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s as versatile building blocks in
denitrogenative transformations

Vladimir Motornov * and Petr Beier *

The utilization of NH-1,2,3-triazoles as easily accessible building blocks in denitrogenative ring cleavage

transformations with electrophiles to provide multifunctionalized nitrogen heterocycles and N-alkenyl

compounds is reviewed. Leveraging the ready availability of NH-1,2,3-triazoles, these processes provide

a convenient route to a range of pharmaceutically relevant heterocyclic cores and N-alkenyl

compounds. The synthetic usefulness of in situ acylated NH-1,2,3-triazoles as viable alternatives to

widely explored N-sulfonyl-1,2,3-triazoles in ring cleavage processes is highlighted.
Scheme 1 Schematic representation of the utilization of (a) N–
sulfonyl- orN-fluoroalkyl-substituted 1,2,3-triazoles and (b) NH-1,2,3-
triazoles in ring cleavage denitrogenative transformations.
1,2,3-Triazoles are nitrogen heterocycles with versatile reac-
tivity1 and great medicinal importance.2 Since the discovery of
azide–alkyne click chemistry in 2002,3 triazole derivatives have
gained enormous attention in organic, medicinal, biomolec-
ular, and material sciences. Among them, 1,2,3-triazoles
bearing an electron-withdrawing group at position N1 are of
special importance because of their propensity to undergo N1–
N2 bond cleavage in denitrogenative triazole ring opening
transformations (Scheme 1a).1 N-sulfonyl-1,2,3-triazoles4 and N-
uoroalkyl-1,2,3-triazoles5 are the most explored building
blocks, which undergo ring cleavage under metal catalysis or by
the action of Lewis or Brønsted acids. Very recently, a new
strategy based on the use of NH-1,2,3-triazoles involving the
installation of an electron-withdrawing group with in situ ring
cleavage was described and used with success (Scheme 1b). The
present review features the use of free NH-1,2,3-triazoles 1 in
denitrogenative transformations, proceeding via N-acyl-1,2,3-
triazoles or their analogues as key intermediates.

N-unsubstituted NH-1,2,3-triazoles 1, considered in the
present review, are the simplest and most readily available tri-
azoles.6 They can be prepared by azide–alkyne cycloaddition6 or
alternative methods such as cycloaddition/elimination with
activated ketones7 or nitroalkenes.7 In the last ve years, there
has been a notable surge of innovative methods for the
synthesis of NH-1,2,3-triazoles and several one-pot protocols
from inexpensive and commercially available reagents have
been developed.6 To underline the most efficient and practical
routes, NH-1,2,3-triazoles were synthesized from TMSN3 and
alkynes via CuI-catalysed cycloaddition (Scheme 2a),8 or sodium
azide, aldehydes and nitroalkanes via a tandem Henry reaction/
[3 + 2] cycloaddition (Scheme 2b),9a–c including recently devel-
oped green chemistry approaches.9d–h In 2022, NH-1,2,3-
mistry, Academy of Sciences, Flemingovo
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34651
triazoles became available from NaN3/H2SO4 and alkynes,
which is so far the simplest and the most straightforward route,
although the generation of HN3 raises safety concerns (Scheme
Scheme 2 Overview of efficient routes for the synthesis of NH-1,2,3-
triazoles (a–d).
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Scheme 4 Mechanism of NH-triazole cleavage with electrophiles.

Scheme 5 Cleavage of NH-1,2,3-triazoles with acyl halides.

Review RSC Advances

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

7 
 2

02
3.

