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The conversion of biomass through thermochemical processes has emerged as a promising approach to
meet the demand for alternative renewable fuels. However, these processes are complex, labor-
intensive, and time-consuming. To optimize the performance and productivity of these processes,
modeling strategies have been developed, with steady-state modeling being the most commonly used
approach. However, for precision in biomass gasification, dynamic modeling and control are necessary.
Despite efforts to improve modeling accuracy, deviations between experimental and modeling results
remain significant due to the steady-state condition assumption. This paper emphasizes the importance
of using Aspen Plus® to conduct dynamics and control studies of biomass gasification processes using
different feedstocks. As Aspen Plus® is comprising of its Aspen Dynamics environment which provides
a valuable tool that can capture the complex interactions between factors that influence gasification
performance. It has been widely used in various sectors to simulate chemical processes. This review
examines the steady-state and dynamic modeling and control investigations of the gasification process

using Aspen Plus®. The software enables the development of dynamic and steady-state models for the
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Accepted 22nd May 2023 gasification process and facilitates the optimization of process parameters by simulating various

scenarios. Furthermore, this paper highlights the importance of different control strategies employed in
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1 Introduction

Access to energy resources is vital for the survival of human
beings, the advancement of social civilization, and the
economic prosperity of a nation." However, due to population
growth and rapid economic development, energy consumption
has increased significantly while the supply has become scarce.”
The continuous exploitation of conventional fossil fuels, such
as coal, crude oil, and natural gas, has led to depletion and the
generation of significant waste,® resulting in environmental
damage and an energy crisis.** As a result, there is an urgent
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biomass gasification, utilizing various models and software, including the limited review available on
model predictive controller, a multivariable MIMO controller.

need to develop clean and sustainable alternative energy
resources to address these issues. The utilization of renewable
energy sources, such as solar, wind, biomass, hydropower,
geothermal, and tidal, is becoming increasingly popular due to
their potential to mitigate environmental, fossil fuel, and
economic issues.®” The International Energy Agency (IEA) has
recommended transitioning away from fossil fuels due to the
increasing demand for energy and the potential scarcity of fossil
fuels.® To reduce emissions and global warming, carbon-neutral
sources of energy, such as biomass, are gaining popularity.®

In recent decades, there has been increasing attention given
to the production of bio-H, from lignocellulosic biomass
through gasification. This process is considered highly efficient,
environmentally friendly, and sustainable, as it is a carbon-
neutral and renewable energy source.” Biomass can be con-
verted into hydrogen or syngas using thermochemical and
biological methods. Gasification, which is a key thermochem-
ical method, is an important technology for large-scale biomass
conversion, and it generates a gaseous mixture consisting of
hydrogen, carbon monoxide, carbon dioxide, and methane.*
This syngas can be used as a fuel for power generation and
heating or as an intermediate for the production of other
chemicals and fuels." However, the gasification of biomass
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requires precise control and management to maintain carbon-
free energy systems.*®

Mathematical models are necessary for designing, opti-
mizing, and intensifying thermal conversion processes due to
their high complexity, involvement of non-linear parameters,
and high-dimensional conversion processes.'* These models
help in determining optimal operating conditions for a system,
as well as in assessing the impact of various features on the
outputs. Furthermore, models can be used for real-time process
control and optimization, as well as for predicting critical
process performance parameters.**

Aspen Plus® is a software tool that can simulate chemical
reactions in the petroleum sector, chemical processes, and
biomass gasification.”” While steady-state biomass gasifica-
tion modelling has gained prominence, dynamic modelling
and control are essential to evaluate the dynamic operability
of the plant under varying environmental conditions.'* Most
research employs PI/PID controllers to regulate temperature,
flow, pressure, and other process factors,'*® but modern
control research includes multivariate models that incorpo-
rate Predictive Model Control (MPC).*® Aspen Plus is a process
simulation software that is widely utilized for the modeling
and simulation of biomass gasification. Its usefulness lies in
the ability to develop both steady-state and dynamic models
of the gasification process, enabling various scenarios to be
simulated to optimize process parameters. With a compre-
hensive library of thermodynamic models, Aspen Plus accu-
rately predicts the behavior of gasification reactions. In
addition, the software enables the specification of detailed
kinetic models that can consider multiple reactions
happening simultaneously, and calculate reaction rates. For
dynamic and control studies of gasification parameters such
as feed rate, temperature, and pressure, Aspen Dynamics is
utilized. The software provides a variety of control structures
like PID controllers and AMSIMULATION toolboxes, which
can be used to link Matlab for model predictive control (MPC)
algorithms to achieve optimal process performance. By per-
forming sensitivity analyses, Aspen Plus can determine the
impact of changes in process parameters on gasification
performance. Therefore, it can be used to identify critical
parameters that can be optimized to achieve the desired
gasification outcomes. In summary, Aspen Plus® is an
essential tool for simulating and modeling biomass gasifica-
tion, providing accurate predictions of gasification behavior,
and allowing for the optimization of process parameters and
control strategies.

Several review articles have been published on the steady-
state modeling of biomass gasification.””"** However, most of
these studies have focused on steady-state behavior,**** with
limited attention given to dynamic*®* and control
modeling.”**” Additionally, some of these articles have only
discussed one type of control system, such as decentralized
control. Although numerous control strategies have been
proposed and evaluated, decentralized control cannot handle
the interaction between multiple variables and process
constraints, which is crucial for optimal process performance.
In contrast, MPC can handle Multiple-Input, Multiple-Output
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(MIMO) systems consistently and account for explicit
constraints acting on a controlled and measured variable. This
review article identifies the research gap in the dynamic
modelling and control investigations of biomass gasification
processes and evaluates the most recent developments and
insights. It examines the stoichiometric, non-stoichiometric,
and Aspen Plus modelling approaches used in biomass gasifi-
cation control studies and highlights the best methods reported
in the literature.

