Lite Version|Standard version

To gain access to this content please
Log in via your home Institution.
Log in with your member or subscriber username and password.
Download

Probing the transient microstructure of soft matter far from equilibrium is an ongoing challenge to understanding material processing. In this work, we investigate inverse worm-like micelles undergoing large amplitude oscillatory shear using time-resolved dielectric spectroscopy. By controlling the Weissenburg number, we compare the non-linear microstructure response of branched and unbranched worm-like micelles and isolate distinct elastic effects that manifest near flow reversal. We validate our dielectric measurements with small angle neutron scattering and employ sequence of physical processes to disentangle the elastic and viscous contributions of the stress.

Graphical abstract: Extracting microscopic insight from transient dielectric measurements during large amplitude oscillatory shear

Page: ^ Top