 D
ow

nl
oa

de
d 

on
 2

2/
10

/2
5 

01
:5

1:
32

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
2c).10 Finally, the approach utilizing azidyl radical–alkyne
cycloaddition with the use of the NaN3/PhI(OAc)2 system inmild
conditions is highly efficient for complex disubstituted triazoles
such as 4,5-diaryltriazoles (Scheme 2d),11a and it was also
possible to efficiently synthesize these compounds without an
oxidant, albeit only under harsh conditions (MW heating at 200
°C).11b More examples of novel synthetic methods to access NH-
1,2,3-triazoles appeared in recent reviews.6

Due to better atom economy, the utilization of readily
available NH-triazoles is advantageous compared to the use of
N-sulfonyl- or N-uoroalkyl-triazoles. Additionally, access to
NH-1,2,3-triazoles was possible using “alkyne-free” methods.
Both, primary nitro compounds and aromatic aldehydes are
easily accessible industrial scale products.12

One of the rst denitrogenative transformations of 1,2,3-NH-
triazoles 1 was reported in 2014. In this process, in situ sulfo-
nylation with triic anhydride and 2,6-di(tert-butyl)-4-
methylpyridine (DTBMP) as a base was used to generate reac-
tive N-triyl triazoles 2.13 Their ring cleavage by a chiral Rh(II)
catalyst in the presence of an excess of alkene 3 afforded 2,3-
dihydropyrroles 4 with low to good enantiocontrol (Scheme 3).

However, besides triation, there are no other examples of in
situ sulfonylation of NH-1,2,3-triazoles followed by deni-
trogenative transformations. Therefore, this reaction is limited
to the extremely electron-accepting triyl group and analogous
ring cleavage did not proceed with other N-sulfonyl triazoles.

In contrast to sulfonylation, acylation of NH-1,2,3-triazoles is
more versatile and has developed into a highly active area of
research in recent years.14 Tandem acylation followed by ring
cleavage without isolation of N-acyltriazoles was performed
using acyl halides or acid anhydrides. The mechanism of this
transformation, recently conrmed by us,14 involved the
formation of N1 (5) and N2-acylated (6) triazoles in equilibrium,
followed by acid-mediated cleavage of the former. Denitroge-
nation and formation of a vinyl cation in an irreversible step was
the driving force of N2–N1-acyltriazole interconversion, which
ensured the complete transformation of triazoles into ring
cleavage products 7–9 (Scheme 4).

Cleavage of NH-1,2,3-triazoles 1with an excess of acyl halides
10 (X = Cl, Br) under elevated temperature led to the formation
of b-enamido halides 9 in moderate to good yields (Scheme 5).15

b-Enamido halides are difficult to access by other synthetic
routes and are present in natural products, which underlines
the synthetic value of the method.
Scheme 3 Synthesis of 2,3-dihydropyrroles by cleavage of NH-tri-
azole in the presence of triflic anhydride. DTBMP – 2,6-di(tert-butyl)-
4-methylpyridine.

© 2023 The Author(s). Published by the Royal Society of Chemistry
This transformation in the presence of sodium sulfonates
was employed in the synthesis of enamido triates or sulfonates
11. Mainly compounds with the phenacyl group at the nitrogen
were accessed by the mentioned route (Scheme 6).15

An alternative method, applicable to the synthesis of b-u-
oroacylenamido triates is based on the formation of N2-
acyltriazoles 6 via the in situ acylation of NH-1,2,3-triazoles
with uorinated acid anhydrides followed by their treatment
with triic acid, which proceeds through N2–N1 acyltriazole
interconversion and ring cleavage (Scheme 7).14

The products are useful building blocks, that can get
involved in Pd-catalysed cross-coupling substitution reactions
of the triate group to access multifunctionalized enamide
derivatives – attractive drug candidates and synthetic interme-
diates.16 None of the methods mentioned was applicable with
the less reactive alkyl-substituted acylating agents (Ac2O, AcCl),
Scheme 6 Synthesis of b-enamido triflates and sulfonates from NH-
1,2,3-triazoles, acyl halides, and sodium sulfonates.
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Scheme 7 One-pot two step synthesis of b-fluoroacylenamido tri-
flates. DCE = 1,2-dichloroethane.

Scheme 8 Synthesis of fluoroalkylated oxazoles and 2-acylamino-
ketones from NH-1,2,3-triazoles with fluoroalkylated acid anhydrides.

Scheme 10 One-pot synthesis of fluoroalkylated oxazoles from NH-
1,2,3-triazoles, acid anhydrides and Et3N.

Scheme 11 One-pot synthesis of 2-fluoroalkyl-imidazoles from NH-
1,2,3-triazoles.

RSC Advances Review

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

7 
 2

02
3.