2 Thermochemical conversion of
biomass

Biomass is described as a renewable carbonaceous resource
that exists in a variety of forms and is used to generate heat,
power, fuels and other value-added by-products.*® Biomass is
classified according to various types of biomass feedstocks from
agricultural and forest ecosystem waste (such as animal and
plant residues, animal manure) or municipal waste (such as
dewatered sludge) as shown in Fig. 1.2® Syngas production, as
well as numerous chemical feedstocks, has great potential in
the Asian region.”

Thermochemical and biochemical conversion are the two
basic classes from which syngas can be produced using
biomass. The thermochemical conversion process also includes
processes such as combustion, pyrolysis, gasification, and
liquefaction (hydrothermal upgrading).*® Fermentation, anaer-
obic digestion, and mechanical extraction are three biochem-
ical conversion processes that convert biomass into energy. The
gasification process is a promising method for converting
biomass into energy. Gasification has established itself as
a potential technology for the development of large-scale
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Fig. 1 Different types of biomasses.
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Fig. 2 Classification of biomass conversion processes.

biomass-to-syngas production systems. The classification of
biomass conversion is shown in Fig. 2.

Biomass is converted to a gaseous product, such as H,, CO,
CO,, CH, and N,, using gasifying agents such as air, oxygen,
steam or a combination of them, in this process.** It is useful to
use steam as a gasifying agent to produce a better and improved
syngas composition.** Unlike steam, the use of air as a gasifying
agent results in an excess of nitrogen in the final gas compo-
sition, and the use of pure oxygen has low economic incentives
for small-scale operations.** Typically, biomass with a moisture
level of less than 35% by weight is used in the gasification
process.*® The steps involved in gasification are shown in Fig. 3.

2.1 Drying and devolatilization

The gasification process starts with a heating and drying step.
Initially, the material is dried without any chemical reactions.

The amount of time it takes for solids to dry is mainly deter-
mined by their particle size and ignition temperature.*

2.2 Pyrolysis

The thermal decomposition of a solid in the presence of
a restricted supply of an oxidizing agent is known as pyrolysis.
Eqn (1) can be used to represent the reaction of the pyrolysis
process.*

C,H,0, + heat—> Y~ C,H,0, + Y C,H,0.+ > C

gases

1)

liquids solids

2.3 Combustion

The combustion process is an exothermic reaction that involves
oxygen and solid carbon, with CO, and H,O as the primary

BIOMASS GASIFICATION PROCESS STEPS

PYROLYSIS

DRYING

Fig. 3 Steps involved in the biomass gasification process.
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combustion products. The combustion process also provides
the necessary thermal energy for the endothermic gasification
reaction.

C+ 0, = CO, +401.9 kJ mol " (2)

1
C+30,=CO+241.1KJ mol ™ (3)

2.4 Gasification

The gasification process involves endothermic reactions that
use the heat that is liberated from the combustion reaction. The
main product of gasification is the synthesis gas, which
comprises gases such as H,, CO, CO,, and CH,.*® The primary
reactions involved in the biomass gasification are represented
in eqn (4)-(8), respectively:

Char gasification reaction

C + H,0 — CO + H, —131.5 kJ mol ™! (4)
Water-gas shift reaction
CO + H,0 = CO, + H, +41 kJ mol™! (5)
Steam methane reforming
CH,4 + H,0O = CO + 3H, —206 kJ mol ! (6)
Boudouard reaction
C + CO, — 2CO —172 kJ mol ™! ()
Methanation reaction
C +2H, = CH,4 +74.8 kJ mol ™! (8)

The environmental problems associated with carbon dioxide
emissions from conventional fossil fuel combustion have
increased the development of renewable energy utilization
technologies. For sustainable development, biomass as a renew-
able CO, neutral energy source provides an increasingly inter-
esting alternative to reduce CO, emissions. Several conversion
technologies, such as biomass pyrolysis, gasification, and
liquefaction, are well-known thermochemical conversion
processes.*” In this case, biomass gasification provides an option
to convert solid biomass into gaseous products, such as
hydrogen-rich gases. The product gas quality and quantity would
be different depending on the gasifying agent. In recent decades,
biomass steam gasification has received a great deal of attention
for its ability to use biomass stocks to produce high-quality gas.?”
Among all existing hydrogen production technologies, biomass
gasification has received significant interest because; (a) the
process is fast, (b) the process is efficient, (c) biomass is envi-
ronmentally friendly, (d) biomass is renewable, etc.*® A biomass
gasification process is usually performed with the assistance of
a gasification agent, and the most widely used gasification agents
are air (air gasification), oxygen (oxygen gasification), steam
(steam gasification), etc. Generally, oxygen gasification and
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steam gasification show better gasification performances and
results than air gasification. This is mainly because the dilution
of N, (from the air, about 79 vol% of the air is N,) is avoided
during the gasification processes.

Jingjing Zhang et al* established an integrated biomass
gasification process of catalytic tar steam reforming, methana-
tion and Adsorption Enhanced Reforming (AER) to produce fuel
gas rich in hydrogen and methane. A free-fall gasifier followed
by a moving-bed upgrading reactor loaded with bed materials
was applied as the reaction device. The bed materials consisted
of Ni/hematite, calcined limestone, and quartz sand. The Ni/
hematite was used to catalyze both tar reforming and metha-
nation, the calcined limestone as a CO, capturer, and the quartz
sand as a diluting agent. In the free-fall reactor, the white pine
sawdust was gasified with steam to produce syngas containing
tar. The syngas with tar was then introduced upward into the
moving-bed reactor and passed through the moving-bed mate-
rials. The tar in the syngas was catalytically reformed to produce
an H,-rich gas, and the gas then underwent a WGS reaction,
CO, adsorption, and methanation in the upper part of the
reactor. The reactions were optimized through a decrease in
temperature gradient along with an upward flow of reaction gas
in the moving-bed reactor. The influence of the mass ratio of
steam-to-biomass (S/B) in the gasifier and the amounts of Ni/
hematite and calcined limestone in the bed materials on the
reactions was investigated. Under conditions of temperature
gradients of 500 to 600 °C, S/B 0.4 and bed materials composed
of 20% Ni/hematite, 60% calcined limestone and 20% quartz
sand, a mixed fuel gas of H, and CH, was obtained with
a concentration of over 97 vol%.

