 0.3, the difficulty of sampling
water–TEMPO interactions combined with slowing transla-
tional dynamics makes accurate calculation of ODNP quantities
intractable. While increasing NVE simulation time slightly
decreases the width of the 95% CI on xr (approximately by
6%), the simulations continue to systematically underestimate
xr at xglyc = 0.3. This suggests that the disagreement between
experiment and simulation xr does not solely stem from under
sampling of long timescale collective water motions.

Instead, the quantitative disagreement between the experi-
mental and simulation results may stem in large part from the
use of classical, fixed-charge molecular models. For instance,
such MD models can only approximate interactions between
water and a fixed position atomic position of 4-OH-TEMPO. In
reality, the electron spin is delocalized between the N and O of
the nitroxide radical. Additionally, the water hydrogen may
polarize differently near the spine probe compared to bulk
water, yielding different O–H bond length and H–O–H angle.
Further, OPC is a rigid water model and hence does not contain
bonded (O–H) or angular (+H–O–H) interaction terms. In
particular, the inability to capture O–H vibrations with rigid
water molecules likely affects the measurement of proton–
nitroxide pair distances and thus the resulting spectroscopic

Fig. 3 ODNP spectroscopic quantities measured experimentally and computed from classical MD simulations. (a) ODNP spectral density functions as a
function of glycerol concentration where lighter-colored lines correspond to higher glycerol content with the Larmor precession frequency of the
proton and radical electron indicated by the green and blue vertical lines, respectively. Comparing experimentally and computationally determined (b)
coupling factor x, (c) cross-relaxivity ks, and (d) T10[0] as a function of glycerol content. ODNP experiments and MD simulations yield spectroscopic
quantities with similar trends with increasing glycerol concentration.
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quantities. Applying flexible,68,69 or even polarizable,70,71 water
models may rectify some of the discrepancy between ODNP
experiment and MD simulations.

Additionally, xr is sensitive to the motion of bound waters—
such as those buried within soft materials—on longer time-
scales (100-ps to 10-ns). While we do not expect these longer
timescale dynamics to dramatically impact hydration water
dynamics in glycerol–water mixtures, the magnitude of the
slow time constant t1 exceeds 100-ps for xglyc = 0.3. As the
timescales for diffusive and viscous relaxation approach the
nanosecond regime, accurately quantifying spectroscopic quan-
tities becomes more difficult for simulations. For glycerol–
water, we find that precise quantification of t1 becomes chal-
lenging for xglyc 4 0.15 [Fig. S7, ESI†].

In the inset of Fig. 3(a), we highlight the spectral density
J(oS) at the Larmor precession frequency of the electron spin
(oS = gSB0 E 9.8 GHz) with increasing glycerol concentration.
Notably, J(oS) is non-monotonic, increasing up to a glycerol
concentration of xglyc = 0.1, then decreasing at higher concentra-
tions [Fig. 3(a) inset]. Accordingly, the computed ks values in
Fig. 3(c) exhibit the same non-monotonic trend as J(oS) with
increasing glycerol concentration. Notably, both the experimental
and computed values of the relative cross-relaxivity ks,r = ks/ks,pure

exhibit the non-monotonic trends with increasing viscosity, with
ks,r values initially increasing up to a critical glycerol concen-
tration (xglyc E 0.10) and then decreasing thereafter [Fig. 3(c)]. In
the glycerol–water system with compositions from xglyc = 0 to 0.1,
the experimental and MD-derived ks,r are in near quantitative
agreement. Here, simulation underestimates ks,r, but the 95% CI
of the MD-derived ks,r values bracket the experimental results.
For glycerol concentrations beyond xglyc = 0.1, simulations again
underestimate the ks,r, values, with the experimental ks,r consis-
tently lying above the 95%-CI of the simulation-derived values.
We further note a dramatic increase in the relative error in
computing ks,r at high concentrations.