 D
ow

nl
oa

de
d 

on
 2

2/
10

/2
5 

01
:5

1:
32

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
because the resulting acyltriazoles were resistant to ring
cleavage even at elevated temperatures.14

The cleavage of NH-1,2,3-triazoles with an excess of uo-
roalkylated acid anhydrides led to highly pharmaceutically
relevant 2-uoroalkyl oxazoles 7 (in the cases of 4,5-disubsti-
tuted triazoles) or 2-acylaminoketones (for 4-substituted tri-
azoles, R = H) (Scheme 8).17 In the rst case intramolecular
cyclization took place, whereas in the second, unstable b-acy-
loxyenamide 8′ formed, which underwent ester hydrolysis to 2-
acylaminoketone 8 upon treatment with an aqueous base. The
difference in chemoselectivity was attributed to the increased
vinyl cation stability of disubstituted examples, which made
them more prone to intramolecular cyclization.

4,5-disubstituted NH-1,2,3-triazole reacted with trichloro-
acetic anhydride to give 2-unsubstituted oxazole 13, due to the
low stability of the trichloromethyl-substituted product 12
during silica gel column chromatography. The whole trans-
formation is a rare and unique case of a reaction involving tri-
chloroacetic anhydride as a one-carbon building block (Scheme
9).17
Scheme 9 Formation of 2-unsubstituted oxazole from NH-1,2,3-tri-
azole and trichloroacetic anhydride.

34648 | RSC Adv., 2023, 13, 34646–34651
The limitation of oxazole synthesis to only disubstituted
triazoles was overcome by the cyclization of in situ formed b-
acyloxyenamide 8′ to oxazoles 7 using Et3N and proceeded
quickly and nearly quantitatively under ambient conditions.18

This one-pot triazole cleavage procedure provided an efficient
access to 2-uoroalkylated oxazoles from monosubstituted tri-
azoles in good to excellent yields (Scheme 10).

The easy access to uorinated 2-acylaminoketones 8 was
utilized in a number of one-pot syntheses of uoroalkylated
heterocycles directly from NH-1,2,3-triazoles 1. First, 2-uo-
roalkyl imidazoles 14 were prepared by cleavage with triuoro-
acetic or peruoropropanoic anhydrides, followed by the
treatment of the ketamide intermediate with an aqueous solu-
tion of the primary amine (or ammonium acetate for R = H)
under microwave conditions. The acid formed aer hydrolysis
of the enamide to yield 2-acylaminoketone promoted the Rob-
inson–Gabriel cyclization of the latter. This procedure afforded
imidazoles 14 in moderate to good yields in a one-pot manner
starting from triazoles (Scheme 11).17
Scheme 12 Synthesis of 3-fluoroalkyl-1,2,4-triazines from NH-1,2,3-
triazoles.

© 2023 The Author(s). Published by the Royal Society of Chemistry
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Scheme 15 Formation of o-iodoacetanilide by AlI3-mediated
cleavage of N1-acetylbenzotriazole.

Scheme 16 Cleavage of NH-1,2,3-triazoles with thiophosgene.

Review RSC Advances

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

7 
 2

02
3.

 D
ow

nl
oa

de
d 

on
 2

2/
10

/2
5 

01
:5

1:
32

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
Alternatively, condensation of the formed acyloxyenamide 8′

with hydrazine hydrate aer switching the solvent to acetic acid
provided uoroalkylated 1,2,4-triazines 15 (Scheme 12).17

The formation of the vinyl cation intermediate in N-acyl-
triazole cleavage was conrmed by changing the solvent from
a chlorinated one to acetonitrile or propionitrile.18 In one
special case (Scheme 13, R = p-Tol) adducts 16 of the Ritter
reaction were formed and hydrolysed to bis(enamides) 17.
However, this reaction was not general and in the cases of
electron-richer triazoles, cyclization of the vinyl cation to oxa-
zoles 7 took place (Scheme 13, R = H, EDG). This route is an
alternative to one mentioned above (Scheme 10), and is appli-
cable to electron-rich substrates. The straightforward formation
of oxazoles 7 rather than enamides 8′ in polar MeCN was
explained by the decreased stability of the vinyl cation–tri-
uoroacetate anion contact ion pair, which prevented recom-
bination and favoured cyclization.18