Nanou et al.** added 9.5 wt% KOH to a steam gasification
reactor and investigated the kinetics by changing parameters
such as steam flow, bed height, and particle size of the char for
mass transfer. The reactions followed a first-order rate constant.
Alkali metal catalysts significantly enhanced carbon conversion
while inhibiting tar formation in biomass gasification
processes. Therefore, alkali metal catalysts indicate important
effects on the steam reforming process, which improves
hydrogen gas production through biomass gasification. Corella
et al.** used small pine wood chips in a fluidized bed gasifier,
along with the steam reformer reactor and two shift reactors for
hydrogen production. Hydrogen was reported to be 73 vol%
with a biomass yield of 140 g kg™ " using a commercial nickel-
based catalyst. Furthermore, 90% of the CO was reported to
convert to H, through the water gas shift reaction due to the use
of a catalyst in the shift reactors. However, they reported that to
achieve the high production rate, the system became increas-
ingly complex; because of the combination of fluidized bed,
steam reformer, and two shift reactors, the hydrogen produc-
tion costs were also very high. But the overall process was
technically feasible, which means there were no major technical
problems.

3 Modeling of biomass gasification

Several variables, such as feedstock flow rate, gasifying agent,
pressure, and temperature, have a significant effect on the

RSC Adv, 2023, 13, 23796-23811 | 23799
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gasification process. These factors have a significant impact on
the composition of the product gas and the performance of the
gasifier.*> Moreover, these parameters are closely related to each
other.* Experimenting to determine the optimal gasifier
condition is an expensive and time-consuming process. To
optimize the design and operation of a gasifier without experi-
mentation, mathematical modeling has been shown to be
a useful technique for analyzing gasifier behavior. Inside the
gasifier, mathematical models accurately capture chemical and
physical events. The gasifier environment within the gasifier
varies from point to point over time.* As a result of the dynamic
changes in the variables that influence the process, the condi-
tions inside the gasifier vary at each stage. The important
parameters within the gasifier are temperature, pressure, flow
rate, and species concentration, which are interconnected and
exhibit dynamic behavior.**** In addition, mathematical
models have been demonstrated to be effective in providing
qualitative guidance on the design, feedstock characteristics,
and operating parameters that influence the gasifier's perfor-
mance. Furthermore, mathematical models have been shown to
be effective in providing qualitative guidance on the design,
feedstock parameters, and operating parameters that affect the
performance of the gasifier.*” Due to the inherent complexity of
the biomass gasification process, modeling and simulation for
performance prediction are a developing field.*> The mathe-
matical modeling approaches for the gasification process are
classified as steady-state modelling or dynamic modelling. In
the following sections, a review of recent work by various
researchers using dynamic approaches is presented.

3.1 Dynamic state modelling & control of biomass
gasification

Dynamic modeling is an effective decision-making and policy-
making tool for consultants and operators in the design and
research of process techno-economics.*® Junxi Jia et al.*” devel-
oped a mathematical model of a down-draft gasifier using rub-
berwood to simulate a steady and transient state of the
gasification process. The model is based on the lumped capaci-
tance method, in which the temperature varies with time but
always remains uniform, and on the chemical equilibrium.
Effects of the equivalence ratio (0.37-0.45), the steam to biomass
ratio (0-4), and mass flow rate of biomass (18-25 kg h™") on the
steady and transient characteristics of the gasifier have been
studied (Table 1). Robinson P. ]J. et al'* present a simple
approximation method that uses coal as biomass to develop
a gasifier model that can be exported to Aspen Dynamics®. The
core concept is to employ a high molecular weight hydrocarbon
from the Aspen library as a pseudo fuel. This component should
have the same hydrogen to carbon ratio as coal and biomass,
which is 1: 1. Because the dynamics of the gasifier is very fast and
the gasifier gas volume is a small proportion of the total volume
of the plant, a rigorous high-fidelity dynamic model of the gasifier
is not required for many plantwide dynamic studies. The
macroscale thermal, flow, composition, and pressure dynamics
are represented by the proposed approximate model. This work
does not attempt to optimize the design or control of gasifiers;

23800 | RSC Adv, 2023, 13, 23796-23811

View Article Online

Review

rather, it gives an idea of how to approximate dynamically
simulate coal gasification.