We attribute the underestimation of ks,r to the inability of
classical MD simulations to reproduce spectral density ampli-
tudes at high frequency (o c oI). We also note that the
agreement between ODNP and MD results is much improved
for xr. We believe that this improved agreement results from
the dominant influence of spectral density amplitudes at the
lower frequencies [e.g., J(oI) c J(oS)] in the denominator of x
[eqn (5)]. The agreement of MD-derived values of both xr and
ks,r with experiments for concentrations between xglyc = 0 and
0.1 demonstrates that atomistic MD simulations accurately
model trends in the translational dynamics of hydration waters
on timescales of tens to hundreds of picoseconds.

We also verify the ability of MD simulations to reproduce
spectroscopic measures of glycerol–water bulk dynamics via
computation of T10[0]. The relative proton longitudinal relaxa-
tion time, (T10[0])r = T10[0]/T10[0]pure, exhibits a similar mono-
tonic decrease as xr with increasing glycerol content [Fig. 3(d)].
Further, we observe a striking, near-quantitative agreement
between experimental and MD-derived (T10[0])r for xglyc o
0.10. The MD-derived (T10[0])r data systematically underestimate
the experimental value for xglyc 4 0.075 with the experimental

data falling outside of the 95% CI of the MD-calculated values. For
xglyc Z 0.1, the computed values underestimate the experimental
results by between 20 and 50%. In combination with the xr and ks,r

results, the (T10[0])r results suggest that classical atomistic MD
simulations can reliably capture the low-frequency contributions
to spectroscopic quantities, but less well the high-frequency con-
tribution from instantaneous motion reflected in quantities such
as ks.

Connecting other hydration water dynamics probes to ODNP
measurements

By effectively modeling spectroscopic quantities, we can directly
connect ODNP measurements to the microscopic dynamics and
structural properties of water. MD simulations also enable com-
putation of other modes of hydration water dynamics that cannot
be measured experimentally. For instance, the coupling of these
various modes of water dynamics have been studied extensively
in liquid water.32,72–74 One such example is the extended jump
model of Laage and Hynes,27,28 describing the process of water
reorientation as dependent simultaneously on the breaking/
forming of hydrogen bonds precipitated by large rotational
jumps while being rate-limited by translational motion. In this
work, we measure characteristic time scales for hydration water
translation, rotation, and hydrogen bonding in the glycerol–water
mixtures, as summarized in Table S3 (ESI†), using computed
autocorrelation functions (ACFs): C(0)

ODNP(t), Csurvival(t), C(2)
OACF(t)

and CHB(t). Further, we explicitly characterize hydration water
dynamics via the different relaxation time constants for ODNP-
derived diffusion (tODNP), translational diffusion underlying sur-
vival probability (tsurvival), rotational diffusion (tOACF), and hydro-
gen bonding (tHB).

To complement ODNP-derived measurements of water
dynamics, we probe the translational mobility of hydration
waters local to the spin probe via the survival probability ACF,
Csurvival(t) [see Theory Section]. Fig. 4(a) depicts slower decay of
Csurvival(t) as glycerol concentration increases, indicating the
retardation of translational dynamics near the spin probe. We
quantify this translational retardation via a characteristic time
constant of translational diffusion tsurvival by fitting Csurvival(t) to
a bi-exponential model c1e�t/a1 + (1 � c1)e�t/a2 and integrating
over time. Here, c1, a1, and a2 are the fitting parameters with
a1 4 a1. In agreement with the visible shift in the decay rate of
Csurvival(t), tsurvival monotonically increases with glycerol concen-
tration [Fig. 4(e)]. There, we illustrate the simultaneous increase
in tsurvival and decrease in xr with glycerol concentration. This
strong correlation [R2 = 0.96] suggests a correspondence
between the ODNP coupling factor and measures of the instan-
taneous translation dynamics of hydration water.