Several efficient NH-1,2,3-triazole ring cleavage protocols
were also developed for NH-benzotriazole 18, which can be
easily and regioselectively acylated on N1. The treatment of the
formed N-acylbenzotriazole 20 with AlCl3 as a Lewis acid pro-
motor facilitated ring cleavage leading to benzoxazoles under
relatively harsh conditions (Scheme 14).19

Rare examples of ortho-iodoacetanilide 22 formation in
moderate yields from NH- and related N-acylbenzotriazole were
reported in which the All3/Ac2O system or aluminium and
iodine in acetonitrile were used.20 These are the only cases of N-
acetylbenzotriazole 23 ring cleavage known. Importantly, the
reaction of N-acetylbenzotriazole 23 with AlCl3 was not efficient
Scheme 13 Formation of bis(enamides) 17 and oxazoles 7 by the
cleavage of NH-1,2,3-triazoles with trifluoroacetic anhydride in nitrile
solvent.

Scheme 14 Synthesis of benzoxazoles from NH-benzotriazoles.

© 2023 The Author(s). Published by the Royal Society of Chemistry
and led only to deacylation, and not to the desired ring cleavage
product (Scheme 15).19

Cleavage of electron-rich 4-aryl-NH-1,2,3-triazoles 1 was
successfully achieved with thiophosgene leading to the forma-
tion of vinyl isothiocyanates 24 by HCl elimination from the
vinyl chloride intermediate (Scheme 16).21 The vinyl iso-
thiocyanate moiety is present in natural products with anti-
fungal and antibacterial activity and is difficult to access by
traditional methods. Switching from electron-rich aromatic NH-
triazoles to unsubstituted NH-1,2,3-triazole afforded product 25
of HCl addition across the double bond in moderate yield.

A similar transformation with triazoles 1 bearing an
electron-rich aryl or alkenyl substituent in position 4 proceeded
with triphosgene.21 The in situ formed carbamoyl chlorides 26
were treated with nucleophiles to gain access to multifunctional
compounds 27, such as N-alkenyl carbamates, ureas and thio-
carbamates (Scheme 17).

The denitrogenative transformation of NH-1,2,3-triazoles
was studied also on more complex substrates such as 4-(1-
hydroxycyclobutyl)-1,2,3-triazoles 28. Their cleavage with acyl
chlorides 10 catalysed by triic acid provided efficient access to
cyclic enaminones 29 (Scheme 18).22 The reaction proceeded via
the cleavage of N-acyltriazole and semipinacol rearrangement
Scheme 17 Synthesis of multifunctional N-alkenyl compounds by the
cleavage of NH-1,2,3-triazoles with triphosgene.

RSC Adv., 2023, 13, 34646–34651 | 34649
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Scheme 18 Synthesis of cyclic enaminones by TfOH-catalyzed
cleavage of 4-(1-hydroxycyclobutyl)-1,2,3-triazoles with acyl
chlorides.
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cascade. The procedure was found to be easily scalable to give
multifunctional substrates in good yields.

Conclusions

In conclusion, NH-1,2,3-triazoles are commercially available or
easily synthesized starting materials that exhibit a remarkable
versatility in transformations to diverse nitrogen-containing
heterocycles and functionalized N-alkenyl compounds via
denitrogenative cleavage. In situ prepared N-acylated 1,2,3-tri-
azoles are key intermediates in these transformations. Acid-
mediated triazole ring opening of N-acylated 1,2,3-triazoles,
followed by nitrogen elimination affords vinyl cation interme-
diates, which undergo a variety of reactions such as cyclization
or heteroatom capture. Further development of denitrogenation
of NH-1,2,3-triazoles accompanied by C–C bond forming reac-
tions, C–H insertion or rearrangement of the vinyl cation can be
expected, providing access to a structural diversity of products
with potential applications in drug development. Moreover, due
to easy availability of NH-1,2,3-triazoles they are excellent
starting materials for the development of new industrial
synthetic processes.
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