Bo Sun et al.*® investigated the combined cooling, heating,
and power (CCHP) systems with condensation heat recovery
(CCHP-CHR). The primary energy saving ratio, cost saving ratio,
and carbon dioxide emission reduction ratio are all increased by
5.0%, 6.36%, and 2.74%, respectively, by the proposed system.
The proposed CCHP-CHR system boosts energy cascade uti-
lisation technology and overall performance. Baruah D. et al.*
developed an ANN-based model for wood gasification using
a fixed bed downdraft gasifier and predicted the compositions
of gases H,, CO, CO, and CH, using input parameters such as C,
H, O, ash, moisture content, and the temperature of the
reduction zone temperature. Li et al.>® developed a computer-
based model based on experimental data to predict the gasifi-
cation behavior of biomass particles for the production of
hydrogen and syngas production. The results showed that an
increase in gasification temperature significantly increased the
hydrogen yield and Cold Gas Efficiency (CGE). The maximum
CGE was also found to have increased by approximately 230%
when the reaction temperature increased from 700 to 900 °C.
Pandey et al°* compared MIMO and Multiple Input-Single
Output (MISO) ANN models in single and double layer archi-
tectures to select the optimal ANN model. Then, the optimal
model was applied to predict the performance of Municipal
Solid Waste (MSW) gasification in a fluidized bed reactor.
Hegazy Rezk et al.®® increased methane production by steam
gasification using palm kernel shell and coal bottom ash as
a catalyst. Using fuzzy logic and an Adaptive Network-based
Duzzy Inference System (ANFIS) framework, a model was
developed to simulate methane production by biomass gasifi-
cation. Additionally, the Marine Predator Algorithm (MPA) is
used to calculate the optimal operating parameter for the
gasification process. The results indicated that the methane
composition reached 52.82 vol% at 678 °C, 0.42 mm, 3.03 and
0.037 wt% for temperature, particle size, CaO/PKS ratio and coal
bottom ash, respectively. Using an artificial neural network,
Hanif Furqon Hidayat et al.>® examined the control parameters
of a gasifier (ANN). The input variables for this model were the
combustion temperature, the intake airflow rate, and the
discharge airflow rate, while the reactor combustion tempera-
ture was the output. The results demonstrated that the two
models provide accurate results (R*> = 0.832 and 0.911) with
minimal error rates (RMSE values of 0.250 and 0.098). Using the
Kalman filter and control, Jinchun Zhang et al.** suggested
a real-time identification model with greater precision. Obser-
vations were made of simulation-based studies on gasifier
temperature using three fluctuation modes and field applica-
tion on H, and CO monitoring for a gasifier with varying
starting conditions. The performance of the proposed model is
more precise than that of conventional methods. Consequently,
the integrated application of the control chart and Kalman filter
in monitoring the gasification process parameters has the
benefits of high sensitivity to outlier alerts, high identification
of variation, and high applicability to multi-mode fluctuations
in a variety of settings.

© 2023 The Author(s). Published by the Royal Society of Chemistry
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Quoilin et al.>® proposed a dynamic model of the Organic
Rankine Cycle (ORC) used to recover energy from a waste heat
source with changing flow rate and temperature, focusing on
the dynamic performance of heat exchangers, using the distri-
bution parameter technique to describe their transient
behavior. Three different PID control schemes were also
proposed and compared based on the increase in frequency of
the regulator pump and expander. Zhang et al®** used the
moving boundary approach to develop a dynamic control-
oriented model for ORC-based waste heat energy conversion
systems and then presented a feedback regulation control
strategy.

3.2 Identification of biomass gasification system

Using the system identification approach, some researchers
have published the empirical linear model of various
processes.*”*® The identification method of the subspace system
was used by Gatzke et al.*® to establish a quadruple tank system
on a laboratory scale. One of the most extensively used labora-
tory systems in control theory is the 4-Tank System (4TS). 1t is
a well-known MIMO system that may be used to analyze various
real-time control systems with nonlinear dynamics. The iden-
tification process was carried out without considering any prior
knowledge of the process, and no assumptions were made
about the state relationships or the number of process states.
Only the number of states used in the resulting process model
was determined. The developed model was then used for
model-based control using Internal Model Control (IMC).
Modeling was also performed using step tests and ASPEN
software for use with Dynamic Matrix Control (DMC) as shown
in Fig. 4.

Weyer et al.*® demonstrated the empirical modeling of the
water level in an irrigation channel using a system identification
technique that considers the previous physical information of
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the system.* The structure of the model is derived from mass
and momentum balances that employ non-linear equations.
The identified process is similar to that of an interacting series
process; however, the model only has a single output variable,
which is the water level downstream of the irrigation channel.
The developed model has a MISO structure. Sotomayor et al.*
presented the multivariable identification of an activated sludge
process benchmark using subspace-based algorithms. To
overcome the drawbacks of traditional methods in the field of
parameter estimation, an evolutionary strategy is proposed. The
Genetic Algorithm (GA) technique has proven its effectiveness
when applied to identify the parameters of an activated sludge
process. Six subspace algorithms were used and their perfor-
mance was compared to obtain the best model. A discrete-time
identification approach based on subspace methods is applied
to estimate a nominal MIMO state-space model. The simulation
results show that GA can identify the values of the system
parameters with high precision. As a result, provide a useful
model to be investigated in the control strategies. Despite the
very low order of the selected state-space model, it managed to
describe the complex dynamics of the process well. However,
a drawback of the methods used is that the physical insight of
the process in the models is lost, which is characteristic of
a black-box model. Wibowo et al.®* developed a MIMO state-
space model from input-output data using a linear system
identification technique. The subspace identification method
using the N4SID algorithm was proposed as a more suitable
method for a gaseous pilot plant than Prediction Error Methods
(PEM), as indicated by smaller identification and validation
errors. In this work, the focus has been on developing a proper
procedure and method to construct an empirical model of the
interacting series processes from input-output data using
a system identification technique. Sivakumar and Mary et al.*
have extended the work using GA to obtain a reduced-order
transfer function with a minimum ISE and IAE error.