In addition to the translational mobility, we also examine
the hydration water orientational dynamics via the orienta-
tional autocorrelation functions (OACFs) [see Theory section].
While we anticipate strong coupling between the translational
and rotational mobility of water molecules in dilute solutions,
the degree of translation–rotation coupling in crowded gly-
cerol–water mixtures is less intuitive given that the breakdown
of orientational–translational coupling has been previously
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observed for water under confinement.73 As seen in Fig. 4(b),
C(2)

OACF decays more slowly with increasing glycerol content,
signifying the retardation of rotational motion of hydration
waters. This systematic slowdown of rotational dynamics is
further illustrated by the monotonic increase in the character-
istic time constants for rotational diffusion tOACF. As with
tsurvivial we derive tOACF by fitting C(2)

OACF to a bi-exponential
model. The simultaneous increase in characteristic timescales
tsurvivial and tOACF [Fig. 4(e) and (f)] across the whole range of
glycerol concentrations establishes that, even in highly
crowded glycerol–water mixtures, translational and rotational
water diffusion remain strongly coupled. The persistent con-
nection between rotational and translational dynamics sug-
gests that—in contrast to water under geometric confinement
(i.e., micelles)—the effect of glycerol on water stems from a
distinct physical mechanism such as the development of a
collective glycerol–water hydrogen bond network.

Glycerol is often assumed to simply decrease water transla-
tional dynamics due to increased mixture viscosity, but the
effect of glycerol on water structural dynamics is typically not
considered nor well understood. To investigate the relevance of
such considerations, we probe the dynamics of hydrogen
bonding of spin probe hydration waters via the hydrogen bond
survival probability CHB(t). Like Csurvival(t) and C(2)

OACF(t), we
report slower decay of CHB(t) with rising glycerol content
[Fig. 4(c)]. As with tsurvival and tOACF, we compute water–water
hydrogen bond lifetimes tHB by integrating a bi-exponential fit
to CHB(t). The resultant tHB values monotonically increase with
increasing glycerol concentration, again in a manner strongly
correlated with the ODNP results. The simultaneous increase in
tOACF and tHB suggests that glycerol enhances the lifetime of
orientationally-coordinated and hydrogen bonded microstruc-
tures. Such an enhancement water structure with increasing
glycerol content was demonstrated in our recently published
study.75 In this work, we found that increased glycerol concen-
tration not only slows the water diffusivity, but also enhances
water orientational structure by increasing the tetrahedrality of

water.76 We expand this analysis in the following sub-section,
discussing connections between water tetrahedrality and var-
ious characteristic time constants in glycerol–water.

With these analyses, we elucidate the as-of-yet unknown
persistent coupling between metrics for water translational,
rotational, and hydrogen bonding dynamics in glycerol–water,
including ODNP-derived and computational translational water
diffusivity. We support this finding in Fig. S9 (ESI†) by depicting
the connections between the hydration water dynamics relaxa-
tion times tsurvival, tHB, tOACF, and tODNP with spectroscopic
quantities ks, x, and T10[0]. Apart from ks, we observe strong
correlation between each of these quantities and the others (R2 4
0.9). The persistent connection between the characteristic time
constants of hydration water dynamics suggests that glycerol,
even in significant quantities, does not decouple the translational
and rotational modes of water motion, in contrast to dynamic
decoupling reported for water under nanoscale confinement73

and in supercooled conditions.72,74,77 In the context of nanocon-
finement between silica planar surfaces, Romero-Vargas Castril-
lón et al. find that water rotational diffusion is bulk-like near the
center of the nanochannel while translational diffusion is sup-
pressed relative to bulk.73 The authors attribute this rotation–
translation decoupling to the strong inverse dependences of
translational diffusion on density (above bulk near the center
channel) and the water–water hydrogen bond network (same as
the bulk near the center channel). In contrast, increasing glycerol
concentration yields simultaneous increases in mixture density
and water–water network hydrogen bond lifetimes (increasing
tHB), as well as water structuring as measured by tetrahedrality,
relative to pure water.