DATA PROCESSING

DATA EVALUATION

SYSTEM MODEL

Stage 1 Stage 2 Stage 3 VALIDATION
Inputs System
Outputs
Model P

Fig. 4 Steps involved in system identification.
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The ALSTOM gasifier benchmark consists of a 5 input and 4
output systems. The flow rate of extraction of carbon (U,),
airflow (U,), coal flow (Us), steam flow (U,), and limestone flow
(Us) are inputs, the calorific value of syngas (Y;), the mass of the
bed (Y>), the pressure (¥3) and the temperature (Y,) are output.
Limestone and coal are added in a ratio of 1: 10. This leaves the
gasifier with a 4 x 4 MIMO system. MATLAB has been used to
develop the transfer function model. This paper focuses on
identifying reduced-order transfer function models for
a gasifier with a minimum IAE and ISE error criterion using
a GA. The lower order transfer functions obtained using the
Genetic Algorithm are found to be superior to those obtained
using the RGA loop pairing and the algebraic method proposed,
respectively, by Haryanto and Sivakumar et al.®***

3.3 Control strategies for biomass gasification

The main issues and challenges of the 21° century include
increased energy consumption, rising energy costs, and climate
change caused by greenhouse gases emission into the envi-
ronment. The international community is increasingly ensuring
commitment to sustainability, through increasing use of terms
such as renewable bioenergy, renewable bioproducts, and
renewable bioeconomy, by proposing the use of renewable
energy through effective policymaking and attracting industrial
attention. Therefore, a major global priority currently is to
increase the use of biomass sources or waste materials con-
taining biomass to generate energy to alleviate and combat
problems due to the increasing demand for energy.”” There is
a pertinent and emerging requirement for industries to employ
newer technologies to efficiently recover biomass and convert it
into useful chemicals and fuels of high calorific value. Globally,
researchers have been corroborating the growing efforts to
promote sustainable growth and zero waste industries by
proposing several environmentally friendly processes.” A.
Curcio et al.® reported on the hybridization strategies of a solar
autothermal biomass gasifier for stable and continuous opera-
tion under various solar irradiation. The objective of the study
was to observe the operational feasibility of the solar biomass
conversion process via the oxy-combustion of biomass to
control gasification temperature. The purpose of the study was
to evaluate the operational viability of a solar biomass conver-
sion process that involves the oxy-combustion of biomass to
regulate the gasification temperature. The various hybridiza-
tions of the strategies were investigated by thermodynamic
analysis and experimental validation. The results showed that
controlling the H,:CO ratio above 1 during hybridization
required providing high amounts of water steam with oxygen,
penalizing efficient heating. However, reducing the water inlet
rate changed the H,: CO ratio but decreased CO, production
and the solar thermal power requirement. Therefore, control of
the flow rate of the outlet H, + CO volume was demonstrated
with respect to the injection of oxygen and wood. Solar-to-fuel
efficiencies were maintained around 20%, whereas hybridiza-
tion decreased the cold-gas efficiency below 80%.

In a biomass gasification plant, the units have non-
linearities and high process interactions. The dominance of

© 2023 The Author(s). Published by the Royal Society of Chemistry
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non-linear behaviour is due to the presence of disturbances and
set-point changes, causing the non-linear system to set away
from its linear approximation. Therefore, control strategies are
crucial in the operational optimization of change and distur-
bance rejections at the set point of the process, as well as in the
reduction in the operational costs of such systems. Control
strategies for the biomass gasification process based on
decentralized proportional-integral derivative (PID) control
could not handle the interaction between multiple controlled
and manipulated variables, and the input or control variables
have a comparable effect on the outputs. Hence, this will
require the implementation of advanced control, such as MPC.
Two main advantages of using MPC are that multiple input and
multiple output (MIMO) systems are consistently handled.®
Constraints that act on the controlled and measured variables
can also be considered explicitly. The ability of MPC to handle
constraints makes it more appropriate and preferred than PID
control.”®* MIMO systems are common in the process industry,
where several control objectives and variables are typically
available, and the control designer's task is to tune the
weighting functions of the optimal control problem to match
the objectives. The predictive action of MPC allows future errors
to be anticipated, which helps to forecast potential problems in
an operation.*

3.3.1 Decentralized control. Most of the control schemes
that have been recently proposed for the biomass gasification
process focus on decentralized multi-loop control
schemes.'**7° A decentralized control scheme is a distributed
control system, where each component of the system is equally
responsible for contributing to the complex behaviour of the
system. The general steps involved in decentralized control are
shown in Fig. 5.

Multiple simultaneous reactions occur within the gasifier,
resulting in the formation of several zones, including drying,
pyrolysis, oxidation, and reduction zones.”>” It is extremely
challenging to maintain the stable operation of the gasifier to
generate syngas with consistent properties at a constant
production rate, which is important for subsequent down-
stream applications.” The performance of the gasifier could be
affected by various factors such as fuel characteristics (particle
size, composition, moisture, ash, and energy contents), fuel
feed rate, airflow rate, air equivalence ratio, gasifier design,
reaction/residence time, gasifying agent, temperature profiles,
and pressure.” Therefore, it is important to simplify the
monitoring system to allow accurate control and rapid response
to changing operational conditions.” In addition, one of the key
necessities for the control and optimization of a gasification
system is the integration of the dynamics of the gasification
process and the corresponding scenarios into the actual
monitoring and decision-making tool.”® Although much effort
has been made to increase the efficiency of the gasification
process, improve energy savings, and improve environmental
aspects of the gasification process, only partial solutions have
been obtained for the partial aspects.”” Many operational
parameters related to gasifier and biomass’ such as fuel and
airflow rate, composition and moisture content of biomass,”®
geometrical configuration and gasifier type,” reaction/
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Fig. 5 Steps involved in the Pl control system.

residence time, type of gasifier agent, different sizes of biomass
particles,” different feedstocks,® gasification temperature and
pressure.*” From the process parameters mentioned, the
process temperature is one of the most important. It influences
the quality of syngas, the reaction rate, and the tar concentra-
tion. The low process temperature produces a high tar
content,”” low syngas quality, and low cold gas efficiency.®
However, a high process temperature causes unwanted ash to
melt. Therefore, the temperature of the process should be
controlled.®*

Patrick J. Robinson et al.** performed the dynamic process
modelling and control of a coal gasification plant at the
National Energy Technology Laboratory (NETL). PI control
loops tuned with the Simple Internal Model Control (SIMC)
tuning rules are evaluated by disturbing the process with load
changes in the flow rate of fuel and changes in the water content
of the coal. From the evaluation, it is observed that the
dynamics are very fast, with peak temperature deviations taking
place about 4 min after the disturbance. The temperature is
reported to initially decrease with an increase in fuel flow as
aresult of the cold temperatures of the feed streams, which lean
toward reducing the temperature in the gasifier. However, as
more oxygen is fed, the exothermic reaction of CO to CO, drives
the temperature back to the set point. The maximum temper-
ature deviations in the partial oxidizing zone of the gasifier are
approximately 25 °F. Vijay Daniel P. et al.®* developed the
mathematical modelling and control of a coconut shell biomass
gasification process. In this strategy, the control of temperature
is studied by manipulating the airflow velocity. The dynamic
model is identified as a First-Order-Plus-Time-Delay (FOPTD)
process. Comparison between the PI controller and the PID
controller showed that the PID controller shows better perfor-
mance in terms of time-domain specifications and provides
better stability. The most important parameter in gasifiers is the
need for measurement and control to achieve optimal results
for the temperature at which the raw materials react. Kosan Roh
et al.* developed an equation-based dynamic model of the
Elevated Pressure Air Separation Unit (EP ASU) system using
pulverized coal as a feedstock on the simulation platform of

23804 | RSC Adv, 2023, 13, 23796-238T1

GPROMS. Integrated Gasification Combined Cycle (IGCC) is an
alternative power generation system that can use fossil fuels in
an eco-friendly way that is in contrast to the conventional
pulverized coal-fired plant. An IGCC plant requires an EP ASU
that separates air into pure oxygen and nitrogen, which are sent
to the gasifier and the gas turbine, respectively. The ASU
consumes approximately 10% of the gross power output
generated in the IGCC, so economical operation of the ASU is
important to lower the overall cost of the power generation cost.
In this research, the selection of controlled variables for an EP
ASU is studied from the viewpoint of economics, i.e., to main-
tain an economically (near) optimal operation in the presence
of load changes. Instead of full-scale Real-Time Optimization
(RTO), they adopted a simpler approach known as Self-
Optimizing Control (SOC), which attempts to achieve the
objective through a systematic selection of controlled variables.
To design and test a self-optimizing control structure, equation-
based modelling of EP ASU is carried out using the software
platform of GPROMS. Then, the SOC approach is applied based
on a model to select the best set of controlled variables, which
will lead to the most economical operation in the presence of
load changes. Finally, PI control loops are designed, and their
dynamic control performances are tested. Furthermore, the
economic loss in the presence of load changes is analysed and
compared with what was achievable with the use of RTO.

3.3.2 Model predictive control (MPC). As economic and
quality issues become more important, the reliance on an effi-
cient control system to meet the stringent requirements
imposed will also grow. Therefore, process industries will
require more reliable, accurate, robust, efficient, and flexible
control systems for the operation of the process plant. To meet
the above requirements, there is a continuing need for research
on improved forms of control.*>*® Poor controller performance
is an underestimated problem for many industries, usually
unaddressed due to the lack of re-engineering capabilities and
complexities in the operation. They deprive the industry of its
true potential profits and pose serious stability and safety
concerns.®” Sixty percent of controllers in industries have had
performance problems in the past.?® Therefore, to meet product

© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 6 Steps involved in the MPC control system.

specifications with economic feasibility and effective long-term
control, it is of utmost importance to evaluate the performance
of the control system. Proportional-Integral (PI) and PID
controllers are commonly used in many industrial control
systems because of their simple structure. This controller is
designed without process constraints and uses only a mathe-
matical expression based on an error from a set point. In these
circumstances, conventional controllers (PI and PID) are no
longer able to provide adequate and achievable control perfor-
mance throughout the operating range. Thus, when designing
a controller, its ability to handle process constraints and opti-
mize its control performance around this fact is essential.>**°
Model predictive control (also known as receding-horizon
control) is an advanced strategy for optimizing the perfor-
mance of multivariate control systems. MPC generates control
actions by repeatedly optimizing an objective function on
a finite prediction horizon of motion, within the constraints of
the system, and based on a model of the dynamic system to be
controlled.” The general steps of MPC are shown in Fig. 6.
The application of MPC controllers is expected to generally
allow for better control performance compared to PI controllers.
Gasification is a relatively well-known technology; however, the
share of gasification processes that were able to meet general
energy demands is small due to current barriers regarding
biomass pre-treatment (drying, grinding and densification), gas
cleaning (physical, thermal or catalytic), process efficiency, and
syngas quality issues.”* Several MPC algorithms have been
proposed in the past 30 years.””®* Examples include Model
Predictive Heuristic Control (MPHC), Dynamic Matrix Control
(DMC), Generalized Predictive Control (GPC),** and Internal
Model Control (IMC).?** MPC used an optimal control algorithm
that incorporates a process model to predict plant behaviour.
The MPC algorithm differs in the model used to represent plant
dynamics and the cost function.®**® For gasification control
purposes, advanced control concepts have been implemented
in several small-scale gasifiers. Elizabeth Saade et al.®” devel-
oped a linear Model Predictive Control (MPC) system for a solar
thermal reactor for carbon-steam gasification. The controller
was designed to minimize the effect of variations in solar irra-
diation by manipulating the gas and steam flow rates into the
reactor. The proposed controller was compared to a multi-loop
feedback control strategy comprising two parallel PI controllers.