Due to the non-monotonic behavior of ks [Fig. 3(c)] with
composition, it correlates less well (R2 o 0.9) with the mono-
tonically varying relaxation times and spectroscopic quantities.
Traditionally, glycerol is thought to act as a classical viscogen
without specifically considering its effect on water’s molecular
structure. With our simulation studies, we observe an increase
in the rotational time constant tOACF and hydrogen bond

Fig. 4 Molecular dynamics probes of hydration water dynamics correlate strongly with ODNP coupling factors. (a) The survival probability Csurvival(t) is
the fraction of hydration shell waters that remain continuously within the second hydration shell of the spin probe radical oxygen. (b) The orientational
autocorrelation function (OACF) COACF(t) measures the rotation of hydration water dipole vectors away from their initial position. (c) The hydrogen
bonding survival probability CHB(t) gives a time scale for water–water hydrogen bond breaking with a hydrogen bond being defined by cutoff radius rcutoff

and cutoff angle ycutoff. (d) The ODNP correlation function CODNP(t) is used to estimate ODNP spectroscopic quantities. We derive characteristic time
constants for (e) translational diffusion tsurvival, (f) rotational diffusion tOACF, (g) hydrogen bond lifetimes, and (h) ODNP diffusion tODNP by integrating bi-
exponential model fits to the ACFs [(a)–(d), respectively]. Further, these time constants all correlate strongly with relative coupling factor xr.
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lifetimes tHB that suggest tetrahedral enhancement with
increasing glycerol concentration. To directly quantify tetra-
hedrality, we require a more direct structural metric, which we
pursue next.

Glycerol enhances the population of tetrahedral waters

A number of order parameters have been used to assess the
tetrahedrality of water in simulation studies.78–80 Many such
parameters are influenced by the fact that water is undercoordi-
nated near surfaces and in confined environments due to geome-
trical constraints.23,78,79,81 For example, the tetrahedral order
parameter, q, from Errington and Debenedetti80 effectively char-
acterizes water’s tetrahedrality in many contexts, but in particular
in dilute aqueous mixtures. However, the interpretation of q is
more challenging when the average spatial separation between
water molecules increases (e.g., concentrated glycerol–water mix-
tures) because it relies on four nearest water neighbors, which in
such cases can populate non-first shell distances such that they
adopt less correlated orientational order (decreased tetrahedrality).

As an alternative to q, three-body angle distributions avoid
this geometric bias by consider only nearest neighboring water
molecules within a distance cutoff of each central water mole-
cule and computing the distribution of neighbor–central–neigh-
bor triplet angles78,79 averaged over all simulation time steps.
We can characterize the population of tetrahedrally coordinated
waters, ptet, by integrating P(y) over the tetrahedral region of the

distribution ptet ¼
Ð 120	
100	P yð Þdy. In addition to readily accommo-

dating cases when water is under-coordinated, three-body angle
distributions have been shown to aptly capture changes in water
structure in response to shifts in thermodynamic properties78,79

and solute chemistry.81 Furthermore, shifts in three-body angle
distribution have also proved to be predictive of solvation
thermodynamics for a wide range of colloidal particle sizes.78

In Fig. 5(a), we illustrate shifts in the populations of waters
in tetrahedral and icosahedral (simple fluid) environments at
109.5 degrees and 64 degrees, respectively, that report on
water’s structural orientational environment. In Fig. 5(a), we
show that the increase in glycerol concentration from xglyc =
0.01 to 0.3 is accompanied by an increase of 2% in the overall
ptet and an equivalent decrease in the population of
icosahedrally-coordinated waters. Curiously, prior work by
Monroe and Shell demonstrated that increasing pure water
density tended to decrease tetrahedrality as measured by the
three body angle distribution,78 while glycerol–water behaves in
the opposite manner: as mixture density increases (increasing
xglyc), ptet increases. This finding further supports that glycerol,
rather than acting as a simple viscogen, enhances water’s
structural environment through enhanced water–glycerol
hydrogen bonding. Work by Sharp, Vanderkooi, and coworkers
supports this finding, using infrared spectroscopy and MD
simulation to show that glycerol mimics enhanced hydrogen
bonding structures commonly seen in ice.25