© 2023 The Author(s). Published by the Royal Society of Chemistry

After a four-hour simulation under real conditions, the MPC
controller had ISE values of 0.0026 for the synthesis gas fraction
and 3819 for the CO : CO, ratio. These values were one order of
magnitude smaller than the values obtained with the PI
controllers for the same simulation, which were 0.0835 and 37
376, respectively. Thus, the MPC controller outperformed the
multi-loop feedback control strategy. The results obtained
suggest that the proposed controller is suitable for real-world
implementation. Rudy Agustriyanto et al®® tested several
multi-loop control structures for the ALSTOM gasifier bench-
mark process, to determine the most appropriate control
structure. The Generalized Relative Disturbance Gain (GRDG)
analysis is used to determine the control structure determina-
tion. Linear transfer function models are identified from
simulated process operation data for five inputs (coal, lime-
stone, air, and steam and char extraction) and four outputs
(pressure, temperature, bed mass, and gas quality). Addition-
ally, there is a disturbance input, PSINK, which represents
pressure disturbances induced as the gas turbine fuel inlet valve
is opened and closed. The Output-Error (OE) method is used in
identifying process models because it can lead to models with
good long-range prediction (simulation) performance, and
hence accurate transfer function models. The results of the
GRDG analysis clearly show that the baseline controller
proposed by Asmar et al.*® is the preferred multi-loop control
structure among their initial designs. This study indicated that
the use of RGA analysis is not effective in the selection of control
structures for this benchmarking process. It would be possible
to find even better control structures using GRDG analysis, and
this is under further investigation.

Sidharth Abrol et al.*® developed the methanol synthesis
recycle loop model using steady-state and dynamic models to
better understand the process behaviour. A linear MPC (4
inputs x 3 outputs) is designed based on a linear process model
identified using the data generated from the running of the
first-principles models. The model is designed to reject distur-
bances from a varying upstream syngas production process and
to track set-point changes in the desired variables for methanol
synthesis. The objective of the controller is to reject any
(measured) disturbances observed in the MUG (maximum
design rate changed to half the maximum) flow rate, resulting
from upstream solar variations over short intervals, and also to

RSC Adv, 2023, 13, 23796-23811 | 23805
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track the changes in setpoints corresponding to these distur-
bances. Wahid et al.** developed a dynamic model of a steam
reformer, which is the main process unit for the production of
H, gas, using the UniSim® process simulator operated in
dynamic mode. A First-Order Plus Dead-Time (FOPDT) model is
identified and used to design MPC controllers with a sampling-
time prediction horizon control horizon of 2 s, 50 s, and 3 s,
respectively. The MPC is designed based on two loops that are
manipulating; the motor speed and heat of the heat exchanger
after the compressor unit, to control the steam pressure that
will come to the H,S removal unit; and the inlet and outlet
temperatures of the steam reformer. The MPC controller
performs better in controlling the pressure and temperature of
the steam reformer compressor compared to the PI controller.
The MPC shows that it can optimize the system quickly enough,
unlike the PI controller, which takes a long time to optimize the
system.

The ability of MPC to handle constraints makes it more
appropriate and preferred over PID control.’* The predictive
action of MPC allows future errors to be predicted, which helps
to forecast potential problems in an operation.'® V. Kalaichelvi
et al'” demonstrated that in a biomass boiler combustion
system, the boiler drum water level is an important parameter,
and it should be measured regardless of whether the boiler
steaming water system is in balance or not. For a non-linear
process, such as water level control in boilers, conventional
control theory is not an appropriate choice. In this study,
a neural network-based predictive controller is designed and
implemented by simulation in MATLAB software for the control
of the water level control. The performance of the neural
network controller is compared with that of a conventional PID
controller for the water level control system of the boiler drum,
and it is observed that the neural network-based approach is
more efficient than the conventional PID controller.

Sanjeevi Gandhi et al.®® proposed a MIMO based on experi-
mental data from a wood-based biomass gasification plant. The
fuzzy logic controller has been implemented for the transfer
function model of the gasifier. The efficiency of a fuzzy
controller is compared to conventional controllers for the SISO
system gasifier, where the flow is the input and temperature is
the output, which has been proposed. A fuzzy logic controller of
the MIMO system of gasifiers based on the static model of the
gasifier has been proposed, which can be used in controller
tuning. The CO/CO, ratio was well controlled by adjusting the
frequency of motion to control the residence time of biomass
within the reactor. Similarly, the gasifier temperature control
system (SISO) is also effectively controlled with a fuzzy logic
controller by adjusting the airflow rate. The performance of the
gasifier MIMO system is tested by simulation. Furthermore, the
gasifier temperature control system was verified by simulation
to ensure that the efficiency of a fuzzy controller was properly
verifiable and comparable with that of the conventional
controller. Mahapatra and Bequette et al.'® have presented an
advanced, centralized, multivariable, predictive control (MPC)
model technique to address the controllability of an ASU
process (air separations unit) process from integrated gasifica-
tion combined cycle (IGCC) power plants, and compared the
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controller performance with decentralized Proportional-
Integral (PI) control schemes.'* The ASU model is developed
using the Aspen Plus® dynamic simulator, while the MPC is
implemented in MATLAB. A 4 x 4 linear transfer function
model was developed between each manipulated variable and
all controlled variables, and the sample time, prediction, and
control horizons were set at 0.1 h, 30 and 3, respectively, based
on the time constant values determined from the sensitivity
step test. The corresponding weights for the manipulated
inputs and controlled variables are set using trial-and-error
methods. Constrained linear MPC is considered where upper
and lower bounds are imposed on both the manipulated and
controlled variables to account for the physical limitations of
the plant, including saturation limits in the control valves and
operational constraints. Simulation studies based on this
design showed the attainment of the desired flow rate and
purity levels above acceptable limits within 5-6 h of the 10%
step load change demand. It is reported that the linear MPC
performed significantly better than the decentralized multi-
loop control scheme based on Proportional-Integral (PI
controllers), even with absolute and rate-of-change constraints.
R. Al Seyab et al.** developed a simple predictive controller to
control an ALSTOM gasifier process using pulverized coal.
Using a linear state-space model identified under 0% load
condition as the internal model, the controller can achieve all
required performance specifications within the input and
output constraints. In the predictive controller, a Quadratic
Programming (QP) problem is solved online to decide the
optimum control moves to steer the output to follow a specified
trajectory that keeps the process in the stable operating regions
all the time. The novelty of the work is to identify the load
condition at 0%, as it is the most difficult case of all three
operating conditions of the gasifier to achieve performance
specifications. Then, a linear state-space model around 0% load
point is used as the internal model for performance prediction.
The model works fairly well at other load levels. The controller is
implemented using the quadprog function of MATLAB to solve
the QP optimization problem. The value of M =9 s, P = 20 and
the sampling time is 1 second (Table 2).