Remarkably, the enhancement of water tetrahedrality
strongly correlates with the retardation of hydration water
dynamics probes. In Fig. 5(b)–(e), we discover nearly linear

relationships (R2 4 0.96) between ptet and several probes of water
dynamics, including logarithms of characteristic time constants
for translational diffusion tsurvival, rotational diffusion tOACF,
hydrogen bonding lifetimes tHB, and the ODNP correlation time
tODNP. The near mono-exponential relationship between ptet and
these time constants demonstrates that structural enhance-
ments—driven by the addition of glycerol—impose systematic
retardation of water dynamics. Moreover, the remarkably strong
correlation between tODNP and the structural metric ptet suggests
that ODNP measurements indirectly reports on the effect of
mixture properties on tetrahedrality of water in bulk solution.
The strong correspondence between equilibrium water dynamics
and water’s molecular structure in glycerol–water is consistent
with a previous work by Shell and coworkers.76 In this prior work,
we find correlation between the system-average water self-
diffusivity and several structural metrics such as ptet, the water–
water coordination numbers, water specific volumes, and q among
others. Further, we discovered that the system-average water self-
diffusivity is accurately predicted by only two structural metrics—
including ptet. In the present work, we expand upon this
observation finding strong relationships between not only the

Fig. 5 The three-body-angle distribution shows enhanced water tetra-
hedrality with increasing glycerol concentration. (a) Increasing glycerol
concentration in the mixture increases the incidence of tetrahedrally-
coordinated waters relative to pure water [P(109.51) � Ppure(109.51)] while
decreasing the incidence of icosahedrally-coordinated (simple-fluid like)
waters [P(641) � Ppure(641)]. The increasing population of tetrahedral
waters with glycerol concentration correlates strongly to the relative
diffusivity of pure water DH2O/DH2O,pure at a given mixture composition.
Characteristic time constants for (b) translational diffusion, tsurvival, (c)
rotational diffusion, tOACF, (d) hydrogen bond lifetimes, tHB, and (e) the
ODNP correlation function, tODNP correlate strongly with R2 4 0.99 to the
population of tetrahedral waters ptet ¼

Ð 120	
100	P yð Þdy.
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system-average translational dynamics of water, but local
dynamics for water rotation and water–water hydrogen bonding.

Impact of glycerol on solvation thermodynamics

We apply this understanding of water dynamics and structure to
contextualize glycerol–water thermodynamics by characterizing
the tendency for a model small hydrophobic molecule
(methane) to transfer from an ideal gas to a glycerol–water
solution phase in the infinite dilution limit. We directly quantify
this by computing the excess free energy of solvation DGex

solv as
discussed in the Methods section. DGex

solv o 0 suggests favorable
solvation of a solute relative to ideal gas phase while the
opposite is true for DGex

solv 4 0. In Fig. S10(b) (ESI†), we observe
a monotonically increasing and positive DGex

solv with increasing
xglyc for xglyc o 0.1. This increase in DGex

solv is in part explained by
the enhancement of water structure [Fig. 5] that presumably
generates an increase in the entropic penalty for restructuring
water–glycerol. However, for xglyc 4 0.1, DGex

solv begins to plateau
to a constant DGex

solv E 4.25kBT. Notably, none of the structural
or dynamic metrics above exhibit such a plateau.

To better understand the trend depicted in Fig. S10(b)
(ESI†), we apply a free energy decomposition DGex

solv = Usw + Sres

previously described by Monroe and Shell.78 Here, Usw is the
mean interaction energy between methane and glycerol–water
in the solvated state (2) and the restructuring entropy Sres is
strictly positive and largely gives the entropic penalty to create a
void large enough to accommodate the solvation of methane
from the gas phase (1) into the solution phase (2). We quantify
Usw by directly calculating the interaction energy between
methane and glycerol–water Usw while Sres follows from Sres =
DGex

solv � Usw. We observe a monotonic decrease in Usw with
increased glycerol concentration [Fig. 6(a)], indicating a more
favorable enthalpy of solvation for methane in glycerol–water.
On the other hand, we demonstrate that Sres increases mono-
tonically with glycerol concentration [Fig. 6(b)], which indicates
an increase in restructuring penalty to methane solvation. The
entropic penalty (Sres 4 0) and enthalpic gain (Usw o 0) for
methane solvation in glycerol–water are consistent with the
long-known hydration behavior of small hydrophobic mole-
cules in aqueous environments.82,83 As DGex

solv becomes less
favorable (more positive) for xglyc o 0.1, Usw decreases such that
further increases in Sres yield constant DGex