4 Conclusion

The dynamic nature of biomass gasification involves various
stages, including drying, pyrolysis, oxidation, and reduction
reactions within the bed and between the solid and gas. While
many published studies have focused on steady-state modeling,
there have been limited reports on dynamic state modeling,
which is essential for control studies. The steady state is
simpler, while the dynamic state is more complex due to the
different phenomena involved. Therefore, such studies are
crucial for future scale-up purposes, especially since the type of
feedstock used influences gasification performance. Control
strategies play a significant role in optimizing process set point
changes, disturbance rejections, and operational cost reduc-
tion. However, conventional control structures are not always
effective in multivariable systems with higher interactions
among variables, such as biomass gasification. This has led to
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increased interest in modern control algorithms such as model
predictive control (MPC), which can handle multiple-inputs
multiple-output (MIMO) systems consistently, with constraints
explicitly accounted for. Although studies have reported on
related applications, there is a research gap in this domain, as
there is no concrete framework, architectural model, or mid-
dleware platform available. Additionally, there has been no
controller study reported for a steam in situ gasification pilot
plant model. Aspen Plus is a widely used process simulation
software for the modeling and simulation of biomass gasifica-
tion. Its versatility lies in its capability to create both steady-
state and dynamic models of the gasification process,
enabling the simulation of various scenarios to optimize
process parameters. With a comprehensive library of thermo-
dynamic models, Aspen Plus accurately predicts the behavior of
gasification reactions. Moreover, the software allows for the
specification of detailed kinetic models that can consider
multiple reactions occurring simultaneously and calculate
reaction rates. To study the dynamic and control aspects of
gasification parameters, such as feed rate, temperature, and
pressure, Aspen Dynamics is employed. The software offers an
array of control structures, including PID controllers and
AMSIMULATION toolboxes, that can link with Matlab for
implementing model predictive control (MPC) algorithms to
achieve optimal process performance. By conducting sensitivity
analyses, Aspen Plus can evaluate the impact of changes in
process parameters on gasification performance, allowing for
the identification of critical parameters that can be optimized to
attain the desired gasification outcomes. In summary, Aspen
Plus is an indispensable tool for simulating and modeling
biomass gasification, providing precise predictions of gasifica-
tion behavior, and facilitating the optimization of process
parameters and control strategies.

Aspen Plus is a prevalent process simulation software that has
significant importance in modeling and simulating biomass
gasification. It enables the creation of dynamic and steady-state
models for the gasification process and facilitates the optimiza-
tion of process parameters by simulating various scenarios. Addi-
tionally, as biomass gasification control studies are crucial, but
there is a limited review available on Model Predictive Controller,
a multivariable MIMO controller. Moreover, Aspen dynamic is
available in Aspen software which helps to estimate the dynamic
and control studies of processes. Therefore, it is essential to review
and highlight different control strategies employed in biomass
gasification, utilizing various models and software.

Aspen Plus is a process simulation software that is widely
utilized for the modeling and simulation of biomass gasifi-
cation. Its usefulness lies in the ability to develop both steady-
state and dynamic models of the gasification process,
enabling various scenarios to be simulated to optimize
process parameters. With a comprehensive library of ther-
modynamic models, Aspen Plus accurately predicts the
behavior of gasification reactions. In addition, the software
enables the specification of detailed kinetic models that can
consider multiple reactions happening simultaneously, and
calculate reaction rates. For dynamic and control studies of
gasification parameters such as feed rate, temperature, and
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pressure, Aspen Dynamics is utilized. The software provides
a variety of control structures like PID controllers and AMSI-
MULATION toolboxes, which can be used to link Matlab for
model predictive control (MPC) algorithms to achieve optimal
process performance. By performing sensitivity analyses,
Aspen Plus can determine the impact of changes in process
parameters on gasification performance. Therefore, it can be
used to identify critical parameters that can be optimized to
achieve the desired gasification outcomes. In summary, Aspen
Plus is an essential tool for simulating and modeling biomass
gasification, providing accurate predictions of gasification
behavior, and allowing for the optimization of process
parameters and control strategies.

Nomenclature

PID Proportional integral derivative

PI Proportional integral

MPC Model predictive controller

Ni Nickel

MIMO Multiple input multiple output

CaO Calcium oxide

PKS Palm kernel shell

MISO Multiple input single output

GA Genetic algorithm

ISE Internal server error

IAE Integral of absolute error

ASU Air separation unit

IGCC Integrated gasification combined cycle
EP ASU Elevated pressure air separation unit
FOPTD First-order-plus-time-delay

RTO Real-time optimization

GRDG Generalized relative disturbance gain
RGA Relative gain array

H,S Hydrogen sulfide

SISO Single input single output

WGS Water gas shift

H, Hydrogen

CO Carbon monoxide

CO, Carbon dioxide

CH, Methane

KOH Potassium hydroxide
ANN Artificial neural network
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