solv for xglyc 4 0.1.
While the excess solvation free energy, DGex

solv, does not show
a simple correlation with dynamic or structural metrics, the
entropic and energetic contributions display striking connec-
tions to dynamic metrics. Specifically, we note that the increas-
ing penalty for restructuring glycerol–water Sres displays a strong
negative correlation with the MD-computed relative coupling
factor xr [R2 = 0.99; Fig. 6(c)]. Given that increases in Sres are
driven by an enhancement in the underlying glycerol–water
solution structure, the connection between Sres and xr again
suggests a persistent structure–dynamics connection in gly-
cerol–water. Beyond reiterating the structure–dynamics connec-
tions depicted in Fig. 5, the Sres � xr relationship is reminiscent
of entropic theories for microscopic dynamics like the viscosity–
entropy relationship proposed by Adam and Gibbs.84

Adam–Gibbs theory proposes that retardation of liquid
dynamics (such as liquid viscosity, Z, or self-diffusivity, D) stems
from a decrease in the number of available configurational states
of a liquid via the configurational entropy Sconf. Notably, a recent
study by Handle and Sciorno85 demonstrated that a persistent ln D
� (TSconf)

�1 connection—per Adam–Gibbs theory—in simulations
of pure TIP4P/2005 water. The observed correlation between the
probe of water dynamics (xr) and restructuring entropy hints at a
theoretical analog to Adam–Gibbs relating equilibrium water
dynamics to solvation thermodynamics. If such a Sres-dynamics
relationship persists for contexts beyond glycerol–water, it may be
possible to forecast the solvation thermodynamics of small mole-
cules in aqueous mixtures without computationally laborious free
energy calculations. Probing dynamics–structure–thermodynamics
correspondence at heterogeneous surfaces would be fascinating
extensions of the present analysis. For instance, one could speci-
fically interrogate how water–glycerol’s molecular scale structure
and dynamics mediate hydration free energies at protein–water
interfaces to elucidate the cosolvent-mediated mechanisms of
protein cryoprotection.86–89

Conclusions

In the present study, we reproduce critical ODNP spectroscopic
measures of translational hydration water dynamics using

Fig. 6 Decomposition of the solvation free energy of methane into glycerol–
water mixtures. We calculate the solvation free energy for a methane
molecule via expanded ensemble calculations, decomposing the resultant
solvation free energy [Fig. S10(b), ESI†] into (a) enthalpic contribution via the
direct energy term Usw and (b) entropy of solution restructuring Sres. (a) Usw

decreases as more glycerol is added to the mixture. (b) Sres increases as more
glycerol is added to the mixture. (c) We observe a strong correlation (R2 =
0.99) between the MD-computed ODNP coupling factor xr and Sres.
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classical atomistic molecular simulations to model equilibrium
dynamics in glycerol–water mixtures with semi-quantitative agree-
ment. Further, using the molecular scale detail revealed through
MD simulations, we discover strong correlations between ODNP-
measured coupling factors and computational probes of transla-
tional, rotational, and hydrogen bonding dynamics. The strong
relationships found between MD-derived measures of water struc-
ture and dynamics are exciting for the potential of ODNP to serve
as a surrogate probe of underlying solution structure. Finally, the
clear connection between water tetrahedrality, water dynamics,
and solvent restructuring entropy suggests a novel framework to
describe and quantify the molecular scale mechanisms underlying
hydrophobic hydration.

Though the existing literature on local water properties and
water-mediated behavior is extensive, our analyses are unique
because we directly link simulation to experiment and develop a
dynamics–structure–thermodynamics connection. The use of
ODNP as a tool to inspect ambient local water environments
will greatly complement alternative NMR approaches to study-
ing confined and interfacial water.90–92 The generality of the
experimental and computational methods discussed here will
enable further investigations of other systems of broad interest
such as water–alcohol and multicomponent mixtures used for
protein stabilization (e.g., water–glycerol–DMSO). Further, the
dynamics–structure–thermodynamics framework will aide
further understanding of the molecular scale mechanisms
(e.g., water tetrahedrality and diffusivity) underlying hydration
properties in a wide range of chemically and topologically
heterogeneous interfaces such as at protein–water interfaces.
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